Quantum violation of various formulations of macrorealism and Leggett-Garg inequalities

Alok Kumar Pan
National Institute of Technology Patna
akp@nitp.ac.in

Collaborator: Asmita Kumari
Swati Kumari
Md. Qutubuddin

December 2, 2018

Outline

- Introduction
- Macrorealism and Leggett-Garg Inequalities(LGIs)
- LGls for unsharp measurements
- Equivalent CHSH inequalities and Inequivalent LGIs
- On improved violation of LGIs using von Neumann rule
- Quantum violation of variants of LGls upto algebraic maximum
- Summary

Relevant publications related to this talk

- S. Kumari and AKP, Phys. Rev. A 96, 042107 (2017)
- S. Kumari and AKP, EPL, 118, 50002 (2017).
- A. Kumari, Md. Qutubuddin and AKP, Phys. Rev. A 98, 042135 (2018).
- AKP, Md. Qutubuddin and S. Kumari, Phys. Rev. A, 98, 0621XX(2018).

Introduction

Introduction

- In which limiting condition (large mass, large size, high quantum number, high dimensional system ...) classical results can be recovered from QM?

Introduction

- In which limiting condition (large mass, large size, high quantum number, high dimensional system ...) classical results can be recovered from QM?
- We are certainly not concerned in which limit the mathematical structure of QM reduces to CM.

Introduction

- In which limiting condition (large mass, large size, high quantum number, high dimensional system ...) classical results can be recovered from QM?
- We are certainly not concerned in which limit the mathematical structure of QM reduces to CM.
- How does the everyday world view about the nature of reality emerge from QM?

Introduction

- Schoedinger's question: When does a macroscopic system (an unlucky cat) stop existing as a superposition of states and become one (dead) or the other (alive)?
- Bohr never took the observer-induced collapse of the wave function seriously. So, the cat did not pose any riddle.
- Heisenberg proposed a bizarre 'cut' but remained silent about how such a 'cut' can be obtained within the very formalism of QM.

Introduction

- How fat is the cat?(Macroscopic quantum coherence)
C_{60} molecule, 720 amu (Arndt et al., Nature, 2000)
$C_{60} F_{48}, 1632 \mathrm{amu}$ (Hackermueller, et al.,PRL, 2003)
$C_{60}\left[C_{12} F_{25}\right]_{10}, 6910 \mathrm{amu}$ (Gerlich, et. al., Nat. Com. 2011)

Introduction

- How fat is the cat?(Macroscopic quantum coherence)
C_{60} molecule, 720 amu (Arndt et al., Nature, 2000)
$C_{60} F_{48}, 1632 \mathrm{amu}$ (Hackermueller, et al.,PRL, 2003)
$C_{60}\left[C_{12} F_{25}\right]_{10}, 6910 \mathrm{amu}$ (Gerlich, et. al., Nat. Com. 2011)

Approach within QM:

- Decoherence (Zurek and Zeh, 1991)
- Course-grained measurements (Kofler and Brukner, 2008)

Introduction

- How fat is the cat?(Macroscopic quantum coherence)
C_{60} molecule, 720 amu (Arndt et al., Nature, 2000)
$C_{60} F_{48}, 1632 \mathrm{amu}$ (Hackermueller, et al.,PRL, 2003)
$C_{60}\left[C_{12} F_{25}\right]_{10}, 6910 \mathrm{amu}$ (Gerlich, et. al., Nat. Com. 2011)

Approach within QM:

- Decoherence (Zurek and Zeh, 1991)
- Course-grained measurements (Kofler and Brukner, 2008)

Realist approach:
Macrorealist model by Legget and Garg (1981): Analogues to Bell's approach

Macrorealism and Leggett-Garg Inequalities(LGIs)

Macrorealism and Legget-Garg inequalities (LGIs)

The notion of macrorealism consists of two main assumptions.

- Macrorealism per se (MRps): Macroscopic system which has available to it two or more macroscopic distinguishable ontic states can be found in one of those states at any instant of time.
- Non-invasive measurability (NIM): The ontic state of a macroscopic system can always be determined without affecting the state itself or its subsequent dynamics.
A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857(1985).
A. J. Leggett, J. Phys. Condens. 14, R415 (2002).

Standard Leggett-Garg inequalities (SLGIs)

3-time LG scenario:

- Let physical observable \hat{M} is measured at t_{1}, t_{2} and $t_{3}\left(t_{3}>t_{2}>t_{1}\right)$. MR:

$$
P\left(m_{1}, m_{2}\right)=\int P\left(m_{1} \mid \lambda\right) P\left(m_{2} \mid \lambda\right) \rho(\lambda) d \lambda
$$

Standard Leggett-Garg inequalities (SLGIs)

3-time LG scenario:

- Let physical observable \hat{M} is measured at t_{1}, t_{2} and $t_{3}\left(t_{3}>t_{2}>t_{1}\right)$. MR:

$$
P\left(m_{1}, m_{2}\right)=\int P\left(m_{1} \mid \lambda\right) P\left(m_{2} \mid \lambda\right) \rho(\lambda) d \lambda
$$

Using MR assumption, the following inequality can be derived,

$$
S L G I=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle \leq 1
$$

Three more SLGls can be proposed.

Standard Leggett-Garg inequalities (SLGIs)

3-time LG scenario:

- Let physical observable \hat{M} is measured at t_{1}, t_{2} and $t_{3}\left(t_{3}>t_{2}>t_{1}\right)$. MR:

$$
P\left(m_{1}, m_{2}\right)=\int P\left(m_{1} \mid \lambda\right) P\left(m_{2} \mid \lambda\right) \rho(\lambda) d \lambda
$$

Using MR assumption, the following inequality can be derived,

$$
S L G I=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle \leq 1
$$

Three more SLGls can be proposed.

