Conclusive verification of bipartite bound entanglement

Matthias Kleinmann, Universität Siegen joint work with G. Sentís, J.N. Greiner, J. Shang, and J. Siewert

arXiv:1804.07562

What is bound entanglement?

What is bound entanglement?

Distillable entanglement
A bipartite state is distillable, if

What is bound entanglement?

Distillable entanglement
A bipartite state is distillable, if

- having some finite number of copies

What is bound entanglement?

Distillable entanglement

A bipartite state is distillable, if

- having some finite number of copies
it is possible to create a maximally entangled state

$$
\left|\phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle,
$$

What is bound entanglement?

Distillable entanglement

A bipartite state is distillable, if

- having some finite number of copies
it is possible to create a maximally entangled state

$$
\left|\phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle,
$$

- by means of LOCC (local operations and classical communication)

What is bound entanglement?

Distillable entanglement

A bipartite state is distillable, if

- having some finite number of copies
it is possible to create a maximally entangled state

$$
\left|\phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle,
$$

- by means of LOCC (local operations and classical communication)
- and with finite probability.

What is bound entanglement?

Distillable entanglement

A bipartite state is distillable, if

- having some finite number of copies
it is possible to create a maximally entangled state

$$
\left|\phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i}|i i\rangle,
$$

- by means of LOCC (local operations and classical communication)
- and with finite probability.

Bound entanglement

An entangled state that is not distillable is bound entangled.

The PPT criterion

Characterizing bound entangled states seems intractable.

The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki et al.)

Any state with positive partial transpose (PPT) is undistillable, i.e., PPT \cap entangled \subseteq bound entangled.

The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki et al.)

Any state with positive partial transpose (PPT) is undistillable, i.e.,

$$
P P T \cap \text { entangled } \subseteq \text { bound entangled. }
$$

\hookrightarrow Two qutrits are the smallest system with bound entanglement.

Shortcut to bound entanglement: multipartite states

Shortcut to bound entanglement: multipartite states

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Shortcut to bound entanglement: multipartite states

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$
\rho_{A B C D}=\frac{1}{4}\left(\Phi^{+}+\Phi^{-}+\Psi^{+}+\Psi^{-}\right)
$$

with $\Psi^{-}=\left|\psi^{-} \psi^{-}\right\rangle\left\langle\psi^{-} \psi^{-}\right|$, etc.

Shortcut to bound entanglement: multipartite states

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$
\rho_{A B C D}=\frac{1}{4}\left(\Phi^{+}+\Phi^{-}+\Psi^{+}+\Psi^{-}\right),
$$

with $\Psi^{-}=\left|\psi^{-} \psi^{-}\right\rangle\left\langle\psi^{-} \psi^{-}\right|$, etc.
Properties:

- globally entangled
- separable with respect to all bipartitions

Shortcut to bound entanglement: multipartite states

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$
\rho_{A B C D}=\frac{1}{4}\left(\Phi^{+}+\Phi^{-}+\Psi^{+}+\Psi^{-}\right),
$$

with $\Psi^{-}=\left|\psi^{-} \psi^{-}\right\rangle\left\langle\psi^{-} \psi^{-}\right|$, etc.
Properties:

- globally entangled
- separable with respect to all bipartitions

Feels like cheating...

Experiments

Experiments

Multipartite:

- Amselem \& Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)

Experiments

Multipartite:

- Amselem \& Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)
...

Bipartite:

- DiGuglielmo et al., PRL (2011)
- Hiesmayr \& Löffler, NJP (2013)

Experiments

Multipartite:

- Amselem \& Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)
...

Bipartite:

- DiGuglielmo et al., PRL (2011)
- Hiesmayr \& Löffler, NJP (2013)

Rigor of results.

These experiments employ

- a limited statistical analysis, or
- symmetry assumptions.

Certification of bound entanglement

Protocol in use.

(1) Perform state tomography,
2. reconstruct state,

3 bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

Certification of bound entanglement

Protocol in use.

(1) Perform state tomography,
2. reconstruct state,
(3) bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

喂 Sounds decent

Certification of bound entanglement

Protocol in use.

(1) Perform state tomography,
(2) reconstruct state,

3 bootstrap, determine whether bound entangled,
4) report fraction of bootstrapped states with bound entanglement.

唃 Sounds decent, yields utterly unreliable results.

Certification of bound entanglement

Protocol in use.

(1) Perform state tomography,
(2) reconstruct state,

3 bootstrap, determine whether bound entangled,
4 report fraction of bootstrapped states with bound entanglement.

哏 Sounds decent, yields utterly unreliable results.

