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Motivations

Entanglement within many-body quantum states drives
subsystems to thermalization although the full state remain pure
and of zero entropy.

Localized information spreads within typical many-body systems
exponentially fast in the “scrambling” time scale, defining a
form of quantum chaos.

Out-of-time-order correlators (OTOC) or commutator growth,
operator scrambling and Tripartite-mutual-information (TMI)
are being vigorous investigated as measures of such
delocalization of information.

Permutation symmetric systems are interesting to study these
issues in, as the rank of subsystems is only linear in their
dimensionality rather than exponential. Occur naturally in spin
systems with collective variables.
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Tripartite mutual information

Mutual Information: Decrease in the uncertainty of X given Y .

I (X : Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

= H(X ) + H(Y )− H(XY ) ≥ 0.

TMI: A measure of tripartite correlation

I (X : Y : Z ) = I (X : Z ) + I (X : Y )− I (X : YZ )

= H(X ) + H(Y ) + H(Z )− H(XY )− H(XZ )− H(YZ ) + H(XYZ )

Can be > 0 or = 0 or < 0.
If TMI< 0, MI is monogamous like entanglement measures:

“Synergy” whole > sum of parts.
If TMI> 0 there is redundant information, for example Z = Y .
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TMI’s sign

No definite sign for many-body states or field theories.

TMI < 0 for conformal field theories with classical holographic
duals. [P. Hayden, M. Headrick, and A. Maloney, Holographic Mutual

Information is Monogamous, Phys. Rev. D (2013), arXiv:1107.2940].

Typical (generic, random) subsystems of many qubit pure states
have small negative TMI. [Tripartite information of highly entangled

states, M. Rota, arXiv:1512.03751]

AS, VM, AL (IIT Madras) TMI QIPA, 2018 5 / 21



TMI examples and significance

Two examples of 4-party (ABCD) pure states each of dimension d ::

(1) Can be Absolutely Maximally Entangled (“perfect”) if d 6= 2 or 6.
I (A : B : C ) = 3 log d − 3 log d2 + log d = −2 log d .
(2): AB and CD are maximally entangled pairwise.
I (A : B : C ) = 3 log d − 4 log d + log d = 0

Due to the negative sign of TMI for AME or perfect states, this has
been proposed as an alternative indicator of scrambling. [P. Hosur,
X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in quantum channels,

arXiv:1511.0402.]
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Scrambling via out-of-time-order correlators

Growth of commutators of initially localized operators:

F (t) =
〈

[A(0),A(t)]†[A(0),A(t)]
〉
.

A(t) = e iHtA(0)e−iHt

If F (t) ∼ e2λt for td < t < tS , λ was called a Lyapunov exponent
and tS a scrambling time, beyond which the information is not locally
retrievable. [ Hayden, Presskill, 2007, Susskind, Sekino, 2008, Maldacena,

Shenker, Stanford 2015 ...]

Black holes, SYK models, O(N) field theories to Models of quantum
of chaos scramble exponentially fast. [Explicit calculation for the quantum

bakers map in AL arXiv:1810.12029]
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Permutation Symmetric States: No preferred qubit

Dicke state: basis for N qubit PS states:

|mN〉 =
1

cN(m)

∑
0≤i≤2N−1
w(i)=m

|binary expansion of i〉 , 0 ≤ m ≤ N

w(i) =Hamming weight of i=# of 1 in the binary expansion of i .
Normalization constant:

cN(m) =

√(
N

m

)
=

√
N!

m!(N −m)!
.

An arbitrary N-qubit PS pure state ∈ SN :

|ψ〉 =
N∑

m=0

am |mN〉 ,
N∑

m=0

|am|2 = 1.
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Partial traces of symmetric states

SN ⊂ SQ ⊗ SN−Q

|ψ〉 =
N∑

m=0

am |mN〉 =
Q∑

m=0

N−Q∑
n=0

Amn |mQ〉 |nN−Q〉

Amn =
cQ(m)cN−Q(n)

cN(m + n)
am+n.

Reduced density matrix of Q qubits only of rank Q + 1:

ρQ = AA†

Maximum entanglement = log2(Q + 1): achievable with Q = [N/2],
only for N = 2, 3, 4, 6 [N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A

246, 1 (1998), (quant-ph/9804045)]
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Random symmetric states in SN

Sample uniformly from the space of PS states SN :

P({am}) =
N!

πN+1
δ

(
1−

N∑
m=0

|am|2
)
.

Properties of ρPSQ , where AQ is constructed from the N + 1 complex
random numbers am as

(AQ)mn =

√√√√(Qm)(N−Qn )(
N

m+n

) am+n, ρPSQ = AQA
†
Q ,

with 0 ≤ m ≤ Q, 0 ≤ n ≤ N − Q. The normalization of am
guarantees that tr(AQA

†
Q) = 1. Decorated random Hankel matrices.

[Also “Characterizing the entanglement of symmetric many-particle spin-1/2

systems” John K. Stockton, J. M. Geremia, Andrew C. Doherty, and Hideo

Mabuchi, quant-ph/0210117]
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Compare with random state in SQ ⊗ SN−Q

When pure states are uniformly sampled from the bipartite Hilbert
space of dimension (Q + 1)× (N − Q + 1).