- In QM:

$$
P_{Q}\left(m_{1}, m_{2}\right)=\operatorname{Tr}\left[M_{1}^{m_{1}} \rho M_{1}^{m_{1}} M_{2}^{m_{2}}\right]
$$

A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857(1985).
A. J. Leggett, J. Phys. Condens. 14, R415 (2002).

Quantum violation standard LGIs

- Let the system is prepared in a state $\rho\left(t_{1}\right)=\left|\psi_{t_{1}}\right\rangle\left\langle\psi_{t_{1}}\right|$ at t_{1}, where

$$
\left|\psi_{t_{1}}\right\rangle=\cos \theta|0\rangle+\exp (i \phi) \sin \theta|1\rangle
$$

Quantum violation standard LGls

- Let the system is prepared in a state $\rho\left(t_{1}\right)=\left|\psi_{t_{1}}\right\rangle\left\langle\psi_{t_{1}}\right|$ at t_{1}, where

$$
\left|\psi_{t_{1}}\right\rangle=\cos \theta|0\rangle+\exp (i \phi) \sin \theta|1\rangle
$$

- At t_{1}, we take $M_{1}=\hat{\sigma_{z}}$ and Hamiltonian $\mathcal{H}=\omega \sigma_{x}$.
- $M_{2}=\mathcal{U}_{12} M_{1} \mathcal{U}_{12}^{\dagger}$ and $M_{3}=\mathcal{U}_{13} M_{1} \mathcal{U}_{13}^{\dagger}=\mathcal{U}_{23} M_{2} \mathcal{U}_{23}^{\dagger}$.
- $\mathcal{U}_{12}=e^{i \omega \sigma_{\times}\left(t_{2}-t_{1}\right)}$ and $\mathcal{U}_{23}=e^{i \omega \sigma_{\times}\left(t_{3}-t_{2}\right)}$. If one takes

$$
\omega\left(t_{2}-t_{1}\right)=\omega\left(t_{3}-t_{2}\right)=g
$$

$$
S L G_{Q}=2 \operatorname{Cos}(g)-\operatorname{Cos}(2 g)
$$

$$
S L G I_{Q}^{\max }=1.5>1 \text { at } g=\pi / 6
$$

Experimental tests of standard LGIs

- Electron spin

Knee et al., Nature Comm.3, 606 (2012). (Negative result measurement)

- NV centre

Waldherr et al., PRL 107, 090401 (2011) (assuming the stationarity of correlations)
George et al., PNAS, 110, 3777(2013) (classically undetectable wavefunction collapse)

- NMR
V. Athalye, S.S. Roy and T. S. Mahesh, PRL 107, 130402 (2011) .
- Photons

Goggin et al., PNAS, 108, 1256(2011).(Weak measurement) Avella et al., Phys. Rev. A 96, 052123 (2017). (weak measurement)

- Cesium atom

Robels et al., Phys. Rev. X, 5, 011003(2015). (Negative result measurement in quantum walks)

Quantum violation of LGIs for unsharp measurement

S. Kumari, AKP, Phys. Rev. A 96, 042107 (2017)

Quantum violation of LGIs for unsharp measurement

- We consider POVMs: $M^{ \pm}(x)=\frac{\mathbb{I} \pm(x+\eta \vec{m} \cdot \sigma)}{2}$; where x is biasedness parameter and η is sharpness parameter, $|x|+\eta \leq 1$ and $0<\eta \leq 1$.
- At time $t_{1}, \vec{m}=\hat{z}$
- $\mathcal{U}_{12}=e^{i \omega \sigma_{\times}\left(t_{2}-t_{1}\right)}$ and $\mathcal{U}_{23}=e^{i \omega \sigma_{x}\left(t_{3}-t_{2}\right)}$.

We take $\omega\left(t_{2}-t_{1}\right)=\omega\left(t_{3}-t_{2}\right)=g$,

- POVMs at $t_{2}, t_{3}: M_{2}^{ \pm}(x)=U_{12}^{\dagger} M_{1}^{ \pm}(x) U_{12}^{\dagger}, M_{3}^{ \pm}(x)=U_{23}^{\dagger} M_{2}^{ \pm}(x) U_{23}^{\dagger}$.
- Pair-wise joint probability of different outcomes:

$$
P\left(m_{1}, m_{2}\right)=\operatorname{Tr}\left[U_{12} \sqrt{M_{1}^{m_{1}}} \rho\left(t_{1}\right) \sqrt{M_{1}^{m_{1}}} U_{12}^{\dagger} M_{2}^{m_{2}}\right]
$$

Quantum violation of LGIs for unsharp measurements

$$
\left|\psi_{t_{1}}\right\rangle=\cos \theta|0\rangle+\exp (i \phi) \sin \theta|1\rangle
$$

For spin-POVMs $(x=0): \quad \mathrm{M}_{1}^{ \pm}=\frac{l \pm \eta \sigma_{z}}{2}$

- Violation of SLGI: $\eta>0.81$ (independent of the state).

For biased-POVMs $(x=\eta-1): \mathrm{M}_{1}^{+}=\eta\left(\frac{I+\sigma_{z}}{2}\right)$

- Quantum value of SLGI: $1+\frac{\eta^{2}}{2}$ (for $\theta=\pi / 3, \phi=\pi / 2, g=5 \pi / 6$)

Quantum violation of LGls occurs for any non-zero value of unsharpness parameter.

