Distinguishing classically indistinguishable states and channels

Karol Życzkowski

in collaboration with
Kamil Korzekwa (Sydney), Zbigniew Puchała (Gliwice) and Stanisław Czachórski (Cracow)

Institute of Physics, Jagiellonian University
Center for Theoretical Physics, Polish Academy of Sciences
QIPA 2018, Harish-Chandra Institute,
India, Prayagraj, December 4, 2018

Department of Physics, Jagiellonian University, Cracow,

view from my new office,

\square
可

Quantum
 Kanalsanierung !

Which quantum channel
 could be called healthy and sane ?

Perhaps
a unitary and reversible one ?

Sanierung of Quantum States acting on \mathcal{H}_{N}

Convex set $\mathcal{M}_{N} \subset \mathbb{R}^{N^{2}-1}$ of all mixed states of size N

$$
\mathcal{M}_{N}:=\left\{\rho: \mathcal{H}_{N} \rightarrow \mathcal{H}_{N} ; \rho=\rho^{\dagger}, \rho \geq 0, \operatorname{Tr} \rho=1\right\}
$$

example: $\mathcal{M}_{2}=B_{3} \subset \mathbb{R}^{3}$ - Bloch ball with all pure states at the boundary

Quantum decoherence: pure \rightarrow mixed stripping off-diagonal elements,

$$
\mathcal{D}(\rho)=\sum_{i} \rho_{i i}|i\rangle\langle i|=\operatorname{diag}(\rho)
$$

projection into the simplex of classical states

A) Purification of $\rho \in \mathcal{M}_{N}$

search of a bi-partite pure state $\left|\psi_{A B}\right\rangle \in \mathcal{H}_{N} \otimes \mathcal{H}_{N}$ such that the reduced matrix reads $\operatorname{Tr}_{B}\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|=\rho$.
B) Coherification of a classical state $\operatorname{diag}(p)=\sigma \in \mathcal{M}_{N}$ search of a mono-partite pure state $\left|\phi_{A}\right\rangle \in \mathcal{H}_{N}$ such that it decohers to the diagonal, classical state, $\quad \mathcal{D}\left(\left|\phi_{A}\right\rangle\left\langle\phi_{A}\right|\right)=\sigma=\operatorname{diag}(p)$.

Quantum Channels

Quantum operation: linear, completely positive trace preserving map

positivity: $\Phi(\rho) \geq 0, \quad \forall \rho \in \mathcal{M}_{N}$
complete positivity: $\left[\Phi \otimes \mathbb{1}_{K}\right](\sigma) \geq 0, \quad \forall \sigma \in \mathcal{M}_{K N}$ and $K=2,3, \ldots$

Enviromental form (interacting quantum system !)

$$
\rho^{\prime}=\Phi(\rho)=\operatorname{Tr}_{E}\left[U\left(\rho \otimes \omega_{E}\right) U^{\dagger}\right] .
$$

where ω_{E} is an initial state of the environment while $U U^{\dagger}=\mathbb{1}$.

Kraus form

$\rho^{\prime}=\Phi(\rho)=\sum_{i} A_{i} \rho A_{i}^{\dagger}, \quad$ where the Kraus operators satisfy
$\sum_{i} A_{i}^{\dagger} A_{i}=\mathbb{1}$, which implies that the trace is preserved.

Classical \& Quantum discrete dynamics

Stochastic matrices

Classical states: N-point probability distribution, $\mathbf{p}=\left\{p_{1}, \ldots p_{N}\right\}$, where $p_{i} \geq 0$ and $\sum_{i=1}^{N} p_{i}=1$
Discrete dynamics: $p_{i}^{\prime}=T_{i j} p_{j}$, where T is a stochastic transition matrix of size N and maps the simplex of classical states into itself,

$$
T: \Delta_{N-1} \rightarrow \Delta_{N-1} .
$$

Stochastic maps $=$ quantum operations

A quantum operation $\Phi: \quad \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$ can be described by a matrix Φ of size N^{2},

$$
\rho^{\prime}=\Phi \rho \quad \text { or } \quad \rho_{m \mu}^{\prime}=\Phi_{m \mu} \rho_{n \nu}
$$

