Conclusive verification of bipartite bound entanglement

Matthias Kleinmann, Universität Siegen joint work with G. Sentís, J.N. Greiner, J. Shang, and J. Siewert

arXiv:1804.07562

Distillable entanglement

A bipartite state is distillable, if

Distillable entanglement

A bipartite state is distillable, if

having some finite number of copies

Distillable entanglement

A bipartite state is distillable, if

having some finite number of copies

it is possible to create a maximally entangled state

$$\left|\phi_{d}\right\rangle = \frac{1}{\sqrt{d}}\sum_{i}\left|ii\right\rangle,$$

Distillable entanglement

A bipartite state is distillable, if

having some finite number of copies

it is possible to create a maximally entangled state

$$\left|\phi_{d}\right\rangle = \frac{1}{\sqrt{d}}\sum_{i}\left|ii\right\rangle,$$

• by means of LOCC (local operations and classical communication)

Distillable entanglement

A bipartite state is distillable, if

having some finite number of copies

it is possible to create a maximally entangled state

$$\left|\phi_{d}\right\rangle = \frac{1}{\sqrt{d}}\sum_{i}\left|ii\right\rangle,$$

- by means of LOCC (local operations and classical communication)
- and with finite probability.

Distillable entanglement

A bipartite state is distillable, if

having some finite number of copies

it is possible to create a maximally entangled state

$$\left|\phi_{d}\right\rangle = \frac{1}{\sqrt{d}}\sum_{i}\left|ii\right\rangle,$$

- by means of LOCC (local operations and classical communication)
- and with finite probability.

Bound entanglement

An entangled state that is not distillable is **bound entangled**.

Characterizing bound entangled states seems intractable.

The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki *et al.*)

Any state with positive partial transpose (PPT) is undistillable, i.e.,

 $PPT \cap entangled \subseteq bound entangled.$

The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki et al.)

Any state with positive partial transpose (PPT) is undistillable, i.e.,

 $PPT \cap entangled \subseteq bound entangled.$

 \hookrightarrow Two qutrits are the smallest system with bound entanglement.

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$\rho_{ABCD} = \frac{1}{4} (\Phi^+ + \Phi^- + \Psi^+ + \Psi^-),$$

with $\Psi^- = |\psi^-\psi^-\rangle\!\langle\psi^-\psi^-|$, etc.

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$\rho_{ABCD} = \frac{1}{4} (\Phi^+ + \Phi^- + \Psi^+ + \Psi^-),$$

with $\Psi^- = |\psi^-\psi^-\rangle\!\langle\psi^-\psi^-|$, etc.

Properties:

- globally entangled
- separable with respect to all bipartitions

A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$\rho_{ABCD} = \frac{1}{4} (\Phi^+ + \Phi^- + \Psi^+ + \Psi^-),$$

with $\Psi^- = |\psi^-\psi^-\rangle\!\langle\psi^-\psi^-|$, etc.

Properties:

- globally entangled
- separable with respect to all bipartitions

Feels like cheating...

Multipartite:

- Amselem & Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)

Multipartite:

- Amselem & Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)

Bipartite:

• ...

- DiGuglielmo et al., PRL (2011)
- Hiesmayr & Löffler, NJP (2013)

Multipartite:

- Amselem & Bourennane, Nature Phys. (2009)
- Barreiro et al., Nature Phys. (2010)
- Kampermann et al., PRA (2010)

Bipartite:

• ...

- DiGuglielmo et al., PRL (2011)
- Hiesmayr & Löffler, NJP (2013)

Rigor of results.

These experiments employ

- a limited statistical analysis, or
- symmetry assumptions.

Protocol in use.

- Perform state tomography,
- reconstruct state,
- 3 bootstrap, determine whether bound entangled,
- report fraction of bootstrapped states with bound entanglement.

Protocol in use.

- Perform state tomography,
- reconstruct state,
- 3 bootstrap, determine whether bound entangled,
- report fraction of bootstrapped states with bound entanglement.