Problems

- Theorem: There can be no unbiased state reconstruction. [Schwemmer et al., PRL (2015)]
- Bound entangled states are high-dimensional \& nonconvex set.

Proper statistical analysis

Proper statistical analysis

Noncentral χ^{2}-test

If ρ_{0} admits an bound entangled ball with radius r_{0},

Proper statistical analysis

Noncentral χ^{2}-test

If ρ_{0} admits an bound entangled ball with radius r_{0}, then we can compute, assuming normal distributed data, an upper bound for

$$
\mathbf{P}[\text { false positives }] \leq \mathbf{P}\left[\text { data looks good } \mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \geq r_{0}\right] .
$$

This yields a p-value.

Proper statistical analysis

Noncentral χ^{2}-test
If ρ_{0} admits an bound entangled ball with radius r_{0}, then we can compute, assuming normal distributed data, an upper bound for
$\mathbf{P}[$ false positives $] \leq \mathbf{P}\left[\right.$ data looks good $\left.\mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \geq r_{0}\right]$.
This yields a p-value.

Advantages:

- easy to understand

Proper statistical analysis

Noncentral χ^{2}-test
If ρ_{0} admits an bound entangled ball with radius r_{0}, then we can compute, assuming normal distributed data, an upper bound for
$\mathbf{P}[$ false positives $] \leq \mathbf{P}\left[\right.$ data looks good $\left.\mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \geq r_{0}\right]$.
This yields a p-value.

Advantages:

- easy to understand
- correct

Proper statistical analysis

Noncentral χ^{2}-test
If ρ_{0} admits an bound entangled ball with radius r_{0}, then we can compute, assuming normal distributed data, an upper bound for
$\mathbf{P}[$ false positives $] \leq \mathbf{P}\left[\right.$ data looks good $\left.\mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \geq r_{0}\right]$.
This yields a p-value.

Advantages:

- easy to understand
- correct
- computationally trivial

Proper statistical analysis

Noncentral χ^{2}-test

If ρ_{0} admits an bound entangled ball with radius r_{0}, then we can compute, assuming normal distributed data, an upper bound for
$\mathbf{P}[$ false positives $] \leq \mathbf{P}\left[\right.$ data looks good $\left.\mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \geq r_{0}\right]$.
This yields a p-value.

Advantages:

- easy to understand
- correct
- computationally trivial

Disadvantages:

- slightly conservative
- requires to work in "Gaussian regime"

Task.

For a bound entangled state ρ_{0}, find r_{0} such that all states τ with $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$ are bound entangled.

Task.

For a bound entangled state ρ_{0}, find r_{0} such that all states τ with $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$ are bound entangled.

喚 Infeasible problem?

Task.

For a bound entangled state ρ_{0}, find r_{0} such that all states τ with $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$ are bound entangled.

喚 Infeasible problem?

Simplification I

Theorem (Horodecki et al.)

 ρ is undistillable if $\Gamma(\rho) \geq 0$.
Simplification I

Theorem (Horodecki et al.)

 ρ is undistillable if $\Gamma(\rho) \geq 0$.Lemma. If $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$ then, (d: dimension of joint system)

$$
\lambda_{\min }[\Gamma(\tau)] \geq \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right]-r_{0} \sqrt{1-1 / d}
$$

Proof. Let $\rho_{0}-\tau=r_{0} X$ with $\|X\|_{2} \leq 1$. Then

$$
\lambda_{\min }[\Gamma(\tau)] \geq \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right]-r_{0}\|X\|_{\infty} .
$$

Simplification I

Theorem (Horodecki et al.)

 ρ is undistillable if $\Gamma(\rho) \geq 0$.Lemma. If $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$ then, (d: dimension of joint system)

$$
\lambda_{\min }[\Gamma(\tau)] \geq \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right]-r_{0} \sqrt{1-1 / d}
$$

Proof. Let $\rho_{0}-\tau=r_{0} X$ with $\|X\|_{2} \leq 1$. Then

$$
\lambda_{\min }[\Gamma(\tau)] \geq \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right]-r_{0}\|X\|_{\infty} .
$$

Corollary.
All states around ρ_{0} are undistillable, if

$$
\lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right] \geq r_{0} \sqrt{1-1 / d}
$$

Simplification II

Computable cross-norm or realignment (CCNR) criterion:

Simplification II

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen\&Wu)

Let $\left(g_{k}\right)_{k}$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k, \ell}=\operatorname{tr}\left(\rho g_{k} \otimes g_{\ell}\right)$.

Simplification II

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen\&Wu)

Let $\left(g_{k}\right)_{k}$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k, \ell}=\operatorname{tr}\left(\rho g_{k} \otimes g_{\ell}\right)$. Then, a state ρ is entangled if $\|R(\rho)\|_{1}>1$.