The superoperator Φ can be expressed in terms of the Kraus operators A_{i},

$$
\Phi=\sum_{i} A_{i} \otimes \bar{A}_{i}
$$

Quantum stochastic maps (trace preserving, CP)

Dynamical Matrix D: Sudarshan et al. (1961)

 obtained by reshuffling of a 4-index matrix Φ is Hermitian,$$
D_{\mu \nu}^{m}:=\Phi_{m \mu}, \quad \text { so } \text { that } \quad D_{\Phi}=D_{\Phi}^{\dagger}=: \Phi^{R}
$$

Theorem of Choi (1975). A map Φ is completely positive (CP) if and only if the dynamical matrix D_{Φ} is positive, $D \geq 0$.

Classical case

In the case of a diagonal dynamical matrix, $D_{i j}=d_{i} \delta_{i j}$ reshaping its diagonal $\left\{d_{i}\right\}$ of length N^{2} one obtains a matrix of size N, where $T_{i j}=\underset{i j}{D_{i j}}$, of size N which is stochastic.

Decoherence for quantum states and quantum maps

Quantum states \rightarrow classical states $=$ diagonal matrices
Decoherence of a state: $\rho \rightarrow \Phi_{\mathrm{CG}}(\rho)=\tilde{\rho}=\operatorname{diag}(\rho)$

Quantum maps \rightarrow classical maps $=$ stochastic matrices

Decoherence of a map: The Choi matrix becomes diagonal, $D \rightarrow \Gamma_{\mathrm{CG}}(D)=\tilde{D}=\operatorname{diag}(D)$ so that the map $\Phi=D^{R} \rightarrow \tilde{D}^{R} \rightarrow T$. For any Kraus decomposition defining $\Phi(\rho)=\sum_{i} A_{i} \rho A_{i}^{\dagger}$ the corresponding classical map T is given by the Hadamard product,

$$
T=\Gamma_{\mathrm{CG}}(\Phi)=\sum_{i} A_{i} \odot \bar{A}_{i},
$$

where Γ_{CG} is the coarse-graining supermap, K.亡̇. (2008)
If a quantum map Φ is trace preserving, $\sum_{i} A_{i}^{\dagger} A_{i}=\mathbb{1}$
then the classical map $T=\Gamma_{\mathrm{CG}}(T)$ is stochastic, $\sum_{j} T_{i j}=1$.
If additionally a quantum map Φ is unital, $\sum_{i} A_{i} A_{i}^{\dagger}=\mathbb{1}$
then the classical map T is bistochastic, $\sum_{j} T_{i j \equiv}=\sum_{i} T_{i j \equiv}=A$.

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \rightarrow>p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \lambda^{\lambda} \rightarrow p_{j}=\langle j| \rho|j\rangle
$$

Quantum channel Φ

$$
|k\rangle\langle k| \rightarrow \Phi \rightarrow 入 \rightarrow T_{j k}=\langle j| \Phi(|k\rangle\langle k|)|j\rangle
$$

What T tells us about Φ ?

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \AA \rightarrow p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Quantum channel Φ

$|k\rangle\langle k| \rightarrow \Phi \rightarrow \wedge \rightarrow T_{j k}=\langle j| \Phi(|k\rangle\langle k|)|j\rangle$
What T tells us about Φ ?

$$
T=\left[\begin{array}{c}
\frac{1}{2} \frac{1}{2} \\
\frac{1}{2} \frac{1}{2}
\end{array}\right], \text { depolarization } \phi_{*}(\rho)=\frac{1}{2} 1
$$

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \gg p_{j}=\langle j| \rho|j\rangle
$$

What \mathbf{p} tells us about ρ ?

$$
\mathbf{p}=[1,0] \quad \mathbf{p}=[3 / 4,1 / 4]
$$

Quantum channel Φ

$$
|k\rangle\langle k| \rightarrow \Phi \rightarrow \uparrow \rightarrow T_{j k}=\langle j| \Phi(|k\rangle\langle k|)|j\rangle
$$