🤷 Sounds decent

Protocol in use.

- Perform state tomography,
- reconstruct state,
- 3 bootstrap, determine whether bound entangled,
- report fraction of bootstrapped states with bound entanglement.

Sounds decent, yields utterly unreliable results.

Protocol in use.

- Perform state tomography,
- reconstruct state,
- 3 bootstrap, determine whether bound entangled,
- report fraction of bootstrapped states with bound entanglement.

Sounds decent, yields utterly unreliable results.

Problems

Theorem: There can be no unbiased state reconstruction.

[Schwemmer et al., PRL (2015)]

Bound entangled states are high-dimensional & nonconvex set.

Noncentral χ^2 -test

If ho_0 admits an bound entangled ball with radius r_0 ,

Noncentral χ^2 -test

If ρ_0 admits an bound entangled ball with radius r_0 , then we can compute, assuming normal distributed data, an upper bound for

 $\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\text{ data looks good } | \|\rho_0 - \rho_{\exp}\|_2 \geq r_0].$

This yields a *p*-value.

Noncentral χ^2 -test

If ρ_0 admits an bound entangled ball with radius r_0 , then we can compute, assuming normal distributed data, an upper bound for

 $\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\text{ data looks good } | \|\rho_0 - \rho_{\exp}\|_2 \geq r_0].$

This yields a *p*-value.

Advantages:

easy to understand

Noncentral χ^2 -test

If ρ_0 admits an bound entangled ball with radius r_0 , then we can compute, assuming normal distributed data, an upper bound for

 $\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\text{ data looks good } | \|\rho_0 - \rho_{\exp}\|_2 \geq r_0].$

This yields a *p*-value.

Advantages:

- easy to understand
- correct

Noncentral χ^2 -test

If ρ_0 admits an bound entangled ball with radius r_0 , then we can compute, assuming normal distributed data, an upper bound for

 $\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\text{ data looks good } | \|\rho_0 - \rho_{\exp}\|_2 \geq r_0].$

This yields a *p*-value.

Advantages:

- easy to understand
- correct
- computationally trivial

Noncentral χ^2 -test

If ρ_0 admits an bound entangled ball with radius r_0 , then we can compute, assuming normal distributed data, an upper bound for

 $\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\text{ data looks good } | \| \rho_0 - \rho_{\exp} \|_2 \geq r_0].$

This yields a *p*-value.

Advantages:

- easy to understand
- correct
- computationally trivial

Disadvantages:

- slightly conservative
- requires to work in "Gaussian regime"

Task.

For a bound entangled state ρ_0 , find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.

Task.

For a bound entangled state ρ_0 , find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.

Infeasible problem?

Task.

For a bound entangled state ρ_0 , find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.

Infeasible problem?

(We only consider the bipartite case.)

Simplification I

Theorem (Horodecki et al.)

 $\rho \text{ is undistillable if } \Gamma(\rho) \geq 0.$

Simplification I

Theorem (Horodecki *et al.*)

 ρ is undistillable if $\Gamma(\rho) \geq 0$.

Lemma. If $\|\rho_0 - \tau\|_2 \leq r_0$ then, (d: dimension of joint system) $\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0\sqrt{1 - 1/d}.$ **Proof.** Let $\rho_0 - \tau = r_0 X$ with $\|X\|_2 \leq 1$. Then $\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0 \|X\|_{\infty}.$
Theorem (Horodecki *et al.*)

 ρ is undistillable if $\Gamma(\rho) \geq 0$.

Lemma. If $\|\rho_0 - \tau\|_2 \leq r_0$ then, (d: dimension of joint system) $\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0\sqrt{1 - 1/d}$. **Proof.** Let $\rho_0 - \tau = r_0 X$ with $\|X\|_2 \leq 1$. Then $\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0 \|X\|_{\infty}$.

Corollary.

