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Adiabatic Geometric Phases and Response Functions
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Treating a many-body Fermi system in terms of a single particle in a deforming mean field, we
relate adiabatic geometric phase to susceptibility for the noncyclic case, and to its derivative for the
cyclic case. Employing the semiclassical expression of the susceptibility, the expression for geometric
phase for chaotic quantum system immediately follows. Exploiting the well-known association of the
absorptive part of susceptibility with dissipation, our relations may provide a quantum mechanical origin
of the damping of collective excitations in Fermi systems. [S0031-9007(97)05154-5]

PACS numbers: 03.65.Bz, 05.45.+b, 24.60.Lz

Chaotic adiabatic systems [1] serve as useful models fqrast [1]. We would particularly like to emphasize here
complex systems in the mean-field approximation. Theséhe importance of such studies in enhancing the under-
idealized models have been employed to understand vestanding of damping of collective excitations in nuclear
interesting phenomena in nuclear [2] and plasma physicghysics. Concepts like time correlations and susceptibil-
[3]. In particular, an important problem of many-body ity are fundamental to any discussion of quantum statis-
theory is to relate the slow collective excitations to fasteitical mechanics as they lead to an understanding of the
single-particle motions. Adiabatic approximation leads ugesponse of the many-body system [4] and the transport
to linear response theory on one hand where dynamicaloefficients [14]. It is well known that the imaginary part
susceptibility (or polarization propagator) [4] is central, of susceptibility is related to dissipation, thus it may be
and geometric phases on the other. A relation betweequite interesting to explore its possible relationship with a
these seemingly disparate guantities is being sought for iquantity like geometric phase. To work out such a rela-
this Letter. tion, we begin with a discussion of geometric phase and

Phase factors of geometric origin were discovereddentify the appropriate quantities related to susceptibility.
for adiabatic quantum systems [5,6] and have been Let us first consider a Hamiltonian parametrized by
generalized to nonadibatic situations [7]. The geometryR which describes a single particle in an effective
of the Hilbert space plays a key role in understandingnean field where the shape of the field is vibrating
geometric phases [8], a recent illustration being for theadiabatically in time. It is well known [5] that when the
Josephson junction [9]. Adiabatic geometric phase legharameters evolve along a cyclic p&ththe instantaneous
to an understanding of several phenomena in physicsigenfunction of the systeniz(R)) corresponding to the
[10] like fractional statistics in two-dimensional statistical eigenvaluek,(R), acquires a geometric phase given by

mechanics, integer quantum Hall effect, anomalies in field

theory, and Magnus force in the context of superfluidity ¥a(C) = jg i(n(R)| Vgn(R)) - dR

[11], and so on. Recently, it has been shown that the ¢

viscosity of quantum Hall fluid in two dimensions at zero — _if V, - dS, 1)
temperature is related to adiabatic curvature [12]. An hJs

interesting aspect of many-body physics related to thesehere S is the surface enclosed by in the parameter
advancements is in the Born-Oppenheimer approximatiogpace, andv, is the “field strength” (adiabatic curvature)
where reaction forces are shown to be of geometrigiven by a familiar expression involving a sum of
origin [13]. Owing to an intimate tangle of collective weighted wedge product between two appropriate matrix
and single-particle effects, it becomes useful to treat thelements:

total system as one where a slow subsystem is coupled o (n|VrH|m) A (n|VrH|m)

to a faster one. In this setting, first-order corrections to V. = —ih Z (E, — E,) 2)

the Born-Oppenheimer approximation leads to geometric m(#n) " "

magnetism and deterministic friction in a fully classical A suitable form ofV, for the sequel is [15]

treatment, whereas a half-classical treatment gives rise to i oo

geometric magnetism only. Vi =58 Img)f dre” ' t(n|[(VrH);, A(VrH)]|n),
When a particle (a nucleon, say) moves inside an enclo- o

sure whose boundary is adiabatically vibrating in time, the (3)

wave function can acquire a geometric phase over a cyclehere (Vg H), denotes the Heisenberg-evolved operator.
of vibration. This model is an idealization of a single par-Note that, the stath:(R)) appearing in (3) corresponds to

ticle in a mean field represented by the enclosure, and hassingle-particle eigenket in an effective mean field. This
been an established paradigm for numerous studies in tletate is clearly related to the original many-body Fermi