Joint measurability and violation of LGI

Pairwise joint measurability condition for two different POVMs, $M^{ \pm}(x, \vec{m})$ and $M^{ \pm}(y, \vec{n})$.

$$
\left(1-F_{x}^{2}-F_{y}^{2}\right)\left(1-\frac{x^{2}}{F_{x}^{2}}-\frac{y^{2}}{F_{y}^{2}}\right) \leq(\vec{m} \cdot \vec{n}-x y)^{2}
$$

where $F_{x / y}$ are given by

$$
F_{x / y}=\frac{\sqrt{(1-x / y)^{2}-m^{2}}+\sqrt{(1+x / y)^{2}-m^{2}}}{2}
$$

For $x=0$ and $y=0$ we can obtain well-known joint measurability condition for the spin-POVMs is given by

$$
\|\vec{m}+\vec{n}\|+\|\vec{m}-\vec{n}\| \leq 2
$$

S. Yu, Nai-le Liu, Li-Li and C. H. Oh, Phys. Rev.A, 81, 062116 (2010).

Joint measurebility and violation of LGI

For Spin-POVM $(x=0, y=0)$:
The pairwise joint measurability condition for $M_{1}^{ \pm}$and $M_{2}^{ \pm}$(and $M_{2}^{ \pm}$and $\left.M_{3}^{ \pm}\right)$is

$$
\eta \leq(\cos (g)+\sin (g))^{-1}
$$

And for $M_{1}^{ \pm}$and $M_{3}^{ \pm}$

$$
\eta \leq(\cos 2(g)+\sin 2(g))^{-1}
$$

- The pair-wise joint measurability condition is $\eta \leq 0.707$.
- But Wigner form of LGIs is violation for $\eta>0.69$.
S. Kumari, AKP, Phys. Rev. A 96, 042107 (2017)

Joint Measurability and violation of LGI

For biased POVM:

The pairwise joint-measurability condition for $M_{1}^{ \pm}$and $M_{2}^{ \pm}$(and for $M_{2}^{ \pm}$ and $M_{3}^{ \pm}$) is

$$
\eta \leq(1+\cos (g))^{-1}
$$

and for $M_{2}^{ \pm}$and $M_{3}^{ \pm}$

$$
\eta \leq(1+\cos 2(g))^{-1}
$$

- The pair-wise joint measurability condition is $\eta \leq 0.66$.
- But, standard LGI is violated for $0<\eta \leq 1$.

Thus, pair-wise joint measurability has no role in LGI violation.
S. Kumari, AKP, Phys. Rev. A 96, 042107 (2017)

Inequivalent LGIs

Swati Kumari and AKP, EPL, 118, 50002 (2017).

Equivalent Bell-CHSH inequalities

- Aurther Fine showed that for a two-party, two measurements per party having two outcomes of each measurement, the only relevant Bell's inequality is the CHSH form.
- Any other form, such as, Wiger and CH forms of inequalities reduce to the CHSH inequality.

Equivalent Bell-CHSH inequalities

- Aurther Fine showed that for a two-party, two measurements per party having two outcomes of each measurement, the only relevant Bell's inequality is the CHSH form.
- Any other form, such as, Wiger and CH forms of inequalities reduce to the CHSH inequality.
- SLGIs are often considered to be the analogus to the CHSH inequalities.
- We showed that Wigner and CH form of LGls are stronger than standard LGIs.
A. Fine, Phys. Rev. Lett., 48, 291,(1982).

Wigner form of LGls

- The satisfaction of MR implies the existence of joint probabilities $P\left(m_{1}, m_{2}, m_{3}\right)$. The marginals can then be written as

$$
P\left(m_{2}, m_{3}\right)=\sum_{m_{1}} P\left(m_{1}, m_{2}, m_{3}\right)
$$

where $m_{1}, m_{2}, m_{3}= \pm 1$.
Using similar pair-wise joint probabilities, 24 Wigner form of LGls can be derived are the following;

$$
\begin{aligned}
& P\left(m_{2}, m_{3}\right)-P\left(-m_{1}, m_{2}\right)-P\left(m_{1}, m_{3}\right) \leq 0 \\
& P\left(m_{1}, m_{3}\right)-P\left(m_{1},-m_{2}\right)-P\left(m_{2}, m_{3}\right) \leq 0 \\
& P\left(m_{1}, m_{2}\right)-P\left(m_{2},-m_{3}\right)-P\left(m_{1}, m_{3}\right) \leq 0
\end{aligned}
$$

D. Saha, et al. Phys. Rev. A, 91, 032117 (2015).

Wigner LGI Vs standard LGI

Figure: We plot SLG-1 and two WLGIs against θ by taking $g=\pi / \sigma$.

Wigner LGI Vs standard LGI

Figure: We plot SLG-1 and two WLGIs against θ by taking $g=\pi / \sigma$.

Figure: We plot SLG-1 and two WLGIs against θ by taking $g=\pi / 4$.

Clauser-Horne (CH) form of LGls

In a macrorealistic theory, single marginal statistics for the measurement of an observable, say for M_{2}, is $P\left(m_{2}\right)=\sum_{m_{1} m_{2}= \pm} P\left(m_{1}, m_{2}, m_{3}\right)$.

By combining single and pair-wise probabilities, we can derive 24 inequalities are the following;

$$
\begin{aligned}
& P\left(m_{1}, m_{2}\right)+P\left(m_{2}, m_{3}\right)-P\left(m_{1}, m_{3}\right)-P\left(m_{2}\right) \leq 0 \\
& P\left(m_{1}, m_{3}\right)+P\left(m_{2}, m_{3}\right)-P\left(m_{1}, m_{2}\right)-P\left(m_{3}\right) \leq 0 \\
& P\left(m_{1}, m_{3}\right)+P\left(m_{1}, m_{2}\right)-P\left(m_{2}, m_{3}\right)-P\left(m_{1}\right) \leq 0
\end{aligned}
$$

We call them CH form of LGls.
S. Kumari and AKP, EPL, 50002, 118 (2017).

