Witnessing bipartite entanglement sequentially by multiple observers

Shiladitya Mal

QIPA-2018 HRI

Witnessing entanglement sequentially: Maximally entangled states are not special

Anindita Bera,^{1, 2} Shiladitya Mal,² Aditi Sen(De),² and Ujjwal Sen^2

¹Department of Applied Mathematics, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India ²Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211 019, India

Witnessing bipartite entanglement sequentially by multiple observers

Witnessing bipartite entanglement sequentially by multiple observers

- Entanglement theoretic
- Measurement formalism

Tribute

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL–JUNE 2009

Quantum entanglement

Ryszard Horodecki

Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland

Paweł Horodecki

Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, 80-952 Gdańsk, Poland

Michał Horodecki

Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland

Karol Horodecki

Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland and Faculty of Mathematics, Physics and Computer Science, University of Gdańsk, 80-952 Gdańsk, Poland

Entanglement theoretic

- Best possible knowledge of an entire system is not contained in the best possible knowledge of its subparts.
- Characterization, detection, manipulation and quantification of entanglement.

Quantification of entanglement

- Relative entropy of entanglement
- Geometric measure of entanglement
- Log negativity
- Distillable entanglement
- Entanglement cost

Detection of entanglement

VOLUME 89, NUMBER 12

PHYSICAL REVIEW LETTERS

16 SEPTEMBER 2002

Method for Direct Detection of Quantum Entanglement

Paweł Horodecki

Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, 80-952 Gdańsk, Poland

Artur Ekert

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom (Received 7 February 2002; published 30 August 2002)

Structural physical approximation of a nonphysical map

1. The map can be implemented by applying selected products of unitary (Pauli) transformations with the pre-scribed probabilities.

2. Have to measure lowest eigenvalue of the transformed state.

Measuring quantum entanglement without prior state estimation, P. Horodecki, Phys. Rev. Lett. 90, 167901 (2003).

Entanglement witness

- Quantum cryptography
- Statistical physics
- Quantum optics
- Condensed matter nanophysics
- Bound entanglement
- Hidden nonlocality

Entanglement witness

JOURNAL OF MODERN OPTICS, 2003, VOL. 50, NO. 6-7, 1079-1102 Taylor & Francis Taylor & Francis Group

Experimental detection of entanglement via witness operators and local measurements

O. GÜHNE[†], P. HYLLUS[†], D. BRUSS[†], A. EKERT[‡], M. LEWENSTEIN[†], C. MACCHIAVELLO[§] and A. SANPERA[†]

$$\varrho(p,d) := p|\psi\rangle\langle\psi| + (1-p)\sigma,$$

$$\left\|\sigma-\tfrac{1}{4}\mathbb{1}\right\|\leqslant d.$$

If the Schmidt decomposition of $|\psi\rangle$ is $|\psi\rangle = a|01\rangle + b|10\rangle$ with $a, b \ge 0$,

eigenvector corresponding to the minimal eigenvalue λ_{-} is given by

$$|\phi_{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle),$$

and thus the witness W_0 is given by

$$W_{0} = |\phi_{-}\rangle\langle\phi_{-}|^{T_{B}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Decomposition of witness

 $W = \sum_{i \in i} c_i |e_i\rangle \langle e_i | \otimes |f_i\rangle \langle f_i|$ i = 1

$$\begin{split} |\psi\rangle\langle\psi|^{T_B} &= \alpha^2 |z^+z^+\rangle\langle z^+z^+| + \beta^2 |z^-z^-\rangle\langle z^-z^-| + \alpha\beta(|x^+x^+\rangle\langle x^+x^+ \\ &+ |x^-x^-\rangle\langle x^-x^-| - |y^+y^-\rangle\langle y^+y^-| - |y^-y^+\rangle\langle y^-y^+|) \\ &= \frac{1}{4}(1\otimes 1 + \sigma_z\otimes\sigma_z + (\alpha^2 - \beta^2)(\sigma_z\otimes 1 + 1\otimes\sigma_z) \\ &+ 2\alpha\beta(\sigma_x\otimes\sigma_x + \sigma_y\otimes\sigma_y)). \end{split}$$

Measurement formalism

 $|\Psi\rangle \otimes |\varphi(q)\rangle \longrightarrow \sum \langle a|\Psi\rangle \cdot |a\rangle \otimes |\varphi(q-g_0a)\rangle.$

$H(t) = g(t)A \otimes p$

$$\int g(t)dt = g_0$$

In a strong measurement the pointer's initial state is narrower than the distance between the eigenvalues, i.e., $\langle \varphi(q-a) | \varphi(q-a') \rangle = \delta_{aa'}$; hence, reading the pointer's position provides full information of the measured physical quantity and collapses the system into the corresponding eigenstate of the observable. PRL 114, 250401 (2015)