650 0031-900798/80(4)/650(4)$15.00 ~ © 1998 The American Physical Society



VOLUME 80, NUMBER 4 PHYSICAL REVIEW LETTERS 26 ANUARY 1998

system for which the imaginary part of the dynamicalj:[|q>,> = F,|®,), then we [16] have
susceptibility is [14]

4 (o Al®)) = (m(R)IA|n(R)). ®)
" _ a R
x"(1) = — (Dol [A), BO)]Po) On reducing the many-body system7at= 0 K (where
dw the Fermi-Dirac distribution is a Heaviside step function)
=] 5. e "y (w), (4)  to a one-body system, we can express [16]
where|®d,) is the pure ground state of the many-particle P _ __f iwt Y
system with Fermi energir. If one-body operator#/, pl@) = die™d(Ep — H)[A®), BO)].
A, andB are used to construct many- body operators by a (6)

direct sum so as to gei—[, A, andB, respectively, and ) . . .
| This can also be written semiclassically as [16]

h @ d'xd’p o (iw— Lo fe
Boto) = = [ ar [ GEL 55~ mawx ) LBy (x.p) + O

co%S, — r5v,) it
_na(EF H)Z [detm), Iill/pz [dte fpdTAW(T)BW(T +1) + O(R), 7)

where the subscript W” refers to the Weyl symbol| For relating the response function to the geometric phase,
of the operator,f denotes the degrees of freedom,the operatorsA and B in our discussion are to be
and £, is the Liouvillian operator. The last term jdentified thvxj-[ andvyj-[forR (X,Y,2).
corresponds to the periodic orbit expansion whége The matrix element in (3) can be written as a many-
Vp, and m, correspond to action, Maslov index, and body matrix element using (5) by Composin@ and
the monodromy matrix for the periodic orbjt, andr B so that we get the operatdf (r) = [A(r), B(0)] —

denotes the repetitions. We have used the GU'[ZWi”G[’B(;Lﬂ(())l which is related to a differeanXB([) -
trace formula [17] for the case where the single-particley/, (r) = y”c(¢). Thus, we can rewrit&, as
motion is chaotic. The above semiclassical expression

is valid for Hamiltonian operators which are quadratic in vV, = L lim dte ' t{Dy|C | D)
~ . s s _ 2h e—0 0
momentump, with an additive position-dependent term. . i
The expression (6), however, is general. For the case _ dit ' (1) = Y (w)
where the system has partially broken symmetry, the dw  lw=0
results have been recently generalized [18]. We now arrive at our first relation for the case of cyclic
The label " in (3) corresponds to single-particle states evolution:
and is related to/®,) because the many-body matrix 57" (w: R)
elements can be written in terms of one-body matrix vu(C) = f as XL =) . 9)
elements for the case where all the constituents are taken ow =0

as noninteracting. In many-body physics, this gives theSince y( () is related to energy dissipation, this relation

zero-order response whereupon the interaction can bmonnects geometric phase to dissipation.
included in a Vlasov description in an iterative way [19].  Exploiting (7), we get

dfxdfP i L
] f Qmh) 8(E — H)[Aw(e™"'Bw) — Bw(e™ “'Ay)]

8(1)

COE(LS — r%vp)
n-h I|m S(Er — H)Z Idei(mr e

X [dte"“”f dr[Aw(7)Bw (T + t) — Bw(1)Aw (T + 1)], (10)
P

which entails the semiclassical expression for adiabatito note that (9) is valid for general Hamiltonians, whereas
geometric phase for chaotic systems, using (9). The firgtl0) is restricted to the operators ligg + V() only.

term comes from the classical time correlation function The time-dependent deformation of the mean field can,
which is expected to decay exponentially as the dynamics general, be noncyclic, where the above expression does
is chaotic. This decay is governed by the largest Liapunowot hold.

exponent of the classical system. The second term is the When a quantal system does not follow a cyclic
semiclassical correction in terms of periodic orbits whichevolution the geometric phase not only depends on the
can be termed as a periodic orbit two-form. It is importantpath of the evolution curve but also on the end points. It
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has been shown in [20]'tha'g the_ wave fungnon can acquire () = f[An(R) — P,(R)] - dR, (13)
a geometric phase during its time evolution, irrespective r

of adiabatic and cyclic condition, given by where A,(R) = i(n(R)| Vn(R)) is the usual Berry po-

tential whose curl gives the adiabatic curvatdvg and

(1) = f i (0 [ x(0)dr A1) p ®) = —Im(%) is an extra potential that

where |y(1)) is a modified state vector defined from t@kes care of the contributions from the end points of the

the actual state vectdi(r)) of the system agy(r)) =  €volution bpath. The goncylclic Igeometric ph?se is gauge
(W (1) | W (0)) - -, invariant because under a local gauge transforma#ign,

W (z)) and an overdot denotes the time deriva- . . .
oo Y (0) and P, transform in the same way. Also in the special

tive. From this general expression, the adiabatic, open=

path geometric phase can be written in the following Way:Case of cyclic evolutions of parameters, (12) goes over o

the well-known expression, (1).