Joint probabilities in QM

Three-time probability in terms of correlation functions:

$$
\begin{array}{r}
P_{123}\left(m_{1}, m_{2}, m_{3}\right)=(1 / 8)\left(1+m_{1}\left\langle M_{1}\right\rangle+m_{2}\left\langle M_{2}^{(1)}\right\rangle+m_{3}\left\langle M_{3}^{(12)}\right\rangle\right. \\
\left.+m_{1}, m_{2}\left\langle M_{1} M_{2}\right\rangle+m_{2}, m_{3}\left\langle M_{2} M_{3}^{(1)}\right\rangle+m_{1}, m_{3}\left\langle M_{1} M_{3}^{(2)}\right\rangle+m_{1}, m_{2} m_{3} D\right)
\end{array}
$$

The pair-wise probabilities are given by

$$
\begin{aligned}
P_{13}\left(m_{1}, m_{3}\right) & =\frac{\left(1+m_{1}\left\langle M_{1}\right\rangle+m_{3}\left\langle M_{3}^{(1)}\right\rangle+m_{1} m_{3}\left\langle M_{1} M_{3}\right\rangle\right)}{4} \\
P_{23}\left(m_{2}, m_{3}\right) & =\frac{\left(1+m_{2}\left\langle M_{2}\right\rangle+m_{3}\left\langle M_{3}^{(2)}\right\rangle+m_{2} m_{3}\left\langle M_{2} M_{3}\right\rangle\right)}{4} \\
P_{12}\left(m_{1}, m_{2}\right) & =\frac{\left(1+m_{1}\left\langle M_{1}\right\rangle+m_{2}\left\langle M_{2}^{(1)}\right\rangle+m_{1} m_{2}\left\langle M_{1} M_{2}\right\rangle\right)}{4} \\
P\left(m_{i}\right) & =\frac{\left(1+m_{i}\left\langle M_{i}\right\rangle\right)}{2} \quad i=1,2,3
\end{aligned}
$$

S. Kumari and AKP, EPL, 50002, 118 (2017).

WLGls and CHLGIs are stronger than SLGls

Using pair-wise and single probabilities, 24 Wigner LGls can be written as

$$
\left|\left\langle M_{2}\right\rangle-\left\langle M_{2}^{(1)}\right\rangle\right|+\left|\left\langle M_{3}^{(2)}\right\rangle-\left\langle M_{3}^{(1)}\right\rangle\right|+S L G_{Q} \leq 1
$$

where $S L G_{Q}=m_{1} m_{2}\left\langle M_{1} M_{2}\right\rangle+m_{2} m_{3}\left\langle M_{2} M_{3}\right\rangle-m_{1} m_{3}\left\langle M_{1} M_{3}\right\rangle$.
Wigner LGIs are stronger than standard LGIs.

WLGls and CHLGls are stronger than SLGls

Using pair-wise and single probabilities, 24 Wigner LGIs can be written as

$$
\left|\left\langle M_{2}\right\rangle-\left\langle M_{2}^{(1)}\right\rangle\right|+\left|\left\langle M_{3}^{(2)}\right\rangle-\left\langle M_{3}^{(1)}\right\rangle\right|+S L G_{Q} \leq 1
$$

where $S L G_{Q}=m_{1} m_{2}\left\langle M_{1} M_{2}\right\rangle+m_{2} m_{3}\left\langle M_{2} M_{3}\right\rangle-m_{1} m_{3}\left\langle M_{1} M_{3}\right\rangle$.
Wigner LGIs are stronger than standard LGIs.

Similarly, corresponding to 24 CH form of LGIs, we get

$$
\left|\left\langle M_{2}\right\rangle-\left\langle M_{2}^{(1)}\right\rangle\right|+\left|\left\langle M_{3}\right\rangle-\left\langle M_{3}^{(1)}\right\rangle\right|+\left|\left\langle M_{3}\right\rangle-\left\langle M_{3}^{(2)}\right\rangle\right|+S L G_{Q} \leq 1
$$

CH form of LGIs are stronger than Wigner form of LGIs.
S. Kumari and AKP, EPL, 50002, 118 (2017).

On the violation of Lüder bound of LGIs.

A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

Lüder bound of LGI and its violation

- Q violation of CHSH inequality is constraint by Cir'elsen bound.
- By analogy, the violation of LGIs is restricted by Lüders bound.
- It is shown that violation of LGIs can exceed the Lüders bound, if degeneracy breaking von Neumann measurement rule is invoked.
C. Budroni and C. Emary, Phys. Rev. Lett. 113, 050401 (2014).
- Experimental test:
H. Katiyar, A. Brodutch, D. Lu and R. LaflammeH. New J. Phys. 19, 023033 (2017).
K. Wang et al., Opt. Express 25, 31462 (2017)
- We examine the relevance of violation of Lüders bound in LG test.
A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

Lüder and von Neumann projection rule

Let an observable \hat{A} has discrete eigenvalues $a_{1}, a_{2}, a_{3} \ldots$ having degeneracies $x_{1}, x_{2}, x_{3} \ldots$ respectively.

Consider $P_{n}^{i}=\left|\phi_{n}^{i}\right\rangle\left\langle\phi_{n}^{i}\right|$ is the projection operator corresponding to $n^{\text {th }}$ eigenvalue of \hat{A} and ρ_{0} is density matrix of the system.