PHYSICAL REVIEW LETTERS

week ending 26 JUNE 2015

Multiple Observers Can Share the Nonlocality of Half of an Entangled Pair by Using Optimal Weak Measurements

Ralph Silva,^{1,*} Nicolas Gisin,² Yelena Guryanova,¹ and Sandu Popescu¹ ¹H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom ²Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland (Received 10 August 2014; revised manuscript received 3 December 2014; published 22 June 2015)

Stern Gerlach apparatus

Unsharp POVM

PHYSICAL REVIEW D

VOLUME 33, NUMBER 8

15 APRIL 1986

Unsharp reality and joint measurements for spin observables

Paul Busch Institute for Theoretical Physics, University of Cologne, Cologne, West Germany (Received 21 October 1985)

$$E_{\pm|\hat{n}}^{\lambda} = \lambda P_{\hat{n}}^{\pm} + \frac{1-\lambda}{2}\mathbb{I}.$$

$$\rho \to \frac{1}{\tilde{p}} \sqrt{E_{\pm|\hat{n}}^{\lambda}} \rho \sqrt{E_{\pm|\hat{n}}^{\lambda}},$$

$$\tilde{p} = \operatorname{Tr}\left(\sqrt{E_{\pm|\hat{n}}^{\lambda}}\rho\sqrt{E_{\pm|\hat{n}}^{\lambda}}\right)$$

Modification of witness operator

 $\operatorname{Tr} \left(\rho(P_{\hat{n}}^i \otimes E_{j|\hat{m}}^{\lambda}) \right)$

$$\begin{split} \langle \sigma_{\hat{n}} \otimes \sigma_{\hat{m}}^{\lambda} \rangle &\equiv \operatorname{Tr} \Big[(P_{\hat{n}}^{+} - P_{\hat{n}}^{-}) \otimes (E_{+|\hat{m}}^{\lambda} - E_{-|\hat{m}}^{\lambda}) \rho \Big] \\ &= \operatorname{Tr} \Big[(P_{\hat{n}}^{+} - P_{\hat{n}}^{-}) \otimes \lambda (P_{\hat{m}}^{+} - P_{\hat{m}}^{-}) \rho \Big] \\ &= \lambda \langle \sigma_{\hat{n}} \otimes \sigma_{\hat{m}} \rangle. \end{split}$$

$$V_0^{\lambda} = rac{1}{4} \Big(\mathbb{I} \otimes \mathbb{I} + \sigma_z \otimes \lambda \sigma_z - \sigma_x \otimes \lambda \sigma_x - \sigma_y \otimes \lambda \sigma_y \Big)$$

$$\operatorname{Tr}\left[|\psi^{+}\rangle\langle\psi^{+}|W_{0}^{\lambda_{1}}\right] = \frac{1}{4}(1-3\lambda_{1}).$$

$$|\psi^{+}\rangle\langle\psi^{+}| \rightarrow \rho_{1}^{\lambda_{1}} = \frac{1}{3}\sum_{i,\hat{n}}\sqrt{E_{i|\hat{n}}^{\lambda_{1}}}|\psi^{+}\rangle\langle\psi^{+}|\sqrt{E_{i|\hat{n}}^{\lambda_{1}}}$$

$$\rho_1^{\lambda_1} = \frac{1}{4} \Big[p \rho_{\psi^+} + (1-p) \mathbb{I} \otimes \mathbb{I} \Big]$$

$$\operatorname{Tr}[W_0^{\lambda_2} \rho_1^{\lambda_1}] = -\frac{1}{4} \left[1 - (1 + 2\sqrt{1 - \lambda_1^2})\lambda_2 \right].$$

Now if $\lambda_1 = 1/3$ in the first stage, then to detect entanglement in the second stage, the sharpness parameter λ_2 , of B_2 , must be greater than 0.3465 (correct up to four

$$\begin{split} & = f_{n} = \frac{1}{4} \Big[3^{n-1} - \frac{1}{3^{n-1}} (1 + 4ab) \lambda_{n} \Pi_{i=1}^{n-1} (1 + 2\sqrt{1 - \lambda_{i}^{2}}) \Big] \\ & = \int_{0}^{1} \int$$

Equal sharpness parameter

Summary

- Witnessing entanglement through imprecise apparatus.
- Limit of observers sharing bipartite entanglement.
- An operational measure of entanglement.
- Coarse gained measure of entanglement.
- A less entangled state also upto maximally entangled state.