All states around ho_0 are undistillable, if

$$\lambda_{\min}[\Gamma(\rho_0)] \ge r_0 \sqrt{1 - 1/d}.$$

Computable cross-norm or realignment (CCNR) criterion:

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let $(g_k)_k$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k,\ell} = \operatorname{tr}(\rho \, g_k \otimes g_\ell)$.

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let $(g_k)_k$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k,\ell} = \operatorname{tr}(\rho \, g_k \otimes g_\ell)$. Then, a state ρ is entangled if $\|R(\rho)\|_1 > 1$.

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let $(g_k)_k$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k,\ell} = \operatorname{tr}(\rho \, g_k \otimes g_\ell)$. Then, a state ρ is entangled if $\|R(\rho)\|_1 > 1$.

Lemma. If
$$\|\rho_0 - \tau\|_2 \le r_0$$
, then
 $\|R(\tau)\|_1 \ge \|R(\rho_0)\|_1 - r_0\sqrt{d}$.
Proof. Use $\|R(\tau)\| \ge \|R(\rho_0)\| - r_0\|R(X)\|_1$.

Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let $(g_k)_k$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k,\ell} = \operatorname{tr}(\rho \, g_k \otimes g_\ell)$. Then, a state ρ is entangled if $\|R(\rho)\|_1 > 1$.

Lemma. If
$$\|\rho_0 - \tau\|_2 \le r_0$$
, then
 $\|R(\tau)\|_1 \ge \|R(\rho_0)\|_1 - r_0\sqrt{d}$.
Proof. Use $\|R(\tau)\| \ge \|R(\rho_0)\| - r_0\|R(X)\|_1$.

Corollary.

All states around ho_0 are entangled, if

$$||R(\rho_0)||_1 > 1 + r_0\sqrt{d}.$$

Conditions

Optimal states

• Given ρ_0 , we can compute a bound on the best r_0 .

Optimal states

- Given ρ_0 , we can compute a bound on the best r_0 .
- Why not search a state ρ_0 with overall best r_0 ?

- Given ho_0 , we can compute a bound on the best r_0 .
- Why not search a state ho_0 with overall best r_0 ?

Optimization problem.

Find ho_0 and r_0 subject to

maximize: r_0 such that: $\lambda_{\min}[\Gamma(\rho_0)] \ge r_0\sqrt{1-1/d}$, and $\|R(\rho_0)\|_1 > 1 + r_0\sqrt{d}$.

- Given ho_0 , we can compute a bound on the best r_0 .
- Why not search a state ho_0 with overall best r_0 ?

Optimization problem.

Find ho_0 and r_0 subject to

maximize: r_0 such that: $\lambda_{\min}[\Gamma(\rho_0)] \ge r_0\sqrt{1-1/d}$, and $\|R(\rho_0)\|_1 > 1 + r_0\sqrt{d}$.

• In principle, yields optimal state for given dimension.

- Given ho_0 , we can compute a bound on the best r_0 .
- Why not search a state ho_0 with overall best r_0 ?

Optimization problem.

Find ho_0 and r_0 subject to

maximize: r_0 such that: $\lambda_{\min}[\Gamma(\rho_0)] \ge r_0\sqrt{1-1/d}$, and $\|R(\rho_0)\|_1 > 1 + r_0\sqrt{d}$.

- In principle, yields optimal state for given dimension.
- In practice, need to choose family of states with few parameters.

Family of states:

(contains Horodecki states)

$$\rho = a|\phi_3\rangle\langle\phi_3| + b\sum_{k=0}^2 |k, k\oplus 1\rangle\langle k, k\oplus 1| + c\sum_{k=0}^2 |k, k\oplus 2\rangle\langle k, k\oplus 2|,$$

with $\left|\phi_{3}\right\rangle = \sum_{i}\left|ii\right\rangle/\sqrt{3}$.

[Baumgartner et al., PRA (2006)]

Family of states:

(contains Horodecki states)

$$\rho = a|\phi_3\rangle\langle\phi_3| + b\sum_{k=0}^2 |k, k\oplus 1\rangle\langle k, k\oplus 1| + c\sum_{k=0}^2 |k, k\oplus 2\rangle\langle k, k\oplus 2|,$$

with $\left|\phi_{3}\right\rangle=\sum_{i}\left|ii\right\rangle/\sqrt{3}.$

[Baumgartner et al., PRA (2006)]

Can be solved analytically.