Reduced density matrix using Lüders rule:

$$
\rho_{l}=\sum_{n} P_{n} \rho_{0} P_{n} \text { where } P_{n}=\sum_{i=1}^{x_{n}}\left|\phi_{n}^{i}\right\rangle\left\langle\phi_{n}^{i}\right| .
$$

Reduced density matrix using von Neumann rule:

$$
\rho_{v}=\sum_{n, i} P_{n}^{i} \rho_{0} P_{n}^{i} \text { where } P_{n}^{i}=\left|\phi_{n}^{i}\right\rangle\left\langle\phi_{n}^{i}\right| \text {. }
$$

G. C. Hegerfeldt and R. Sala Mayato, Phy Lett. A, 375 (36), 3167-3170, (2011).
A. K. Pan, K. Mandal, Int J Theor Phys, 55, 3472-3478 (2016).
A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

Lüder and von Neumann projection rule: An example

Let $A=|3\rangle\langle 3|+|2\rangle\langle 2|-|1\rangle\langle 1| \equiv P_{+}-P_{-}$
Then, $P_{+}=|3\rangle\langle 3|+|2\rangle\langle 2| \equiv P_{+}^{1}+P_{+}^{2}$ and $P_{-}=|1\rangle\langle 1|$.
State reduction using Lüders rule:

$$
\rho_{+}=P_{+} \rho P_{+}=(|3\rangle\langle 3|+|2\rangle\langle 2|) \rho(|3\rangle\langle 3|+|2\rangle\langle 2|)
$$

State reduction using von Neumann rule:

$$
\rho_{+}=P_{+}^{1} \rho P_{+}^{1}+P_{+}^{2} \rho P_{+}^{2}=|3\rangle\langle 3| \rho|3\rangle\langle 3|+|2\rangle\langle 2 \rho \mid 2\rangle\langle 2|
$$

Since $P_{+}=|3\rangle\langle 3|+|2\rangle\langle 2| \equiv\left|3^{\prime}\right\rangle\left\langle 3^{\prime}\right|+\left|2^{\prime}\right\rangle\left\langle 2^{\prime}\right|$ where $\left|2^{\prime}\right\rangle=\xi|2\rangle+\sqrt{1-\xi^{2}}|3\rangle$ and $\left.\left|3^{\prime}\right\rangle=\sqrt{1-\xi^{2}}|2\rangle-\xi|3\rangle\right)$
A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

Sequential correlation for Lüder and von Neumann rule

Let for a qutrit system two dichotomic observables

$$
\hat{A}=A_{+}^{1}+A_{+}^{2}-A_{-} \text {and } \hat{B}=B_{+}^{1}+B_{+}^{2}-B_{-}
$$

Then, sequential correlation between \hat{A} and \hat{B}, using Lüders rule is

$$
\langle\hat{A} \hat{B}\rangle_{\text {seq }}^{\prime}=\frac{1}{2}(\operatorname{Tr}[\rho\{A, B\}])
$$

But, using von Neumann rule, one gets

$$
\langle\hat{A} \hat{B}\rangle_{\text {seq }}^{v}=\langle\hat{A} \hat{B}\rangle_{\text {seq }}^{\prime}-\operatorname{Tr}\left[\left(A_{+}^{1} \rho A_{+}^{2}+A_{+}^{2} \rho A_{+}^{1}\right) \hat{B}\right]
$$

The quantity $\operatorname{Tr}\left[\left(A_{+}^{1} \rho A_{+}^{2}+A_{+}^{2} \rho A_{+}^{1}\right) \hat{B}\right]$ may depend on the choice of basis and responsible for the violation of Lüders bound.
A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

Violation of Lüders bound of LGls

Lüders bound of standard LGIs:

$$
S L G=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle \leq 1
$$

For any arbitrary dimensional system having dichotomic outcomes $S L G_{Q}^{o p t}=1.5$.

This is the Lüders bound of 3-time LGIs.

- Using von Neumann rule, Budroni and Emary showed that $S L G_{Q}=1.75$ for a qutrit system.
- $S L G_{Q}$ can even approach algebraic maximum 3 in the asymptotic limit of the dimension of system.

Violation of Lüders bound of realist inequalities

Let M_{1}, M_{2} and M_{3} be mutually commuting dichotomic observables.

$$
\begin{aligned}
& \beta_{13}=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle \leq 1 \\
& \beta_{23}=\left\langle M_{1} M_{2}\right\rangle-\left\langle M_{2} M_{3}\right\rangle+\left\langle M_{1} M_{3}\right\rangle \leq 1 \\
& \beta_{12}=-\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle+\left\langle M_{1} M_{3}\right\rangle \leq 1
\end{aligned}
$$

β_{31}, β_{23} and β_{12} are not violated by QM if Lüders rule is used.
$P_{Q}\left(M_{1}, M_{2}, M_{3}\right)$ exists whose marginal provides all pair-wise joint probabilities satisfied by QM.

Using von Neumann rule we showed that $\left(\beta_{13}\right)_{Q},\left(\beta_{23}\right)_{Q},\left(\beta_{12}\right)_{Q}>1$. A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

A specific example for qutrit system

Let the initial state $|\psi\rangle=(\sin (\theta), \cos (\theta), 0)^{T}$.
$\hat{M}_{i}=I-2\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|$ with $\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle=\delta_{i j}$ where $i, j=1,2,3$.
$\left|\alpha_{1}\right\rangle=(-1,0,1)^{T} / \sqrt{2},\left|\alpha_{2}\right\rangle=(1,0,1)^{T} / \sqrt{2}$ and $\left|\alpha_{3}\right\rangle=(0,1,0)^{T}$.

A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

What the violation of Lüders bound means?

What the violation of Lüders bound means?

$$
\left[M_{1}^{\prime \prime}, M_{1}\right]=0 \quad\left[M_{1}^{\prime \prime}, M_{3}\right] \neq 0
$$

What the violation of Lüders bound means?

$$
\left[M_{1}^{\prime \prime}, M_{1}\right]=0 \quad\left[M_{1}^{\prime \prime}, M_{3}\right] \neq 0
$$

$$
\left[M_{2}^{\prime}, M_{2}\right]=0 \quad\left[M_{2}^{\prime}, M_{3}\right] \neq 0
$$

A. Kumari, Md. Qutubuddin, and AKP, Phys. Rev. A 98, 042135 (2018).

What the violation of Lüders bound means?

Standard LG expression:

$$
S L G=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle
$$

$$
\left\langle M_{i} M_{j}\right\rangle=\sum_{m_{i}, m_{j}} m_{i} m_{j} P\left(m_{i}, m_{j}\right) ; \quad i, j=1,2,3 \text { with } j>i
$$

What the violation of Lüders bound means?