ρHSQ =
GG †

tr(GG †)

whereG is a Q + 1× N − Q + 1 dimensional matrix with complex
entries whose real and imaginary parts are independently normally
(zero centered) distributed. Eigenvalues are distributed according to
the Marcenko-Pastur law.
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Average Linear Entropy

S lin
Q = 1− tr(ρ2Q)

〈S lin
Q 〉PS =

Q(N − Q)

(Q + 1)(N − Q + 1)
(AS,VM, AL, PRE, 2018)

〈S lin
Q 〉HS =

Q(N − Q)

1 + (Q + 1)(N − Q + 1)
(E. Lubkin, JMP, 1978)

Symmetric states in SN have larger average linear entropy than
random states in SQ ⊗ SN−Q .
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Eigenvalue density of ρQ

λ: Eigenvalues of ρPSQ : Collapse on scaling x = (Q + 1)λ. P(x). c.f.

ρHSQ density: Marchenko-Pastur PMP(x) = 1
2π

√
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PS distribution is NOT Marchenko-Pastur: it has an exponential tail
and is finite at 0.
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Von Neumann entropy
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〈 S
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〉
Numerical value〈
S vN
Q

〉
PS estimate〈

S vN
Q+1

〉
HS approximate

〈SvN
Q 〉PS = −

〈
Q+1∑
i=1

λi log λi

〉
PS

≈ log(Q + 1)− α Q + 1

N − Q + 1

where 1 ≤ Q ≤ N/2, 1� N and α ≈ 2/3 is a constant. The
leading order correction to this seems to be 1/(N + 1) for the case of
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Von Neumann entropy

Even if symmetric states cannot have entanglement as large as
log2(Q + 1) the typical states entanglement scale as log2(Q + 1)
from a Levy Lemma argument.

The deficit is smaller than that of the non-symmetric state. For
Q = N/2: 〈SvN

Q 〉HS ≈ log2(Q + 1)− 0.721 while
〈SvN

Q 〉PS ≈ log2(Q + 1)− 0.66.

Symmetric states have marginal, “area-law” scaling of block
entanglement.

This has implications for the Tripartite Mutual Information and
entanglement sharing.
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TMI in symmetric states of N qubits

Consider I (Q : Q : Q) = 3SA(Q)− 3SAB(2Q) + SABC (3Q)
For 3Q < N/2

〈I (Q : Q : Q)〉PS ≈ 3 log(Q + 1)− 3 log(2Q + 1) + log(3Q + 1)

= log

[
(3Q + 1)(Q + 1)3

(2Q + 1)3

]
> 0

Marginal, area-law kind of entanglement prohibits negative TMI in
typical symmetric states.
Contrast with ensemble of all states on the full 2N dimensional space,
using Page’s formula

〈I3(Q,Q,Q)〉W ,2Q ≈ −
22Q−N−1

ln 2

(
24Q − 3 22Q + 3

)
< 0.
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Scrambling and TMI in a kicked top or lots of spins

One large spin or all-to-all connected spin-model: No disorder unlike
SYK, but time-dependent and with a transverse field.

H =

(
~π
2τ

)
Jy +

(
~κ
2j

)
J2
z

∞∑
n=−∞

δ(t − nτ)

(Kus, Scharf, Haake, 1987; Haake’s book.)

Jx ,y ,z =
∑2j

l=1 σ
x ,y ,z/2, the unitary or Floquet operator:

U = exp

(
−i κ

8j

2j∑
l 6=l ′=1

σz
l σ

z
l ′

)
exp

(
−i π

4

2j∑
l=1

σy
l

)
,

(Milburn 2000, Wang, Ghose, Sanders, and Hu, 2004)

Thermodynamic limit is also classical limt j →∞.
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Classical map on the sphere: X 2
n + Y 2

n + Z 2
n = 1

Xn+1 = Zn cos(κXn) + Yn sin(κXn)

Yn+1 = −Zn sin(κXn) + Yn cos(κXn)

Zn+1 = −Xn.
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Time evolving symmetric states

|ψ(n)〉 = Un(k , j)⊗2j |φ0θ0〉
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TMI, MI and entanglement between three 1 qubit subsystems for
j = 10 (i.e., a 20 qubit system). in the kicked top. Left: state intially
localized in a regular island of the mixed phase space for k = 3, and right:
initial state in the chaotic sea.

TMI> 0 whether there is chaos or not.
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Time evolving symmetric states: TMI vs OTOC

Large collections of spins: Q = 100 spins for subsystems.
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TMI grows along with the OTOC, but not exponentially Both
saturate at the order of the Ehrenfest time
tEF = log(1/h)/λ = log(2j + 1)/λ.
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Conclusions

1 Symmetric pure states have marginal entanglement and result in
typically positive TMI. They typically violate monogamy for
mutual information.

2 The ensemble of random symmetric states has a different
limiting distribution than Marchenko-Pastur, but scale is the
same. Interesting to prove that the limiting distribution exists
and to find it.

3 TMI can be positive even when there is exponentially growing
OTOC and scrambling as seen in the quantum kicked top.

4 Futher understanding of TMI in many-body systems, useful for
multiparty correlations.

5 Stability of these conclusions with perturbations of symmetric
states?
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