Family of states:

(contains Horodecki states)

$$\rho = a|\phi_3\rangle\langle\phi_3| + b\sum_{k=0}^2 |k, k\oplus 1\rangle\langle k, k\oplus 1| + c\sum_{k=0}^2 |k, k\oplus 2\rangle\langle k, k\oplus 2|,$$

with $\left|\phi_{3}\right\rangle=\sum_{i}\left|ii\right\rangle/\sqrt{3}.$

[Baumgartner et al., PRA (2006)]

Can be solved analytically.

Optimal parameters

a pprox 0.21289, b pprox 0.04834, and c pprox 0.21403.

- \hookrightarrow $r_0 \approx$ 0.02345
 - $\operatorname{rank}(\rho) = 7.$
 - Value of r_0 is (basically) tight w.r.t. CCNR and PPT.

 $r_0 \approx$ 0.02345, rank 7

Family of Bloch-diagonal states:

(contains Smolin state)

$$\rho = \sum_k x_k g_k \otimes g_k,$$

where $g_k = (\sigma_\mu \otimes \sigma_\nu)/2$.

Family of Bloch-diagonal states:

(contains Smolin state)

$$\rho = \sum_k x_k g_k \otimes g_k,$$

where $g_k = (\sigma_\mu \otimes \sigma_\nu)/2$.

Optimization problem reduces to 32768 linear programs.

Family of Bloch-diagonal states:

(contains Smolin state)

$$\rho = \sum_k x_k g_k \otimes g_k,$$

where $g_k = (\sigma_\mu \otimes \sigma_\nu)/2$.

Optimization problem reduces to 32768 linear programs.

 \hookrightarrow Feasibility polytope can be determined, has 254 556 vertices.

Family of Bloch-diagonal states:

(contains Smolin state)

$$\rho = \sum_k x_k g_k \otimes g_k,$$

where $g_k = (\sigma_\mu \otimes \sigma_\nu)/2$.

Optimization problem reduces to 32768 linear programs.

 \hookrightarrow Feasibility polytope can be determined, has 254 556 vertices.

Optimal states

- $\operatorname{rank}(\rho) < 9$ yields $r_0 = 0$.
- $\operatorname{rank}(\rho) = 9$ yields $r_0 \approx$ 0.0161.
- $\operatorname{rank}(\rho) \ge 10$ yields $r_0 \approx$ 0.0214.

 $r_0 \approx$ 0.0161, rank 10

Conclusive verification of bipartite bound entanglement, p. 16

Protocol

1 Characterize tomography measurements with high precision.

- 1 Characterize tomography measurements with high precision.
- 2 Decide critical statistical parameters.

- 1 Characterize tomography measurements with high precision.
- 2 Decide critical statistical parameters.
- 3 Perform state tomography.

- 1 Characterize tomography measurements with high precision.
- Decide critical statistical parameters.
- 3 Perform state tomography.
- **4** Evaluate χ^2 -test.

- 1 Characterize tomography measurements with high precision.
- Decide critical statistical parameters.
- 3 Perform state tomography.
- **4** Evaluate χ^2 -test.
- 9 Publish or perish.

Protocol

- Characterize tomography measurements with high precision.
- Decide critical statistical parameters.
- 3 Perform state tomography.
- **4** Evaluate χ^2 -test.
- 9 Publish or perish.

Statistical parameters:

- distribution of raw data (Poissonian, multinomial, ...)
- preprocessing method $(\mathsf{raw}\;\mathsf{data})\mapsto x.$
- (Covariance matrix Σ of x.)
- Quadratic test function $\hat{t} \colon \boldsymbol{x} \mapsto t.$
- Threshold significance, yielding critical value t^* .