Standard LG expression:

$$
S L G=\left\langle M_{1} M_{2}\right\rangle+\left\langle M_{2} M_{3}\right\rangle-\left\langle M_{1} M_{3}\right\rangle
$$

$$
\left\langle M_{i} M_{j}\right\rangle=\sum_{m_{i}, m_{j}} m_{i} m_{j} P\left(m_{i}, m_{j}\right) ; \quad i, j=1,2,3 \text { with } j>i
$$

$$
P\left(m_{1}, m_{2}\right)=\int P\left(m_{1} \mid \lambda^{\prime}\right) P\left(m_{2} \mid \lambda^{\prime}\right) \rho\left(\lambda^{\prime}\right) d \lambda^{\prime}
$$

$$
P\left(m_{1}, m_{3}\right)=\int P\left(m_{1} \mid \lambda^{\prime \prime}\right) P\left(m_{3} \mid \lambda^{\prime \prime}\right) \rho\left(\lambda^{\prime \prime}\right) d \lambda^{\prime \prime}
$$

$$
P\left(m_{2}, m_{3}\right)=\int P\left(m_{2} \mid \lambda^{\prime \prime \prime}\right) P\left(m_{3} \mid \lambda^{\prime \prime \prime}\right) \rho\left(\lambda^{\prime \prime \prime}\right) d \lambda^{\prime \prime \prime}
$$

$$
S L G \leq 3
$$

Quantum violation of variants of LGls

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219

Variants of LGls

- Due to the sequential nature of correlation involved in LG test, there is a flexibility to propose new inequalities, even in 3-time LG test.
- By apparently keeping the assumption of MRps and NIM same, we propose interesting variants of standard LGIs for 3-time measurement scenario.
- Quantum violation of variants of LGls is larger than the standard case, even for qubit system.
- Variants of LGIs is more robust to unsharpness compared to standard LGIs in unsharp measurement scenario.

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219.

Variants of LGls for three-time measurements

- Considering a three-time correlation function $\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle$, a two-time function $\left\langle\hat{M}_{i} \hat{M}_{j}\right\rangle$ and $\left\langle\hat{M}_{k}\right\rangle$, we propose the inequality

$$
K_{3}^{3}=\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle+\left\langle\hat{M}_{i} \hat{M}_{j}\right\rangle-\left\langle\hat{M}_{k}\right\rangle \leq 1
$$

where $i, j, k=1,2,3$ with $j>i$.
We call those inequalities as variants of LGIs.

- Let the system state to be $\rho_{0}\left(t_{1}\right)=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$ at t_{1} is

$$
\left|\psi_{0}\right\rangle=\cos \theta|0\rangle+\exp (i \phi) \sin \theta|1\rangle
$$

$M_{1}=\sigma_{z}$ and M_{2}, M_{3} are as taken earlier.

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219.

Quantum violation of variants of LGls

Standard LGI: $K_{3}=\left\langle\hat{M}_{1} \hat{M}_{2}\right\rangle+\left\langle\hat{M}_{2} \hat{M}_{3}\right\rangle-\left\langle\hat{M}_{1} \hat{M}_{3}\right\rangle \leq 1$.

- The QM expression of K_{3} is given by

$$
\begin{aligned}
& \left(K_{3}\right)_{Q}=2 \cos 2 g-\cos 4 g \\
& \left(K_{3}\right)_{Q}^{\max }=1.5 \text { for } g=\pi / 6
\end{aligned}
$$

- The QM expression of K_{3}^{3} is given by

$$
\begin{aligned}
\left(K_{3}^{3}\right)_{Q} & =\cos 2 g\left(1+4 \sin ^{2} g \cos 2 \theta\right)+2 \sin ^{2} g \cos 2 \theta \\
& -\sin 4 g \sin 2 \theta \sin \phi
\end{aligned}
$$

$$
\left(K_{3}^{3}\right)_{Q}^{\max }=2, \text { for } g=0.41, \theta=2.66 \text { and } \phi=\pi / 2
$$

Leggett-Garg Inequalities for n-time measurements

- If the measurement of M is performed n times,

$$
S G L_{n}=\left\langle\hat{M}_{1} \hat{M}_{2}\right\rangle+\ldots+\left\langle\hat{M}_{n-1} \hat{M}_{n}\right\rangle-\left\langle\hat{M}_{1} \hat{M}_{n}\right\rangle
$$

If n is odd, $-n \leq K_{n} \leq n-2$ for $n \geq 3$ and
if n is even, $-(n-2) \leq K_{n} \leq n-2$ for $n \geq 4$.

- For a two-level system, the maximum quantum value $\left(S G L_{n}\right)_{Q}^{\max }=n \cos \frac{\pi}{n}$. For $n=3,\left(S G L_{3}\right)_{Q}^{\max }=1.5$.

Variants of LGIs for 4-time measurements

- If $n=4$, we can formulate a variant of LGI is given by

$$
K_{4}^{3}=\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3} \hat{M}_{4}\right\rangle+\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle-\left\langle\hat{M}_{4}\right\rangle \leq 1
$$

- Interestingly, for $n=4$, another variant can be proposed as

$$
\hat{L}_{4}^{3}=\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle+\left\langle\hat{M}_{2} \hat{M}_{3} \hat{M}_{4}\right\rangle-\left\langle\hat{M}_{1} \hat{M}_{4}\right\rangle \leq 1
$$

By generalizing for n-time measurement scenario, we propose

$$
\begin{gathered}
K_{n}^{3}=\left\langle\hat{M}_{1} \hat{M}_{2} \ldots \hat{M}_{n}\right\rangle+\left\langle\hat{M}_{1} \hat{M}_{2} \ldots \hat{M}_{n-1}\right\rangle-\left\langle\hat{M}_{n}\right\rangle \leq 1 \\
\hat{L}_{n}^{3}=\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3} \hat{M}_{4} \ldots \hat{M}_{n-1}\right\rangle+\left\langle\hat{M}_{2} \hat{M}_{3} \ldots \hat{M}_{n}\right\rangle-\left\langle\hat{M}_{1} \hat{M}_{n}\right\rangle \leq 1
\end{gathered}
$$

where $\left\langle\hat{M}_{1} \ldots \hat{M}_{n}\right\rangle=\sum_{m_{1}, \ldots, m_{n}} m_{1} \ldots m_{n} P\left(M_{1}^{m_{1}}, \ldots, M_{n}^{m_{n}}\right)$.