What T tells us about Φ ?
$T=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$, can describe unitary map

$$
\Phi_{H}(\rho)=H(\rho) H^{\dagger}, \quad H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Coherence of quantum states

Given a fixed basis $\{j\}$ with $j \in\{1,2, \ldots, N\}$ populations $p_{j}=\langle j| \rho|j\rangle$: coherences $c_{j k}=\langle j| \rho|k\rangle$

Coherence of quantum states

Decohering channel \mathcal{D}

Given a fixed basis $\{j\}$ with $j \in\{1,2, \ldots, N\}$ populations $p_{j}=\langle j| \rho|j\rangle$: coherences $c_{j k}=\langle j| \rho|k\rangle$

Less coherent

$$
\rho_{1}=\left[\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right]
$$

$$
\rho_{2}=\left[\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right]
$$

$$
\mathcal{D}(\rho)=\sum_{j=1}^{N}\langle j| \rho|j\rangle|j\rangle\langle j|
$$

More coherent

$$
\rho_{3}=\left[\begin{array}{cc}
\frac{3}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right]
$$

$$
c_{j k} \rightarrow 0, p_{j} \rightarrow p_{j}
$$

$$
\mathcal{D}\left(\rho_{1}\right)=\mathcal{D}\left(\rho_{2}\right)=\mathcal{D}\left(\rho_{3}\right)_{\underline{\Sigma}}=\rho_{1}
$$

Classical bit embedded inside

Classical bit embedded inside

the Bloch ball and its ...

decoherence

Coherence of quantum states

Incoherent state ρ is identified with a classical probability distribution p.

$$
\rho=\mathcal{D}(\rho)=\sum_{j=1}^{N} p_{j}|j\rangle\langle j|
$$

Classical state space

probability simplex Δ_{N-1}
Coherence measures (a distance from incoherent states)

$$
\begin{aligned}
\text { entropic: } & C_{e}(\rho)=S(\rho \| \mathcal{D}(\rho))=S(p)-S(\lambda(\rho)) \\
\text { geometric : } & C_{2}(\rho)=\|\rho-\mathcal{D}(\rho)\|_{H S}^{2}=\lambda(\rho) \cdot \lambda(\rho)-p \cdot p
\end{aligned}
$$

Baumgratz, Cramer, Plenio, (2014) Streltsov, Adesso, Plenio, (2016)

Coherifying quantum states

Decohering channel \mathcal{D} :

$$
\rho \stackrel{\mathcal{D}}{\longmapsto} \rho^{\mathcal{D}}=\operatorname{diag}(p)
$$

Coherification \mathcal{C} is a formal (not unique!) inverse of \mathcal{D} :

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto} \rho^{\mathcal{C}}
$$

One can always optimally coherify a classical state p :

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}|\psi\rangle\langle\psi| \quad \text { with } \quad|\psi\rangle=\sum_{j=1}^{N} \sqrt{p_{j}} e^{i \phi_{j}}|j\rangle
$$

Coherifying quantum states

Decohering channel \mathcal{D} :

$$
\rho \stackrel{\mathcal{D}}{\longmapsto} \rho^{\mathcal{D}}=\operatorname{diag}(p)
$$

Coherification \mathcal{C} is a formal (not unique!) inverse of \mathcal{D} :

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto} \rho^{\mathcal{C}}
$$

One can always optimally coherify a classical state p :

$$
\begin{gathered}
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}|\psi\rangle\langle\psi| \quad \text { with } \quad|\psi\rangle=\sum_{j=1}^{N} \sqrt{p_{j}} e^{i \phi_{j}}|j\rangle \\
C_{e}(|\psi\rangle\langle\psi|)=S(p), \quad C_{2}(|\psi\rangle\langle\psi|)=1-p \cdot p .
\end{gathered}
$$

How many distinct ways to coherify?

