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Low temperature gas mixture in a trap



Droplets

Liquids within van dar Waals paradigm 

Self-bound!! 
 
Counter-intuitive!! 

Liquids beyond van dar Waals paradigm 

Most dilute ever!! 



Motivations/Overview

•  Droplet formation in 2D Bose-Fermi systems
ü      Thermodynamic limit
ü      Finite systems

•  Low-dimensional droplets
ü      Quantum fluctuations are also strongly modified in reduced dimension  
(distinct scattering properties)
ü      Reduced three-body loss …
ü      Quadratic scaling of kinetic energy on fermionic density in 2D
         (a close analogy with Bose-Bose droplets) 

•  Story so far
ü  Bose-Bose droplets (D. Petrov, PRL, 2016)
ü  Bose-Fermi droplets in three-dimension (Rakshit et. al., Under review, 2018)



Neutral atoms at low-temperature
ü  They can be cooled at extremely low temperature

ü  Dilute atomic gas (n ~ 1012-1015 atoms/cm3)

•  Two-body collisions play important role

•  Three-body collisions are rare

ü  Universality (Average inter-particle spacing                                     )

•  At low-temperature de-Broglie wavelength is much larger in comparison to interaction range

•  Details of potential do not matter for many applications  

ü  Statistics

•  Neutral atoms can be composite bosons or composite fermions

dint << λdb;λdb ∝
1
T



Neutral atoms at low-temperature

a3d
aa

No bound state

Bound state

a3d
aa > 0a3d

aa < 0

Feshbach resonance

B-field

V(r) 

r 

ü  Atom-atom interaction can be manipulated precisely

•  s-wave scattering length

•  For remainder of talk, we assume, only the s-wave scattering length to have a significant 
contribution at low temperature 



Ultradilute liquid droplets

C. R. Cabrera, L. Tanzi, J. Sanz,  B. Naylor, P. Thomas, P. Cheiney, and  L. Tarruell,  Quantum 
liquid droplets in a mixture of Bose-Einstein condensates,  Science 359, 301 (2018)   

Bose-Bose Mixture
(39k in two hyperfine states)

Single component 
Bose system

δa = − a12 + a11a22

INTRASPECIES
(Effective repulsive interaction)

INTERSPECIES
(Effective attractive interaction)



Liquid Bose-Bose droplets
Mechanical stability: Two component Bose gas in a box with uniform densities n1 and n2  

εBB =
1
2
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2 +
1
2
g22n2

2 − g12 n1n2

               System becomes unstable if − | g12 |+ g11g22 < 0;δg < 0
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Liquid Bose-Bose droplets

Collapse!!

Mechanical stability:

System would prefer to increase densities of both the species while keeping  

εBB =
1
2
g11n1

2 +
1
2
g22n2

2 − g12 n1n2 = λ+n+
2 +λ−n−

2

λ+ = o( g11g22 )> 0
λ− = o(δg)< 0

δg = − g12 + g11g22
n± = ( g22n1 ∓ g11n2 ) / g11 + g22



Liquid Bose-Bose droplets
Quantum mechanical stabilization of collapsing Bose-Bose mixture:

 They balance at certain ‘equilibrium’ atomic densities and leads to formation of liquid droplets.

Highly dilute systems!!

εBB
MF ∝n2δg < 0

εLHY ∝n
5/2 g11g22 > 0



Liquid Bose-Fermi droplets: 3D case
Bose-Fermi mixture:

•  Mean field treatment does not support formation of a stable droplet  

•  Mean-field and corrections balance at certain ‘equilibrium’ atomic densities and leads to 
formation of liquid droplets (arXiv:1801.00346)

•  Higher-order correction in Bose-Fermi interaction plays a crucial role

Highly dilute self-bound systems!!

ε3d =κknF
5/3 +

1
2
gBnB

2 + g BF nBnF
⎛
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⎠
⎟+ εLHY +δεBF( )

Mean-field Higher-order corrections

aB
3nB <<1;aBF

3 nF <<1

How to calculate the equilibrium densities of the droplets?

H = HB +HF +HBF



Bose-Fermi mixture
•  We consider two-dimensional Bose-Fermi mixture at zero temperature 

•  Fermions do not interact with each other 

•  Bosons interact with each other and with fermions

Hamiltonian: H = HB +HF +HBF

Interaction potential 
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3D-vs-2D 
Interaction potential 

σ 

κ

gσ ,σ ' =
2π!2

µσ ,σ '

1
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2 κ 2 )( )
ε = 4exp(−2γ ) Popov, Theor. Math. Phys. 11, 565  
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2D Bose-Fermi mixture: Energy density

Consider leading order contributions  [collect all possible quadratic terms] and diagonalize 
via Bogoliubov transformation:

Energy contribution due to HB

HB =
!2k2
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2D Bose-Fermi mixture: Energy density
Energy contribution due to Bose-Fermi interaction HBF

