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Liquids within van dar Waals paradigm



Low temperature gas mixture in a trap

Liquids within van dar Waals paradigm



Liquids within van dar Waals paradigm

Self-bound!!

Counter-intuitive!!

Most dilute ever!!

Liquids beyond van dar Waals paradigm



Motivations/Overview

* Story so far
v Bose-Bose droplets (D. Petrov, PRL, 2016)
v Bose-Fermi droplets in three-dimension (Rakshit et. al., Under review, 2018)

* Low-dimensional droplets
v" Quantum fluctuations are also strongly modified in reduced dimension
(distinct scattering properties)
v" Reduced three-body loss ...
v" Quadratic scaling of kinetic energy on fermionic density in 2D
(a close analogy with Bose-Bose droplets)

e Droplet formation in 2D Bose-Fermi systems
v' Thermodynamic limit
v Finite systems



Neutral atoms at low-temperature

They can be cooled at extremely low temperature

Dilute atomic gas (n ~ 10'2-1015 atoms/cm?)
Two-body collisions play important role

Three-body collisions are rare

. . . . . 1
Universality (Average inter-particle spacingd,,, << A,,;A,, & ﬁ )
At low-temperature de-Broglie wavelength is much larger in comparison to interaction range

Details of potential do not matter for many applications

Statistics

Neutral atoms can be composite bosons or composite fermions



Neutral atoms at low-temperature

Atom-atom interaction can be manipulated precisely

s-wave scattering length

For remainder of talk, we assume, only the s-wave scattering length to have a significant
contribution at low temperature
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Ultradilute liquid droplets
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C.R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum
liquid droplets in a mixture of Bose-Einstein condensates, Science 359, 301 (2018)



Liquid Bose-Bose droplets

Mechanical stability: Two component Bose gas in a box with uniform densities n, and n,
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Epp = 5811”12 +5822n22 _|g12|n1n2

System becomes unstable if — 18, | ++/&;,8, <0;0g <0
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Liquid Bose-Bose droplets

Mechanical stability:

1 ,» 1

€pp = 5811”1 +5822n§ —|g12|n1n2 = /’L+nf +An’
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A =0(0g)<0
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n, = (\/gnl FA&1) 81t &x

System would prefer to increase densities of both the species while keeping

Collapse!!



Liquid Bose-Bose droplets

Quantum mechanical stabilization of collapsing Bose-Bose mixture:

MF 2
Egg *N°0g<0

5/2
Ergy N /81182 = 0

They balance at certain ‘equilibrium’ atomic densities and leads to formation of liquid droplets.

Highly dilute systems!!



Liquid Bose-Fermi droplets: 3D case

Bose-Fermi mixture:

H=H,+H,+H

s (1 2
E3q =Ky + (E 8pMp T 8 pr anF) + (gLHY + (SEBF)

Mean-field Higher-order corrections

* Mean field treatment does not support formation of a stable droplet

* Mean-field and corrections balance at certain ‘equilibrium’ atomic densities and leads to
formation of liquid droplets (arXiv:1801.00346)

* Higher-order correction in Bose-Fermi interaction plays a crucial role
Highly dilute self-bound systems!! a,n, <<l;a,,n, <<1

How to calculate the equilibrium densities of the droplets?



Bose-Fermi mixture

*  We consider two-dimensional Bose-Fermi mixture at zero temperature

* Fermions do not interact with each other

 Bosons interact with each other and with fermions

Hamiltonian: ?—1 =H,+H.+H BF]

2
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Interaction potential
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2D Bose-Fermi mixture: Energy density

Energy contribution due to Hy

hk2

k mB

Consider leading order contributions [collect all possible quadratic terms] and diagonalize
via Bogoliubov transformation:

Mean-field LHY correction

_ 823”123”13 ln( gBBnB\/Z )
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2D Bose-Fermi mixture: Energy density

Energy contribution due to Bose-Fermi interaction Hgp

Coupflng between density fluctuations in the two species

Adamn,g: . k;
In 2D: R

k, =.\/4xn,
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o 2h’
Energy contribution due to H Ep =. p =
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Kinetic energy




2D Bose-Fermi mixture: Energy density

Total energy density of Bose-Fermi mixture :

Mean-field energy Beyond mean-field
higher-order corrections

Diluteness conditions:

Agplp p << 1  Weakly repulsive (intraspecies)

Apply p >> 1 Weakly attractive (interspecies)



Cut-off dependence

€ = &5(K) Epr = Epp (K)

A

dez(K) 0 Negligible dependence
2 on the cut-off momentum
(can be numerically checked)

0K



Cut-off momentum

Choose the momentum cut-off from the bare minimum stability condition of the system
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Mechanical stabilization of self-bound mixture

Vanishing pressure ...

Outside of the droplet the pressure must be equal to zero (free-space).
The pressure related to surface vanishes in thermodynamic limit.
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Equilibrium density of Stable Bose-Fermi droplets

6Li - 133Cs mixture (weakly interacting dilute gas)

a,. /a, =10

\ DROPLET
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Due to the quadratic form of mean-field energy, equilibrium density ratio can be shown to be

approximately
ng/ng=\/p/ &gy



Mechanical stability — thermodynamic limit

Minimize energy constrained to vanishing pressure
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Variance with cut-off momentum

Variation of the energy densities as a function of the cut-off momentum around

the chosen cut-off momentum

6Lj - 133Cs mixture (a,, /a, =10%)
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Kinetic energy contribution
Contribution from Bose-Bose interactions

Total energy density

Contribution from Bose-Fermi interactions



Bose-Fermi mixture: Effects of interaction strength

Equilibrium densities as a function of agg /ag

6Li - 133Cs mixture
12 1 1 1 1 1
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Nonuniform finite droplets

» To include surface effects, energy terms related to density gradient
has to be added

» Hydrodynamic equation of motion
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Nonuniform finite droplets

Inverse-Madelung transformation and Schrodinger-like equation of motion
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Nonuniform finite droplets
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Solution obtained by reworking hydrodynamic equation into a form of Schrodinger-like
equation

The case of 133Cs-°Li mixture for ag./ag = 10A4 and the initial number of bosons (fermions)
equal to 1000 (100), 4000 (400), and 10000 (1000)

The density does not change, only volume increases ...



Summary

0 Low-dimensional Bose-Fermi droplets ...
(We find that a three-dimensional stable Bose-Fermi mixture

in gaseous phase can be liquefied by introducing a transverse
confinement)

L Peculiar scattering processes in low-dimensions significantly modifies the higher-order
quantum fluctuation terms, which are crucial ingredients for these droplet formation

O Quadratic scaling of fermionic kinetic energy makes 2D systems closely analogous
to the Bose-Bose droplets

U In contrary to the 3D case, 2D droplets are formed near vanishing mean-field energy

O Conditions for droplet formation in 1D were obtained as well
(not discussed here; See arXiv:1808.04793)

U Low-dimensional droplets are most promising from experimental point of view due to
reduced three-body losses



O Across dimensional crossover ...

O Droplets + vapor ...

O Droplet collisions ...

L Droplets in strongly interacting regime ...

L A perfect laboratory for studying various processes — polaron physics,
stability of astronomical objects ...