Coherence of quantum channels

Given a fixed basis $\{|j\rangle\}$, with $j \in\{1,2, \ldots, N\}$
$\langle j| \Phi(|k\rangle\langle k|)|j\rangle$: classical action $T_{j k}$
$\langle j| \Phi(|m\rangle\langle n|)|k\rangle$:
action involving coherences

Coherence of quantum channels

Given a fixed basis $\{|j\rangle\}$, with $j \in\{1,2, \ldots, N\}$
$\langle j| \Phi(|k\rangle\langle k|)|j\rangle$: classical action $T_{j k}$ $\langle j| \Phi(|m\rangle\langle n|)|k\rangle$:
action involving coherences

$$
J_{\phi}=\frac{1}{N}(\Phi \otimes \mathbb{1})|\Omega\rangle\langle\Omega|,|\Omega\rangle=\sum_{j}|j j\rangle
$$

channel $\Phi \longleftrightarrow$ bipartite state

Choi-Jamiołkowski

 isomorphismCP \& trace preserving
conditions are translated into:

$$
J_{\Phi} \geq 0, \quad \operatorname{tr}_{1}\left(J_{\Phi}\right)=\frac{1}{N} \mathbb{1}
$$

Coherence of quantum channels

Given a fixed basis $\{|j\rangle\}$, with $j \in\{1,2, \ldots, N\}$

Choi-Jamiołkowski

 isomorphismchannel $\Phi \longleftrightarrow$ bipartite state

CP \& trace preserving
conditions are translated into:

Relation between J_{Φ} and T :
Vectorising classical action: where $|T\rangle\rangle=T \otimes \mathbb{1}|\Omega\rangle$

$$
J_{\Phi} \geq 0, \quad \operatorname{tr}_{1}\left(J_{\Phi}\right)=\frac{1}{N} \mathbb{1}
$$

$\langle j| \Phi(|k\rangle\langle k|)|j\rangle$: classical action $T_{j k}$ $\langle j| \Phi(|m\rangle\langle n|)|k\rangle$:
action involving coherences

$$
J_{\phi}=\frac{1}{N}(\Phi \otimes \mathbb{1})|\Omega\rangle\langle\Omega|,|\Omega\rangle=\sum_{j}|j j\rangle
$$

$\langle j, k| J_{\Phi}|j, k\rangle=\frac{1}{N} T_{j k}$
$\left.\operatorname{diag}\left(J_{\Phi}\right)=\frac{1}{N}|T\rangle\right\rangle$,
matrix T reshaped into a vector

Coherence of quantum channels

Classical channels are defined as channels with incoherent (classical) Jamiołkowski state.

Action of classical channel described by the transition matrix T

$$
\rho \mapsto \mathcal{D}(\rho)=\sum_{j} p_{j}|j\rangle\langle j| \mapsto \sigma=\sum_{j} q_{j}|j\rangle\langle j| \text { with } q=T p
$$

Define coherence measure of a map Φ by coherence measure of J_{Φ}

$$
\left.C_{e}(\Phi)=S\left(\frac{1}{N}|T\rangle\right\rangle\right)-S\left(\lambda\left(J_{\Phi}\right)\right), \quad C_{2}(\Phi)=\lambda\left(J_{\Phi}\right) \cdot \lambda\left(J_{\Phi}\right)-\frac{1}{N^{2}}\langle\langle T \| T\rangle\rangle
$$

In analogy to:

$$
\begin{aligned}
& C_{e}(\rho)=S(\rho \| \mathcal{D}(\rho))=S(p)-S(\lambda(\rho)) \\
& C_{2}(\rho)=\lambda(\rho) \cdot \lambda(\rho)-p \cdot p
\end{aligned}
$$

Approach differs from cohering power of a channel:
Mani, Karimipour, (2015); Zanardi, Styliaris, Venuti, (2017)

Coherence of quantum channels

Decohering operation \mathcal{D}

Φ with $\left.\operatorname{diag}\left(J_{\Phi}\right)=\frac{1}{N}|T\rangle\right\rangle \mapsto \Phi^{\mathcal{D}}$ with $\left.J_{\Phi^{\mathcal{D}}}=\mathcal{D}\left(J_{\Phi}\right)=\frac{1}{N} \operatorname{diag}(|T\rangle\rangle\right)$
Coherification \mathcal{C} (not unique!) inverse of \mathcal{D}
Φ with $\left.J_{\Phi}=\mathcal{D}\left(J_{\Phi}\right)=\frac{1}{N} \operatorname{diag}(|T\rangle\rangle\right) \mapsto \Phi^{\mathcal{C}}$ with $\left.\operatorname{diag}\left(J_{\Phi^{\mathcal{C}}}\right)=\frac{1}{N}|T\rangle\right\rangle$

Can one always optimally coherify a classical map T ?