Simplification II

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen\&Wu)

Let $\left(g_{k}\right)_{k}$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k, \ell}=\operatorname{tr}\left(\rho g_{k} \otimes g_{\ell}\right)$. Then, a state ρ is entangled if $\|R(\rho)\|_{1}>1$.

Lemma. If $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$, then

$$
\|R(\tau)\|_{1} \geq\left\|R\left(\rho_{0}\right)\right\|_{1}-r_{0} \sqrt{d}
$$

Proof. Use $\|R(\tau)\| \geq\left\|R\left(\rho_{0}\right)\right\|-r_{0}\|R(X)\|_{1}$.

Simplification II

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen\&Wu)

Let $\left(g_{k}\right)_{k}$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k, \ell}=\operatorname{tr}\left(\rho g_{k} \otimes g_{\ell}\right)$. Then, a state ρ is entangled if $\|R(\rho)\|_{1}>1$.

Lemma. If $\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0}$, then

$$
\|R(\tau)\|_{1} \geq\left\|R\left(\rho_{0}\right)\right\|_{1}-r_{0} \sqrt{d}
$$

Proof. Use $\|R(\tau)\| \geq\left\|R\left(\rho_{0}\right)\right\|-r_{0}\|R(X)\|_{1}$.

Corollary.

All states around ρ_{0} are entangled, if

$$
\left\|R\left(\rho_{0}\right)\right\|_{1}>1+r_{0} \sqrt{d}
$$

Conditions

- C1: $\lambda_{\text {min }}\left[\Gamma\left(\rho_{0}\right)\right] \geq r_{0} \sqrt{1-1 / d}$.
- C2: $\left\|R\left(\rho_{0}\right)\right\|_{1}>1+r_{0} \sqrt{d}$.

(\Rightarrow CCNR entangled)

Optimal states

Optimal states

- Given ρ_{0}, we can compute a bound on the best r_{0}.

Optimal states

- Given ρ_{0}, we can compute a bound on the best r_{0}.
- Why not search a state ρ_{0} with overall best r_{0} ?

Optimal states

- Given ρ_{0}, we can compute a bound on the best r_{0}.
- Why not search a state ρ_{0} with overall best r_{0} ?

Optimization problem.

Find ρ_{0} and r_{0} subject to
maximize: r_{0}
such that: $\quad \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right] \geq r_{0} \sqrt{1-1 / d}$, and

$$
\left\|R\left(\rho_{0}\right)\right\|_{1}>1+r_{0} \sqrt{d}
$$

Optimal states

- Given ρ_{0}, we can compute a bound on the best r_{0}.
- Why not search a state ρ_{0} with overall best r_{0} ?

Optimization problem.

Find ρ_{0} and r_{0} subject to

$$
\begin{aligned}
\operatorname{maximize}: & r_{0} \\
\text { such that: } & \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right] \geq r_{0} \sqrt{1-1 / d}, \text { and } \\
& \left\|R\left(\rho_{0}\right)\right\|_{1}>1+r_{0} \sqrt{d} .
\end{aligned}
$$

- In principle, yields optimal state for given dimension.

Optimal states

- Given ρ_{0}, we can compute a bound on the best r_{0}.
- Why not search a state ρ_{0} with overall best r_{0} ?

Optimization problem.

Find ρ_{0} and r_{0} subject to

$$
\begin{aligned}
\operatorname{maximize}: & r_{0} \\
\text { such that: } & \lambda_{\min }\left[\Gamma\left(\rho_{0}\right)\right] \geq r_{0} \sqrt{1-1 / d}, \text { and } \\
& \left\|R\left(\rho_{0}\right)\right\|_{1}>1+r_{0} \sqrt{d} .
\end{aligned}
$$

- In principle, yields optimal state for given dimension.
- In practice, need to choose family of states with few parameters.

Example: Qutrits

Family of states:

$\rho=a\left|\phi_{3}\right\rangle\left\langle\phi_{3}\right|+b \sum_{k=0}^{2}|k, k \oplus 1\rangle\langle k, k \oplus 1|+c \sum_{k=0}^{2}|k, k \oplus 2\rangle\langle k, k \oplus 2|$,
with $\left|\phi_{3}\right\rangle=\sum_{i}|i i\rangle / \sqrt{3}$.
[Baumgartner et al., PRA (2006)]

Example: Qutrits

Family of states:

$\rho=a\left|\phi_{3}\right\rangle\left\langle\phi_{3}\right|+b \sum_{k=0}^{2}|k, k \oplus 1\rangle\langle k, k \oplus 1|+c \sum_{k=0}^{2}|k, k \oplus 2\rangle\langle k, k \oplus 2|$,
with $\left|\phi_{3}\right\rangle=\sum_{i}|i i\rangle / \sqrt{3}$.
[Baumgartner et al., PRA (2006)]

唤 Can be solved analytically.

