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Hartree-Fock Method

HF approximation is a variational approach to solving
interacting problem many-body

H———Zv2+zv(n)+ > (D)
Approximation is to assume a single determinant form
for the many-body wave function

x1(z1) xo2(x1) ... xn(z1)
w— \/iv_l x1(z2) x2(z2) - XN (z2) (2)
x1(zn) xo(zn) ... xn(zn)

x'S are the spin-orbitals, and x = (+, s) is space and spin
coordinates of an electron.



e Variational freedom is in choice of y;'s.

e [asks

1. Calculate expectation value of the Hamiltonian
in the state W.

2. Vary the spin-orbitals x's to minimize it

3. Subject to the constraint that they are orthonor-
mal @ (x;lx;j) = d;;-

e EXxpectation value of H in the state W is

() 1)



Where
Hi= [xi@) [—%v? +o@|xi@de @)

7y = [ [xi@xje)—xiex @), (5)

and

i = [ [xi@ox e @2y @)dnds  (6)
Jij: Hartree term; Kj;: Exchange term Note: J;; = Ky,

Nno self-interaction.

Ew in Eqn. 3 has to be minimized subject to the con-
straints

[ xi @ (@)de = 5 (7)



Optimality condition is

5 (By+ ([ Xi@xy@)de —6)) =0 (8)
Differentiating this w.r.t. x7 we get the HF equation
1 3 _ _
—§V2 + (@) + > (Ji(z) — K;(x))
JF0
where J is the Coulomb operator

xi(x) = Z €iix;(x)(9)
j

Teiten) = | [ xG2) L xy e xiCer) - (10)

and K is the exchange operator

Ki(x1)xi(z1) =
12

HF exchange operator is non-local.

/ x;'fm)ixz-(a:z)dxz] (@) (1)



Through a unitary transform of the spin orbitals, one gets the
canonical HF equations

1 . N N
—5V2 4o + (i) - K@) | xile) = eixi(w)
JFi
Ref: Modern Quantum Chemistry, Szabo and Ostlund.

We integrate out the spin degrees. For simplicity we consider
spatial parts of up and down spin orbitals are identical: Restricted
Hartree-Fock.

N electrons: N/2 spin-up, N/2 spin-down.
For spin up xi(z) = ¥:(7)a(s), for spin down x;(z) = ¢;(7)B(s).

Now,
H, = /wz 7)a*(s) [—%Vz —I—’U(F)] i (P a(s)d>rds

= [w® [—%v? 4 vm] $i(7)dPr (12)



If x; and x; have the same spin part (either a or )
1= [ [eiet e @ats)
iwi(f’l)a(sl)zpj(Fg)a(SQ)dfldsldf’gdsQ
_ /|¢i(f1)|2i|¢j(f?2)|2d3r1d3r2.
T12
If x; and x; have different spin parts (a and j), then also
sy = [ [wiGnarsou s s
r—L@bi(Fl)oz(sl)zpj(xg)ﬁ(sz)dﬁdsldfgdm
= [ [GOP o, Pl

Classical density-density interactions: J[p] = %f%lz(md%ld%g



If x; and x; have different spin parts (a and j3)
Ky = [ [e1@e eouiie )

L .
r—zpi(rg)a(SQ)@bj(rl)ﬁ(sl)d3r1dsld3r2d52
12
= 0.
If x; and x; have the same spin part (either a or ()

Ky = / [ i (snwa(s2)
—M(m)a(sz)wﬂ(:ﬂl)a(sl)d rids1d>rodso

= /¢z(rl)*¢ (7“2) @Dz(rz)tby(rl)d?’?"ld?’?“z

Thus

Kij = /%Df(771)@0;7(772)i%(@)%’(Fl)d37“1d3?“25slsz-

(13)



Important Lessons

T here are non-classical terms in the electron-electron
interaction energy.

Exchange operates only between electrons of same
spin.

Is of purely quantum origin.

Is always negative.



Density matrices

Let W(xq1zo---zn) be a normalized N-electron wave
function.

! ! /
YN(x125 - XN, T1T X N) =
/ / /
W(aj]JxQ) e 7$N)\U*($17:E27 e 7wN)
IS called the density matrix.

Coordinate representation of the density operator |W) (V| =
N -

(z125 - 2y [An|T1T2 -2 N)
(xh7) - 2y | W) (W]z120 - - 2N) =
’VN(Q:,]_'CU/Q . 33{7\]7 T1To - - CUN> p—
\U(xl]_a C13/27 e 7xf]\f)w>k($l7 LDy ,QZN)
10



AN IS @ projection operator.