Coherence of quantum channels

Decohering operation \mathcal{D}

Φ with $\left.\operatorname{diag}\left(J_{\Phi}\right)=\frac{1}{N}|T\rangle\right\rangle \mapsto \Phi^{\mathcal{D}}$ with $\left.J_{\Phi^{\mathcal{D}}}=\mathcal{D}\left(J_{\Phi}\right)=\frac{1}{N} \operatorname{diag}(|T\rangle\rangle\right)$
Coherification \mathcal{C} (not unique!) inverse of \mathcal{D}
Φ with $\left.J_{\Phi}=\mathcal{D}\left(J_{\Phi}\right)=\frac{1}{N} \operatorname{diag}(|T\rangle\rangle\right) \mapsto \Phi^{\mathcal{C}}$ with $\left.\operatorname{diag}\left(J_{\Phi \mathcal{C}}\right)=\frac{1}{N}|T\rangle\right\rangle$

Can one always optimally coherify a classical map T ?
$\left.\frac{1}{N}|T\rangle\right\rangle \mapsto|\psi\rangle\langle\psi|$ with

Example

$$
\begin{gathered}
T=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \\
|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\operatorname{tr}_{1}|\psi\rangle\langle\psi|=|+\rangle\langle+|
\end{gathered}
$$

Categories of classical transition matrix T

Categories of classical transition matrix T

Categories of classical transition matrix T

were $(A \circ B)_{j k}=A_{j k} B_{j k}$ denotes Hadamard product:

Categories of classical transition matrix T

Schur example of bistochastic T of order 3 which is not unistochastic

$$
\begin{array}{r}
T=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], X=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
00_{21} & e^{i \theta_{12}} & e^{i \theta_{13}} \\
e^{i \theta_{21}} & e^{i \theta_{31}} & e^{i \theta_{23}} \\
e^{i \theta_{32}} & 0
\end{array}\right] \\
X \text { is not unitary! }
\end{array}
$$

were $(A \circ B)_{j k}=A_{j k} B_{j k}$ denotes Hadamard product:

Categories of classical transition matrix T

Schur example of bistochastic T of order 3 which is not unistochastic

$$
\begin{array}{r}
T=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], X=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
00_{21} & e^{i \theta_{12}} & e^{i \theta_{13}} \\
e^{i \theta_{21}} & e^{i \theta_{31}} & e^{i \theta_{23}} \\
e^{i \theta_{32}} & 0
\end{array}\right] \\
X \text { is not unitary! }
\end{array}
$$

were $(A \circ B)_{j k}=A_{j k} B_{j k}$ denotes Hadamard product:

Categories of classical transition matrix T

Schur example of bistochastic T of order 3 which is not unistochastic

$$
\begin{array}{r}
T=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], X=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & 0_{i 1}^{i \theta_{12}} & e^{i \theta_{13}} \\
e^{i \theta_{21}} & i_{i}^{i \theta_{31}} & e^{i \theta_{23}} \\
e^{i \theta_{32}} & 0
\end{array}\right] \\
X \text { is not unitary! }
\end{array}
$$

were $(A \circ B)_{j k}=A_{j k} B_{j k}$
denotes Hadamard product:

Proposition

Φ can be coherified to a unitary map $\Psi_{U} \Longleftrightarrow T$ is unistochastic
Open unistochasticity problem: given bistochastic T, check if there is a unitary U such that $T_{i j}=\left|U_{i j}\right|^{2}$

Set of 2×2 bistochastic matrices, $B=\left[\begin{array}{cc}1-a & a \\ a & 1-a\end{array}\right]$ with $a \in[0,1]$

Set of 2×2 bistochastic matrices, $B=\left[\begin{array}{cc}1-a & a \\ a & 1-a\end{array}\right]$ with $a \in[0,1]$

can be coherified into the tetrahedron of unital Pauli channels as all bistochastic matrices of order $N=2$ are unistochastic !