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219.

Correlation formula for n-time sequential measurements

$$
\text { For } n=2: \quad\left\langle\hat{M}_{1} \hat{M}_{2}\right\rangle_{\text {seq }}=\frac{1}{2} \operatorname{Tr}\left[\rho\left\{\hat{M}_{1}, \hat{M}_{2}\right\}\right]
$$

The correlation function for 3-time measurement:

$$
\begin{aligned}
\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle_{\text {seq }} & =\sum_{m_{1}, m_{2}, m_{3}= \pm 1} m_{1} m_{2} m_{3} P\left(m_{1}, m_{2}, m_{3}\right) \\
& =\sum_{m_{1}, m_{2}, m_{3}= \pm 1} m_{1} m_{2} m_{3} \operatorname{Tr}\left[\Pi_{M_{2}}^{m_{2}} \Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}} \Pi_{M_{2}}^{m_{2}} \Pi_{M_{3}}^{m_{3}}\right] \\
& =\sum_{m_{1}, m_{2}= \pm 1} m_{1} m_{2} \operatorname{Tr}\left[\Pi_{M_{2}}^{m_{2}} \Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}} \Pi_{M_{2}}^{m_{2}} \Pi_{M_{3}}^{+}\right] \\
& -\sum_{m_{1}, m_{2}= \pm 1} m_{1} m_{2} \operatorname{Tr}\left[\Pi_{M_{2}}^{m_{2}} \Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}} \Pi_{M_{2}}^{m_{2}} \Pi_{M_{3}}^{-}\right]
\end{aligned}
$$

Correlation formula for n-time sequential measurenets

Using $\hat{M}_{3}=\Pi_{M_{3}}^{+}-\Pi_{M_{3}}^{-}$and putting the value of $m_{2}= \pm 1$, we have

$$
\begin{aligned}
\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle_{\text {seq }} & =\sum_{m_{1}= \pm 1} m_{1} \operatorname{Tr}\left[\left(\Pi_{M_{2}}^{+} \Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}} \Pi_{M_{2}}^{+}\right) \cdot \hat{M}_{3}\right] \\
& -\sum_{m_{1}= \pm 1} m_{1} \operatorname{Tr}\left[\left(\Pi_{M_{2}}^{-} \Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}} \Pi_{M_{2}}^{-}\right) \cdot \hat{M}_{3}\right] \\
& =\frac{1}{2} \sum_{m_{1}= \pm 1} m_{1} \operatorname{Tr}\left[\left(\Pi_{M_{1}}^{m_{1}} \rho \Pi_{M_{1}}^{m_{1}}\right) \cdot\left\{\hat{M}_{2}, \hat{M}_{3}\right\}\right]
\end{aligned}
$$

Finally, $\left\langle\hat{M}_{1} \hat{M}_{2} \hat{M}_{3}\right\rangle_{\text {seq }}=\frac{1}{4} \operatorname{Tr}\left[\rho\left\{\hat{M}_{1},\left\{\hat{M}_{2}, \hat{M}_{3}\right\}\right\}\right]$
For the case of n-time measurements, we derive
$\left\langle\hat{M}_{1} \hat{M}_{2} \ldots . \hat{M}_{n}\right\rangle_{\text {seq }}=\frac{1}{2^{n-1}} \operatorname{Tr}\left[\rho\left\{\hat{M}_{1},\left\{\hat{M}_{2}, \ldots .,\left\{\hat{M}_{n-2},\left\{\hat{M}_{n-1}, \hat{M}_{n}\right\}\right\}\right\}\right\}\right]$

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219,

Quantum violation of variants of n-time LGIs

For the qubit state $\left|\psi_{0}\right\rangle=\cos \theta|0\rangle+\exp (i \phi) \sin \theta|1\rangle$,

$$
\begin{aligned}
\left(K_{n_{\text {even }}}^{3}\right)_{Q}= & (\cos 2 g)^{\frac{n}{2}}+(\cos 2 g)^{\frac{n}{2}-1}-(\cos 2(n-1) g \\
& \cos 2 \theta+\sin 2(n-1) g \sin 2 \theta \sin \phi)
\end{aligned}
$$

For odd n,

$$
\begin{aligned}
\left(K_{n_{\text {odd }}}^{3}\right)_{Q}= & (\cos 2 g)^{\frac{n-1}{2}} \cos 2 \theta+(\cos 2 g)^{\frac{n-1}{2}}-(\cos 2(n-1) g \\
& \cos 2 \theta+\sin 2(n-1) g \sin 2 \theta \sin \phi)
\end{aligned}
$$

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219.