() = [v(eres oy, oims - an)deN = 1.0 (14)
Expectation value of an operator A
(A) = /W*(wl,wz"'awN)AW(fELiUz,“',a?N)dCUN
= /<$1£U2 oW AWz @o oy de? = tr(ynA).
We only have one- and two-body operators in the Hamil-

tonian.

Useful to define reduced density matrices.



Reduced density matrix of order p
(@42 T a2 ) =

N ! /
Cp /’Yp(ﬂflwz o TpTp41 TN, TLXT2 0 TpTp41 - e aﬁN)dﬂUerl codxy.

Second order density matrix
Y2(zy x5, T122) =

N(N_ 1) A
5 yv(zix523 - TN, T1X2T3 - - XN )dX3 - dX N,

First order density matrix
’71(33,17331) —

N/’)/N(ajllxz XN, T1T2 XN )dTo - dT .
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Normalization of ~»

/72(x1xz,x1:v2)dw1dw2 =

N(N —1)
5 yv(x1T2 - X3 TN, T1X2X3 - - TN )dx3 - - - dxy | dridao
= N(N —1)/2.

Normalization of v

/’yl (z1,x1)dxr1 =

/[N/VN(xlivz--'163-'-xN,$1£U2£C3-“93N)dSC2'-'dZUN] dx1
=N

Question:
2

N -1

/’72(37/1332,331332)d332 = 7.



One-electron local operators O1 = Y; O1(x;).
= /W*ZOl(wi)\l}dacN
i
= N/W*Ol(azl)\lfdajN
= /01(561)71(331,311)61331-
Two-electron local operators O, = D i< OQ(:UZ-,a:j).

(O2) = /02(3)1»332)72(3315’727331552)d5’71d5[32-
Energy
1 S
B=tr(H) = [ (593 + @@ (erez)| _ doy

+/—W2($1$2,$1$2)d$1d$2-
r192
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Spinless density matrices

First order spineless density matrix
P ) = [ (s Thsa)ds: (15)
Second order spineless density matrix
p(T17%, 7175 —/’}/2(7“1817“282,T181T282)d81d82 (16)

Diagonal elements

p2(71,72) = po (7172, T172)
p(71) = p1(71,71).

Since our Hamiltonian is spin-independent, we integrate spin de-
grees of freedom and obtain

= | [(——vzpw f’)] Prt [ @
-I-/Epz(??lfz)d rid>3rs.

13



Idea of exchange-correlation hole

Classical e-e interaction energy
1 — —
Jlp] = _//P(Tl)ﬂ(rz)d3rld3r2
2 712

Full e-e interaction energy

Fee = //—02(7“1,7“2)61 rid>ro.
712

Let us write

1
p2(71,72) = 5/0(771)/0(772) [1 4+ h(r1,72)].

h called pair-correlation function.

(17)

(18)

(19)
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Integrating over r5

N —1 1
Lo = Lo() [N + [ mdn| . @0)
Hence
/P(ﬁ)h(ﬁafz)d‘g’?’? = —1. (21)

pzc(71,7) = p(72)h(7,72) called exchange-correlation hole for an
electron at .

Exchange-correlation hole obeys the sum rule

/pxc(Fla'FQ)dgTQ = -1 (22}
e-e interaction energy now is
]- 2 xrc = 9 2
Eee = Jp] + 5//,0(7“1)[) G TQ)d?’?“lds?”Q. (23)
T12
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Discussion on density matrices were general, true for any N-electron
wave function which is, of course, anti-symmetric.

Show for a single determinant wave function

1
72(35/156'2,501332)5 (Y1(xh, w1y (ah, 22) — v (ah, 22)y1(ah, 21)) .

From this it follows

1 1
12

Since

11 (z1, 22) = Y1 (22, 71)
exchange is always negative.

Ref: Density Functional Theory of Atoms and Molecules, R. G.
Parr and W. Yang
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HF for uniform electron gas
The model: Interacting electrons.
Positive charge is uniformly spread as a background.

Electron charge density is exactly compensated by the
background charge density.

Only the exchange energy contribution survives in the
interaction part.