Set of 2×2 bistochastic matrices, $B=\left[\begin{array}{cc}1-a & a \\ a & 1-a\end{array}\right]$ with $a \in[0,1]$

can be coherified into the tetrahedron of unital Pauli channels as all bistochastic matrices of order $N=2$ are unistochastic!

Three dimensional tetrahedron of one-qubit, unital, Pauli channels

decoheres to the 1-D interval $[0,1]$ of classical bistochastic matrices

Optimal coherification of qubit channels

Classical action of a qubit channel: Optimally coherified channel:

$$
T=\left[\begin{array}{cc}
a & 1-b \\
1-a & b
\end{array}\right]=:\left[\begin{array}{cc}
a & \tilde{b} \\
\tilde{a} & b
\end{array}\right] \quad \text { with unitary } \quad \Phi^{\mathcal{C}}=\Psi\left(U(\cdot) U^{\dagger}\right)
$$

$$
U=\frac{1}{\sqrt{a+\tilde{b}}}\left[\begin{array}{cc}
\sqrt{a} & -\sqrt{\tilde{b}} \\
\sqrt{\tilde{b}} & \sqrt{a}
\end{array}\right]
$$

Optimal coherification of qubit channels

Classical action of a qubit channel:
$T=\left[\begin{array}{cc}a & 1-b \\ 1-a & b\end{array}\right]=:\left[\begin{array}{cc}a & \tilde{b} \\ \tilde{a} & b\end{array}\right]$ with unitary $\quad \Phi^{\mathcal{C}}=\Psi\left(U(\cdot) U^{\dagger}\right)$

$$
U=\frac{1}{\sqrt{a+\tilde{b}}}\left[\begin{array}{cc}
\sqrt{a} & -\sqrt{\tilde{b}} \\
\sqrt{\tilde{b}} & \sqrt{a}
\end{array}\right]
$$

and $\Psi(\cdot)=L_{1}(\cdot) L_{1}^{\dagger}+L_{2}(\cdot) L_{2}^{\dagger}$ with

$$
L_{1}=\left[\begin{array}{cc}
\sqrt{a+\tilde{b}} & 0 \\
0 & 1
\end{array}\right], L_{2}=\left[\begin{array}{cc}
0 & 0 \\
\sqrt{b-a} & 0
\end{array}\right]
$$

Optimal coherification of qubit channels

Classical action of a qubit channel:
$T=\left[\begin{array}{cc}a & 1-b \\ 1-a & b\end{array}\right]=:\left[\begin{array}{cc}a & \tilde{b} \\ \tilde{a} & b\end{array}\right]$ with unitary $\quad \Phi^{\mathcal{C}}=\Psi\left(U(\cdot) U^{\dagger}\right)$

$$
U=\frac{1}{\sqrt{a+\tilde{b}}}\left[\begin{array}{cc}
\sqrt{a} & -\sqrt{\tilde{b}} \\
\sqrt{\tilde{b}} & \sqrt{a}
\end{array}\right]
$$

and $\Psi(\cdot)=L_{1}(\cdot) L_{1}^{\dagger}+L_{2}(\cdot) L_{2}^{\dagger}$ with

$$
L_{1}=\left[\begin{array}{cc}
\sqrt{a+\tilde{b}} & 0 \\
0 & 1
\end{array}\right], L_{2}=\left[\begin{array}{cc}
0 & 0 \\
\sqrt{b-a} & 0
\end{array}\right]
$$