Choice of test function

A good choice of the test function is

$$\hat{t}(\boldsymbol{x}) = \|\Sigma^{-1/2}[\boldsymbol{x}_0 - \boldsymbol{x}]\|_2,$$

with $oldsymbol{x}_0$ the expected value of $oldsymbol{x}$ for ho_0 .

Choice of test function

A good choice of the test function is

$$\hat{t}(\boldsymbol{x}) = \|\Sigma^{-1/2} [\boldsymbol{x}_0 - \boldsymbol{x}]\|_2,$$

with $oldsymbol{x}_0$ the expected value of $oldsymbol{x}$ for $ho_0.$

 \hookrightarrow Computable threshold value $t^*\!\!$, so that

$$\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\hat{t}(oldsymbol{x}) \leq t^* \mid \|
ho_0 -
ho_{ ext{exp}}\|_2 > r_0] \ \leq q_m(t^{*2}, r_1^2) \stackrel{!}{\leq} ext{threshold significance}$$

Choice of test function

A good choice of the test function is

$$\hat{t}(\boldsymbol{x}) = \|\Sigma^{-1/2}[\boldsymbol{x}_0 - \boldsymbol{x}]\|_2,$$

with $oldsymbol{x}_0$ the expected value of $oldsymbol{x}$ for $ho_0.$

 \hookrightarrow Computable threshold value $t^*\!\!,$ so that

$$\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\hat{t}(\boldsymbol{x}) \leq t^* \mid \|\rho_0 - \rho_{\exp}\|_2 > r_0]$$

 $\leq q_m(t^{*2}, r_1^2) \stackrel{!}{\leq} \text{threshold significance}$

Certification of bound entanglement if $\hat{t}(\boldsymbol{x}) \leq t^*$.

Choice of test function

A good choice of the test function is

$$\hat{t}(\boldsymbol{x}) = \|\Sigma^{-1/2}[\boldsymbol{x}_0 - \boldsymbol{x}]\|_2,$$

with $oldsymbol{x}_0$ the expected value of $oldsymbol{x}$ for $ho_0.$

 \hookrightarrow Computable threshold value $t^*\!\!$, so that

$$\mathbf{P}[\text{ false positives }] \leq \mathbf{P}[\hat{t}(\boldsymbol{x}) \leq t^* \mid \|\rho_0 - \rho_{\exp}\|_2 > r_0]$$

 $\leq q_m(t^{*2}, r_1^2) \stackrel{!}{\leq} \text{threshold significance}$

Certification of bound entanglement if $\hat{t}(\boldsymbol{x}) \leq t^*$.

Even with $\|\rho_0 - \rho_{\exp}\|_2 \le r_0$, there is a chance that $\hat{t}(x) > t^*$. These unlucky cases become less likely with more samples.

Precision requirements

Probability p_{fail} to obtain data

- that does not confirm bound entanglement
- at a level of significance of $k\sigma$ standard deviations
- assuming 5% (2.5%) white noise for qutrit (ququart) case.

Summary

- For suitably parametrized states, it is possible to find ρ_0 and r_0 , such that

 $\|\rho_0 - \tau\|_2 \leq r_0 \implies \tau \text{ is bound entangled.}$

- For qutrits and qubits, $r_0 \approx 0.02$.
- With tomographic data, we obtain a *p*-value for the null hypothesis "the state is not bound entangled."
- In realistic scenarios, $\sim 10^5$ samples per setting are required to certify bound entanglement with 3σ significance.

Summary

- For suitably parametrized states, it is possible to find ρ_0 and r_0 , such that

 $\|\rho_0 - \tau\|_2 \leq r_0 \implies \tau \text{ is bound entangled.}$

- For qutrits and qubits, $r_0 \approx 0.02$.
- With tomographic data, we obtain a *p*-value for the null hypothesis "the state is not bound entangled."
- In realistic scenarios, $\sim 10^5$ samples per setting are required to certify bound entanglement with 3σ significance.

Sentís, Greiner, Shang, Siewert, K, arXiv:1804.07562