W) = f i{xn(R)|Vx,(R)) - dR For our purpose, we simplify the generalized vector
v rl<X R [Vxa(R)) potentialQ), (R) as
= f Q,(R) - dR, 12) R = A,(R) — Py(R)
r

n(R(0)) | m(R))Y (m(R)|VH|n(R)
where ,,(R) is a generalized adiabatic vector potential =Im Z { ) R) ¢ >-

(connection one-form) whose line integral gives the geo- nizn (MRODInR)) — (Ey = En) 14
metric phase. This noncyclic adiabatic geometric phase (14)
can be expressed as a line integral of the difference of two Using an integral representation £, — E,)" !, we

vector potentials [21], | can write(2,(R) as follows:
1 . o iE,— (n(R)|P,(R(0))P,,(R)VH|n(R))
Q,R)=— > lm [ dt “Im[ HE /R , 15
®) = 2 m ), deim]ie [(2(R(0)) | n(R))P (13)
where P,(R(0)) = |[n(R(0))){n(R(0))| and P, (R) = | the two-time correlation function at zero temperature for a

|[m(R)) (m(R)| are the projection operators correspondingsystem ion canonical equilibrium [24]. This result seems
to nth and mth eigenstates. Now define a quantumto be a fundamental one as the generalized adiabatic
correlation function between the operatdr and the vector potential is exactly equal to the imaginary part
Heisenberg evolved operatsy through of the susceptibility at zero frequency. Therefore, the
1 adiabatic geometric phase for a noncyclic variation of
Qap(t) = 3 (n| (AB; + BA) |n) — (nlAln){n|B;|n) external parameters along a pdths given by

(16) 70 = [ ¥'0:R) - R, (20)
and identify the Hermitian operatos = P,[R(0)] and r

B = VH. With this, the generalized vector potential canwhich relates a bulk property to a physical quantity
be written in terms of a quantum correlation function: ~ assigned to a single particle.

| % 0.5(t) In (9) and (20), note that the frequency-dependent
Q,(R) = — Iim[ dte™ ' AB 5. (17)  response functions are different. However, they are
he=0Jo (n(R(0) | n(R))] related as follows: for a cyclic evolution along a path

Let us note thaQAB(t) defines fluctuations in the sym- C, app|y|ng Stokes’ theorem (20) reduces to a surface

metrized correlation of two operators. Recalling the relajntegral of curl y”(0; R) over S. Using (9), it follows
tionship between the Fourier transform@fiz(¢) and the  that

susceptibilityy”(w) [22] at zero temperature, we find o

Oap(w) = Y (o), (18) Ve X ¥"(0:R) = W . (21)

an instance of the fluctuation-dissipation theorem of the The above results have clear relevance to finite Fermi
second kind [23]. Following the physical arguments usedy siems like metallic clusters and nuclei. The historical
to express single-particle expectation values in terms ofg|ective picture of nucleus was Bohr's liquid drop which
statistical quantities as in the cyclic case, we get has been successfully used ever since. Because of the
- L. o numerical simulations [1] and the results [Egs. (9) and
1¢0y- - €t N/
X"(0:R) I IEITO 0 die = Q1) (20)] obtained above, it is clear that the nuclear fluid has,
- in fact, characteristics of a gel which is an elastic or a
Q,(R), 19 o ) :
viscoelastic liquid. The connecting relation (21) between
where Q5(1) = m is the scaled quantum cyclic and noncyclic case is necessary as a consistency
correlation function. Here, the scale factor is the survivarequirement. The applicability of our results to nuclei is
probability P(r) = [(n(R(0)) | n(R))|> which is related to due to the compelling evidence, originating from shell
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structure of binding energies, testifying that the meardecay of collective excitations of Fermi systems. The

free path of nucleons is larger than the nuclear dimenresults of this Letter can be generalized for the case when

sions [25]. the dynamics is not fully chaotic using the results of [18].
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