Example: Qutrits

Family of states:
$\rho=a\left|\phi_{3}\right\rangle\left\langle\phi_{3}\right|+b \sum_{k=0}^{2}|k, k \oplus 1\rangle\langle k, k \oplus 1|+c \sum_{k=0}^{2}|k, k \oplus 2\rangle\langle k, k \oplus 2|$,
with $\left|\phi_{3}\right\rangle=\sum_{i}|i i\rangle / \sqrt{3}$.
[Baumgartner et al., PRA (2006)]

뭉 Can be solved analytically.

Optimal parameters

$$
a \approx 0.21289, b \approx 0.04834, \text { and } c \approx 0.21403
$$

$\hookrightarrow r_{0} \approx 0.02345$

- $\operatorname{rank}(\rho)=7$.
- Value of r_{0} is (basically) tight w.r.t. CCNR and PPT.

Example: Qutrits

$$
r_{0} \approx 0.02345, \quad \text { rank } 7
$$

Example: Ququarts

Family of Bloch-diagonal states:
(contains Smolin state)

$$
\rho=\sum_{k} x_{k} g_{k} \otimes g_{k}
$$

where $g_{k}=\left(\sigma_{\mu} \otimes \sigma_{\nu}\right) / 2$.

Example: Ququarts

Family of Bloch-diagonal states:

$$
\rho=\sum_{k} x_{k} g_{k} \otimes g_{k}
$$

where $g_{k}=\left(\sigma_{\mu} \otimes \sigma_{\nu}\right) / 2$.

㕷 Optimization problem reduces to 32768 linear programs.

Example: Ququarts

Family of Bloch-diagonal states:

$$
\rho=\sum_{k} x_{k} g_{k} \otimes g_{k}
$$

where $g_{k}=\left(\sigma_{\mu} \otimes \sigma_{\nu}\right) / 2$.

啹 Optimization problem reduces to 32768 linear programs.
\hookrightarrow Feasibility polytope can be determined, has 254556 vertices.

Example: Ququarts

Family of Bloch-diagonal states:

$$
\rho=\sum_{k} x_{k} g_{k} \otimes g_{k}
$$

where $g_{k}=\left(\sigma_{\mu} \otimes \sigma_{\nu}\right) / 2$.

唤 Optimization problem reduces to 32768 linear programs.
\hookrightarrow Feasibility polytope can be determined, has 254556 vertices.

Optimal states

- $\operatorname{rank}(\rho)<9$ yields $r_{0}=0$.
- $\operatorname{rank}(\rho)=9$ yields $r_{0} \approx 0.0161$.
- $\operatorname{rank}(\rho) \geq 10$ yields $r_{0} \approx 0.0214$.

Example: Ququarts

$$
r_{0} \approx 0.0161, \quad \text { rank } 10
$$

How large is 0.02 ?...some words about statistics

How large is 0.02 ?...some words about statistics

Protocol

(1) Characterize tomography measurements with high precision.

How large is 0.02 ?...some words about statistics

Protocol

(1) Characterize tomography measurements with high precision.

2 Decide critical statistical parameters.

How large is 0.02 ?...some words about statistics

Protocol

(1) Characterize tomography measurements with high precision.

2 Decide critical statistical parameters.
3 Perform state tomography.

How large is 0.02?...some words about statistics

Protocol

(1) Characterize tomography measurements with high precision.

2 Decide critical statistical parameters.
3 Perform state tomography.
(4) Evaluate χ^{2}-test.

How large is 0.02?...some words about statistics

Protocol

(1) Characterize tomography measurements with high precision.

2 Decide critical statistical parameters.
3 Perform state tomography.
(4) Evaluate χ^{2}-test.
(5) Publish or perish.

Protocol

(1) Characterize tomography measurements with high precision.

2 Decide critical statistical parameters.
3 Perform state tomography.
(4) Evaluate χ^{2}-test.
(5) Publish or perish.

Statistical parameters:

- distribution of raw data (Poissonian, multinomial, ...)
- preprocessing method (raw data) $\mapsto \boldsymbol{x}$.
- (Covariance matrix Σ of x.)
- Quadratic test function $\hat{t}: \boldsymbol{x} \mapsto t$.
- Threshold significance, yielding critical value t^{*}.