Optimal coherification of qubit channels

Classical action of a qubit Optimally coherified channel: channel:

$$
T=\left[\begin{array}{cc}
a & 1-b \\
1-a & b
\end{array}\right]=:\left[\begin{array}{cc}
a & \tilde{b} \\
\tilde{a} & b
\end{array}\right] \quad \text { with unitary }
$$

$$
U=\frac{1}{\sqrt{a+\tilde{b}}}\left[\begin{array}{cc}
\sqrt{a} & -\sqrt{\tilde{b}} \\
\sqrt{\tilde{b}} & \sqrt{a}
\end{array}\right]
$$

and $\Psi(\cdot)=L_{1}(\cdot) L_{1}^{\dagger}+L_{2}(\cdot) L_{2}^{\dagger}$ with

$$
L_{1}=\left[\begin{array}{cc}
\sqrt{a+\tilde{b}} & 0 \\
0 & 1
\end{array}\right], L_{2}=\left[\begin{array}{cc}
0 & 0 \\
\sqrt{b-a} & 0
\end{array}\right]
$$

$$
T=\frac{1}{6}\left[\begin{array}{ll}
2 & 1 \\
4 & 5
\end{array}\right]
$$

Upper-bound for the degree of coherification

Optimising coherence of Φ with fixed $T \Longleftrightarrow$ maximizing purity of J_{Φ}.
Majorization partial order:

$$
p \succ q \Longleftrightarrow \forall_{k} \sum_{j=1}^{k} p_{j}^{\downarrow} \geq \sum_{j=1}^{k} q_{j}^{\downarrow}
$$

Important because:

$$
p \succ q \Longrightarrow S(p) \leq S(q) \text { and } p \cdot p \geq q \cdot q
$$

Look for $\mu^{\succ}(T)$ such that:
$\forall \Phi$ with $\left.\operatorname{diag}\left(J_{\Phi}\right)=\frac{1}{d}|T\rangle\right\rangle:$
$\mu^{\succ}(T) \succ \lambda\left(J_{\Phi}\right)$
Why?
To upper-bound C_{e} or C_{2}

Bistochastic classical transition matrix

For bistochastic T majorization upper-bound becomes trivial

$$
[1,0, \ldots, 0]^{\top}=\mu^{\succ} \succ \lambda\left(J_{\Phi}\right)
$$

A non-trivial bound which describes the unistochastic-bistochastic boundary

Leads to bounds for the purity $\gamma=\operatorname{Tr}\left(J_{\Phi}\right)^{2} \leq 1$
characterizing the coherified map Φ.

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad \text { with } \quad|\psi\rangle=\sum_{k} \sqrt{p_{k}} e^{i \phi_{j k}}|k\rangle
$$

Classical states p related to $\left|\psi_{j}\right\rangle$ are the same and are indistinguishable. However, if quantum states $\left|\psi_{j}\right\rangle$ are orthogonal they can be distinguished.

Question

How many perfectly
distinguishable states with classical version p are there?

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad \text { with } \quad|\psi\rangle=\sum_{k} \sqrt{p_{k}} e^{i \phi_{j k}}|k\rangle
$$

Classical states p related to $\left|\psi_{j}\right\rangle$ are the same and are indistinguishable. However, if quantum states $\left|\psi_{j}\right\rangle$ are orthogonal they can be distinguished.

Question

How many perfectly
distinguishable states with classical version p are there?

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad \text { with } \quad|\psi\rangle=\sum_{k} \sqrt{p_{k}} e^{i \phi_{j k}}|k\rangle
$$

Classical states p related to $\left|\psi_{j}\right\rangle$ are the same and are indistinguishable. However, if quantum states $\left|\psi_{j}\right\rangle$ are orthogonal they can be distinguished.

Question

How many perfectly
distinguishable states with classical version p are there?

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad \text { with } \quad|\psi\rangle=\sum_{k} \sqrt{p_{k}} e^{i \phi_{j k}}|k\rangle
$$

Classical states p related to $\left|\psi_{j}\right\rangle$ are the same and are indistinguishable. However, if quantum states $\left|\psi_{j}\right\rangle$ are orthogonal they can be distinguished.

Question

How many perfectly distinguishable states with classical version p are there?

$$
\boldsymbol{p}=[3 / 4,1 / 4]
$$

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho=\operatorname{diag}(p) \stackrel{\mathcal{C}}{\longmapsto}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad \text { with } \quad|\psi\rangle=\sum_{k} \sqrt{p_{k}} e^{i \phi_{j k}}|k\rangle
$$

Classical states p related to $\left|\psi_{j}\right\rangle$ are the same and are indistinguishable. However, if quantum states $\left|\psi_{j}\right\rangle$ are orthogonal they can be distinguished.