Coupling between density fluctuations in the two species

δεBF =
4πmBnBgBF

2 kF
2

(2π )4!2
Ic (ω,α)

kF = 4πnF
α = 2ω gBBnB /εF( )
ω =mB /mF

In 2D: 

εBF = gBFnBnF +δεBF

Energy contribution due to HF εF =
1
2
βnF

2 ;β = 2π!
2

mF

Kinetic energy 



2D Bose-Fermi mixture: Energy density
Total energy density of Bose-Fermi mixture :

ε =
β
2
nF
2 +

gBB
2
nB
2 + gBFnBnF +εLHY +δεBF

Mean-field energy Beyond mean-field  
higher-order corrections  

Diluteness conditions: 

aBB
2 nB,F <<1

aBF
2 nB,F >>1

Weakly repulsive (intraspecies) 
 
Weakly attractive (interspecies) 



Cut-off dependence

εB = εB (κ ) εBF = εBF (κ )
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∂εB (κ )
∂κ 2 ≈ 0 Negligible dependence  

on the cut-off momentum  
(can be numerically checked)  



Cut-off momentum

∂2εMF
∂nB

2

⎛

⎝
⎜

⎞

⎠
⎟
∂2εMF
∂nF

2

⎛

⎝
⎜

⎞

⎠
⎟−

∂2εMF
∂nB∂nF

⎛

⎝
⎜

⎞

⎠
⎟

2

= 0

εMF =
β
2
nF
2 +

gBB
2
nB
2 + gBFnBnF

 Choose the momentum cut-off from the bare minimum stability condition of the system 
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Mechanical stabilization of self-bound mixture
Vanishing pressure …

Outside of the droplet the pressure must be equal to zero (free-space). 
The pressure related to surface vanishes in thermodynamic limit.

E(NB,NF,V ) = ε(nB,nF )V

nB,F =
NB,F

V

P = dE
dV
⎛

⎝
⎜

⎞

⎠
⎟
NB ,NF

p(nB,nF ) = nB
∂ε
∂nB

+ nF
∂ε
∂nF

−ε(nB,nF ) = 0



Equilibrium density of Stable Bose-Fermi droplets 

6Li - 133Cs mixture (weakly interacting dilute gas) 
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DROPLET

Due to the quadratic form of mean-field energy, equilibrium density ratio can be shown to be 
approximately 

nB / nF ≈ β / gBB

εMF =
β
2
nF
2 +

gBB
2
nB
2 + gBFnBnF

aBF / aB =10
4



Mechanical stability – thermodynamic limit 
Minimize energy constrained to vanishing pressure
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∂nF

−µF
∂p
∂nB

= 0

p(nB,nF ) = nB
∂ε
∂nB

+ nF
∂ε
∂nF

−ε(nB,nF ) = 0

µB =
∂ε
∂nB

;µF =
∂ε
∂nF

;

Solution gives 
equilibrium 
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Variance with cut-off momentum
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 Variation of the energy densities as a function of the cut-off momentum around 
the chosen cut-off momentum  

  

Contribution from Bose-Fermi interactions 

Contribution from Bose-Bose interactions 

Total energy density 

Kinetic energy contribution  

6Li - 133Cs mixture (                    ) aBF / aB =10
4



Bose-Fermi mixture: Effects of interaction strength
Equilibrium densities as a function of aBF /aB
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Nonuniform finite droplets
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Ø  To include surface effects, energy terms related to density gradient 
has to be added  

Ø  Hydrodynamic equation of motion

Fermionic  
component  



Nonuniform finite droplets
Inverse-Madelung transformation and Schrodinger-like equation of motion 



Nonuniform finite droplets

The case of 133Cs-6Li  mixture for aBF /aB = 10^4 and the initial number of bosons (fermions) 
equal to 1000 (100), 4000 (400), and 10000 (1000)

The density does not change, only volume increases …

Equilibrium densities in 
thermodynamic limit
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Solution obtained by reworking hydrodynamic equation into a form of Schrodinger-like 
equation 



Summary
q  Low-dimensional Bose-Fermi droplets … 
           (We find that a three-dimensional stable Bose-Fermi mixture 
            in gaseous phase can be liquefied by introducing a transverse
            confinement)

q   Peculiar scattering processes in low-dimensions significantly modifies the higher-order 
quantum fluctuation terms, which are crucial ingredients for these droplet formation 

q  Quadratic scaling of fermionic kinetic energy makes 2D systems closely analogous 
to the Bose-Bose droplets

q  In contrary to the 3D case, 2D droplets are formed near vanishing mean-field energy 

q  Conditions for droplet formation in 1D were obtained as well 
(not discussed here; See arXiv:1808.04793)

q  Low-dimensional droplets are most promising from  experimental point of view due to
reduced three-body losses



Outlook …

q  Across dimensional crossover …

q  Droplets + vapor …
          
q  Droplet collisions …

q  Droplets in strongly interacting regime …

q  A perfect laboratory for studying various processes – polaron physics, 
stability of astronomical objects …