Evaluation of the data

Choice of test function

A good choice of the test function is

$$
\hat{t}(\boldsymbol{x})=\left\|\Sigma^{-1 / 2}\left[\boldsymbol{x}_{0}-\boldsymbol{x}\right]\right\|_{2},
$$

with \boldsymbol{x}_{0} the expected value of \boldsymbol{x} for ρ_{0}.

Evaluation of the data

Choice of test function

A good choice of the test function is

$$
\hat{t}(\boldsymbol{x})=\left\|\Sigma^{-1 / 2}\left[\boldsymbol{x}_{0}-\boldsymbol{x}\right]\right\|_{2},
$$

with \boldsymbol{x}_{0} the expected value of \boldsymbol{x} for ρ_{0}.
\hookrightarrow Computable threshold value t^{*}, so that

$$
\begin{aligned}
\mathbf{P}[\text { false positives }] & \leq \mathbf{P}\left[\hat{t}(\boldsymbol{x}) \leq t^{*} \mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2}>r_{0}\right] \\
& \leq q_{m}\left(t^{* 2}, r_{1}^{2}\right) \stackrel{!}{\leq} \text { threshold significance }
\end{aligned}
$$

Evaluation of the data

Choice of test function

A good choice of the test function is

$$
\hat{t}(\boldsymbol{x})=\left\|\Sigma^{-1 / 2}\left[\boldsymbol{x}_{0}-\boldsymbol{x}\right]\right\|_{2},
$$

with \boldsymbol{x}_{0} the expected value of \boldsymbol{x} for ρ_{0}.
\hookrightarrow Computable threshold value t^{*}, so that

$$
\begin{aligned}
\mathbf{P}[\text { false positives }] & \leq \mathbf{P}\left[\hat{t}(\boldsymbol{x}) \leq t^{*} \mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2}>r_{0}\right] \\
& \leq q_{m}\left(t^{* 2}, r_{1}^{2}\right) \stackrel{!}{\leq} \text { threshold significance }
\end{aligned}
$$

Certification of bound entanglement if $\hat{t}(\boldsymbol{x}) \leq t^{*}$.

Evaluation of the data

Choice of test function

A good choice of the test function is

$$
\hat{t}(\boldsymbol{x})=\left\|\Sigma^{-1 / 2}\left[\boldsymbol{x}_{0}-\boldsymbol{x}\right]\right\|_{2},
$$

with \boldsymbol{x}_{0} the expected value of \boldsymbol{x} for ρ_{0}.
\hookrightarrow Computable threshold value t^{*}, so that

$$
\begin{aligned}
\mathbf{P}[\text { false positives }] & \leq \mathbf{P}\left[\hat{t}(\boldsymbol{x}) \leq t^{*} \mid\left\|\rho_{0}-\rho_{\exp }\right\|_{2}>r_{0}\right] \\
& \leq q_{m}\left(t^{* 2}, r_{1}^{2}\right) \stackrel{!}{\leq} \text { threshold significance }
\end{aligned}
$$

Certification of bound entanglement if $\hat{t}(\boldsymbol{x}) \leq t^{*}$.

Even with $\left\|\rho_{0}-\rho_{\exp }\right\|_{2} \leq r_{0}$, there is a chance that $\hat{t}(\boldsymbol{x})>t^{*}$. These unlucky cases become less likely with more samples.

Precision requirements

Probability $p_{\text {fail }}$ to obtain data

- that does not confirm bound entanglement
- at a level of significance of $k \sigma$ standard deviations
- assuming 5\% (2.5\%) white noise for qutrit (ququart) case.

Summary

- For suitably parametrized states, it is possible to find ρ_{0} and r_{0}, such that

$$
\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0} \quad \Longrightarrow \quad \tau \text { is bound entangled. }
$$

- For qutrits and qubits, $r_{0} \approx 0.02$.
- With tomographic data, we obtain a p-value for the null hypothesis "the state is not bound entangled."
- In realistic scenarios, $\sim 10^{5}$ samples per setting are required to certify bound entanglement with 3σ significance.

Summary

- For suitably parametrized states, it is possible to find ρ_{0} and r_{0}, such that

$$
\left\|\rho_{0}-\tau\right\|_{2} \leq r_{0} \quad \Longrightarrow \quad \tau \text { is bound entangled. }
$$

- For qutrits and qubits, $r_{0} \approx 0.02$.
- With tomographic data, we obtain a p-value for the null hypothesis "the state is not bound entangled."
- In realistic scenarios, $\sim 10^{5}$ samples per setting are required to certify bound entanglement with 3σ significance.

> Sentís, Greiner, Shang, Siewert, K, arXiv:1804.07562