QM violation of variants of LGls upto algebraic maximum

By considering $g=\frac{\pi}{2 n}$, take the form

$$
\left(K_{n_{\text {even }}}^{3}\right)_{Q}=\left(\cos \frac{\pi}{n}\right)^{\frac{n}{2}}+\left[\left(\cos \frac{\pi}{n}\right)^{\left(\frac{n}{2}-1\right)}+\cos \frac{\pi}{n}\right] \cos 2 \theta-\sin \frac{\pi}{n} \sin 2 \theta \sin \phi
$$

$$
\left(K_{n_{\text {odd }}}^{3}\right)_{Q}=\left[\left(\cos \frac{\pi}{n}\right)^{\frac{n-1}{2}}+\cos \frac{\pi}{n} \cos 2 \theta\right]+\left(\cos \frac{\pi}{n}\right)^{\left(\frac{n-1}{2}\right)}-\sin \frac{\pi}{n} \sin 2 \theta \sin \phi
$$

In the large n limit, both of them reduces to

$$
\left(K_{n_{\text {even }}}^{3}\right)_{Q}=\left(K_{n_{\text {odd }}}^{3}\right)_{Q} \approx 1+2 \cos 2 \theta
$$

When $\theta \approx 0,\left(K_{n_{\text {even }}}^{3}\right)_{Q}=\left(K_{n_{\text {odd }}}^{3}\right)_{Q} \approx 3$.
Quantum violation approaches algebraic maximum even for qubit system. AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219.

QM violation of variants of LGIs upto algebraic maximum

Other variant of LGIs:

$$
\begin{aligned}
\left(L_{n_{\text {even }}}^{3}\right)_{Q} & =(\cos 2 g)^{\frac{n}{2}-1} \cos 2 \theta+(\cos 2 g)^{\frac{n}{2}-1}(\cos 2 g \cos 2 \theta \\
& +\sin 2 g)-\cos 2(n-1) g \\
\left(L_{\left.n_{\text {odd }}\right)_{Q}}^{3}\right. & =(\cos 2 g)^{\frac{n-1}{2}}+(\cos 2 g)^{\frac{n-1}{2}}-\cos 2(n-1) g
\end{aligned}
$$

If $g=\frac{\pi}{2 n}$ and n is very large, $\left(L_{n_{\text {even }}}^{3}\right)_{Q}=\left(L_{n_{\text {even }}}^{3}\right)_{Q}=3$.

Figure: $\left(L_{n_{\text {odd }}}^{3}\right)_{Q}$ and $\left(L_{n_{\text {even }}}^{3}\right)_{Q}$ are plotted against n by taking $\theta=0$.

Variants of LGls for Unsharp Measurement

- Let at t_{1}, the POVMs is of the form $M_{1}^{ \pm}=\frac{\mathbb{I} \pm \eta \sigma_{z}}{2}$.
- The quantum mechanical expression of K_{3}^{3} and K_{3} are given by

$$
\left(K_{3}\right)_{Q}=\eta^{2}(2 \cos 2 g-\cos 4 g)
$$

$$
\left(K_{3}^{3}\right)_{Q}=\eta(\eta \cos 2 g(\eta \cos 2 \theta+1)-\sin 4 g \sin 2 \theta \sin \phi-\cos 4 g \cos 2 \theta)
$$

$\left(K_{3}\right)_{Q}$ and $\left(K_{3}^{3}\right)_{Q}$ are plotted against η. For $\eta \in(0.66,0.81)$, where K_{3}^{3} is violated, but K_{3} does not.

AKP, Md. Qutubuddin, S. Kumari, Phys. Rev. A, 98, 06XXXX(2018); arXiv:1806.01219,

Variants of LGls for Unsharp Measurement

- For the n-time unsharp measurement scenario, quantum expression of $\left(K_{n}\right)_{Q},\left(K_{\text {neven }}^{3}\right)_{Q}$ and $\left(K_{n_{\text {odd }}}^{3}\right)_{Q}$ respectively are given by,

$$
\begin{gathered}
\left(K_{n}\right)_{Q}=\eta^{2} n\left(\cos \frac{\pi}{n}\right) \\
\left(K_{n \text { even }}^{3}\right)_{Q}=\eta^{n}\left(\cos \frac{\pi}{n}\right)^{\frac{n}{2}}+\eta^{n-1}\left(\cos \frac{\pi}{n}\right)^{\frac{n}{2}-1} \cos 2 \theta \\
+ \\
\eta\left(\cos \frac{\pi}{n} \cos 2 \theta-\sin \frac{\pi}{n} \sin 2 \theta \sin \phi\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\left(K_{n_{\text {odd }}}^{3}\right)_{Q} & =\eta^{n}\left(\cos \frac{\pi}{n}\right)^{\frac{n-1}{2}} \cos 2 \theta+\eta^{n-1}\left(\cos \frac{\pi}{n}\right)^{\frac{n-1}{2}} \\
& +\eta\left(\cos \frac{\pi}{n} \cos 2 \theta-\sin \frac{\pi}{n} \sin 2 \theta \sin \phi\right)
\end{aligned}
$$

where $g=\pi / 2 n$.

Variants of LGls for Unsharp Measurement

- Variants of LGIs is shown to be more robust to unsharpness than standard LGls for the any value of n.

Figure: $T_{n}=\left(K_{n}\right)_{Q}-\left(K_{n}\right)$ and $T_{n}^{3}=\left(K_{n}^{3}\right)_{Q}-\left(K_{n}^{3}\right)$ are plotted against η for $\theta=0$.

- The violation of the inequality K_{n}^{3} is obtained for a range of $\eta \in[0.75,0.81]$, where no violation of K_{n} occur.

Summary and Conclusions

- We studied the violation of LGls in unsharp measurement scenario and found that joint measurability of POVMs has no role in the violation of standard LGIs.
- We have shown that in 3-time LG scenario, there exist inequalities (Wigner and CH forms)which are not only inequivalent to standard LGls but also stronger than SLGIs. This feature is in contrast to the CHSH inequalities.
- We argued the violation of Lüders bound of LGls cannot be consideres as the violation of LGIs in its usual sense.
- We proposed variants of LGIs, for 3-time and n-time measurement scenario where n is arbitrary. When n is sufficiently large, QM violation of variants of LGIs approaches algebraic maximum, even for a qubit system.

Thank You