Question

How many perfectly distinguishable states with classical version p are there?

$$
\boldsymbol{p}=[3 / 4,1 / 4] \quad \boldsymbol{p}=[1 / 2,1 / 2]
$$

Necessary condition for M-distinguishability

Necessary condition

M perfectly distinguishable states of size N, with $\left\{\psi_{i}\right\}$ with $\left|\left\langle k \mid \psi_{j}\right\rangle\right|^{2}=p_{k}, k=1, \ldots, N \quad \Longrightarrow \quad \forall k: p_{k} \leq \frac{1}{M}$

Orthogonal $\left\{\left|\psi_{j}\right\rangle\right\}$ could form
Corresponding unistochastic matrix: columns of unitary matrix

$$
U=\left[\begin{array}{cccc}
\sqrt{p_{1}} e^{i \phi_{11}} & \ldots & \sqrt{p_{1}} e^{i \phi_{1 N}} & \ldots \\
\sqrt{p_{2}} e^{i \phi_{21}} & \ldots & \sqrt{p_{1}} e^{i \phi_{2 N}} & \ldots \\
\vdots & \ddots & \vdots & \ddots \\
\sqrt{p_{d}} e^{i \phi_{d 1}} & \ldots & \sqrt{p_{d}} e^{i \phi_{d N}} & \ldots
\end{array}\right] \quad U \circ \bar{U}=\left[\begin{array}{cccc}
p_{1} & \ldots & p_{1} & \ldots \\
p_{2} & \ldots & p_{2} & \ldots \\
\vdots & \ddots & \vdots & \ddots \\
p_{N} & \ldots & p_{N} & \ldots
\end{array}\right]
$$

But rows must sum to 1 !

Quantum distinguishability of classical states

Set of classical states of size $N=2,3$ and 4 forms simplices Δ_{N-1}

$$
\Delta_{2}=\mathcal{P}_{2}^{1} \quad \Delta_{3}=\mathcal{P}_{3}^{1} \quad \Delta_{4}=\mathcal{P}_{4}^{1}
$$

P_{M}^{N} denotes the subset of Δ_{N-1} containing M-distinguishable states

Distinguishing channel coherifications

Channels $\left\{\phi^{(j)}\right\}$ with fixed action T are perfectly distinguishable iff:
$\exists \rho_{A B}\left\{\Phi^{(j)} \otimes \mathbb{1}\left(\rho_{A B}\right)\right\}$ are perfectly distinguishable
If $\exists \rho\left\{\Phi^{(j)}(\rho)\right\}$ are perfectly distinguishable then no entanglement is needed

Type of classical transition matrix T	Number of perfectly distinguishable channels	Requir enta
Unistochastic	d	No
Unistochastic	$d+1, \ldots, d^{2}$	Yes
Bistochastic		
Such that $T_{j k} \leq \frac{1}{2}$	2	Yes
		No

Concluding Remarks

- Decoherence of a quantum map Φ to a classical map T determined by the diagonal of the Choi matrix (Jamiołkowski state) J_{Φ} (a supermap $\Gamma(\Phi)$ yields the classical channel Φ_{T})
- Measures of coherence of a map $\mathcal{C}(\Phi)$ proposed in analogy to the coherence of a state $\mathcal{C}\left(J_{\Phi}\right)$
- Idea of coherification of a state and a map (Kannalsanierung): the search for all preimages with respect to decoherence
- Open questions:
* Are optimally coherified channels extremal?
* Is the minimum output entropy equal to zero??
* What is the number of perfectly distinguishable states
(maps) which decohere to a given classical state / map
Based on K. Korzekwa, S. Czachórski, Z. Puchała, K.Ż.
New J. Phys. 20, 043028 (2018),
and the new, follow-up paper, 2018, to appear

A short message to a theoretical physicist :

A short message to a theoretical physicist :

From time to time it is good to look through the window, to observe the real world outside,
so it is also good to wash it from time to time ...