Plane wave states are solutions for this problem. So
one-electron spin orbitals are

1
xi(z) = \/—V

Each l%; state doubly occupied: for o and g.

e(tkiT) o o or B.
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et us recall the canonical HF equation

{—;VQ +o(@) + ) (Ji(x) — Kj(x)) | xi(x) = ¢xi(x)
J7F=i

Which, after integrating out the spin degrees of free-

dom, becomes

1
—5V20i(7) + ()i (7) + vee,athi(7)

1
mﬁ(ﬁ)%(?ﬂ)%(ﬂ%@ = €;1;(7)

-

R

The second and third terms on LHS cancel in a uniform
electron gas.
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Using the Fourier transform of the Coulomb potential

1 A d3q ei(j’.(f’—f’)
> 4T
|7 — 7] (2m)3 2

k? 3k 4r . .
(? — /]€’<k¢F (277)3|EZ _ E/| %(T) — Gz%(r .

kr is the Fermi wave vector. Energy of a state of wave

vector k is
s K2 2 k
E(k) — ———kFF S
2 0w kp
with
1 1—22 |14z
F = — [ .
(@) =5+, n|1—:13‘

19



Total energy of the electron gas is (with proper units)

k2 k2, — k2 |k k
E=2Y — - Z[1+F n M F u
o 2 il Dkkp kp—k

62]{}7

7

The first term is the energy of a free-electron gas (Kki-
netic energy only). The second term can be evaluated
by converting the sums into integrals,

er 1S the Fermi energy.

20



This result is conventionally written in terms of the reduced Wigner-
Seitz parameter rs;/ag of the electrons gas,

4 4 V
—7'('7“8 —_ —.
3 N
E e? [3 3 2.21 0.916
N  2ag [5( rao) 27r( FaO)] [(rs/ao)Q (rs/ao)] Y

Leading order terms in a high density expansion are

g_[ 221  0.916
N | (rs/a0)?  (rs/ao)

First two terms are HF result, additional terms leading order con-

+ 0.06221In (rs/ap) — 0.096 + O(rs/ao)] Ry

tribution to correlation energy.
HF contains no correlation effect.

Fexact — Fgp = E¢ is by definition correlation energy.
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Important points to note in HF results:

1/3
1. Exchange energy E, = —%’%F = -3 (%) / pl/3.
This is the form of exchange energy density used in
LDA.

2. A disturbing feature of e(k): %hﬁ:kF has a logarith-
mic divergence. Fermi velocity has log divergence.

3. The reason for this is long-range nature of HF ex-
change interaction. This is a consequence of FT of
Coulomb interaction that has the form 4x/k2, and di-
verges as k — 0.

4. Screened Coulomb interaction v(r) = e~%0"/r has a
FT 4n/(k 4+ kg)2. No divergence.
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An assessment of DFT calculations for solids:

1. L(S)DA and GGA's are canonical choice for exchange correla-
tion energy functionals.

2. LSDA produces structural properties, lattice constants, bulk
moduli, with good accuracy.

3. Band gaps are seriously under-estimateted.

4. GGA’'s improve some aspects: band gaps improve marginally,
lattice constants often better with LSDA.

5. Other methods devised for accurate electronic properties such
as band gaps: ‘Scissor operator’, LSDA4+U, GW.

6. But these often have to depend on LSDA structure.

7. Need for a universal method which can calculate all properties

accurately, for solids, atoms and molecules.
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Hybrid functionals:

Hybrid because they incorporate a fraction of exact HF exchange.
Becke half-and-half hybrid (1993)

1
Epe = (Ex + ELF)
Becke three-parameter hybrid (1993)
Ere = E;>% a0 (Er — E;P%)+aq (ESCY — ESPA)+ac (ESC" — EZP).

Or a simplification of this (1996) a, = 1 — ag, a. =1, leading to
E.. = E; +ao (E: — E.7)

Others include B3PW91, B3LYP etc.
HF exchange in solids has problems:
For metals log divergence in orbital energies.

For solids exchange interactions decay exponentially with band
gap.
Computationally demanding even for small band-gap semiconduc-
tors.
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Ideas of Heyd, Scuseria and Ernzerhof:

Use screened Coulomb potential for the exchange
part only.

1 _ fi(r)

r
n fo(r)

r r r
f1 should be significant at small r's, fo at large r’s,

and f1(r) + fa(r) = 1.

HSE choice:

1 erfc(wr) n erf(wr)

r r r

25
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HSE hybrid functional is based on the PBEO functional.
a=1/4.

HSE modifies only the exchange part of PBEDO:
EPBEO — oEHF + (1 —a)EFBE,

Split these terms into short-range and long-range parts:

EQI?BEO — CLECBHF’SR(W)—I-&EI;F’LR(CU) + (1 . a)EgBE’SR(w)
—|—ExPBE’LR(w)—CLEEBE’LR(w).

HF and PBE LR contributions are small, tend to cancel.

This leads to the following hybrid functional.
E:I:HCSE — CLExHF’SR((U)—I-(].—a)Eal?BE’SR(w)—|—ExPBE’LR(w)—|-EEBE.

27



Construction of the screened Coulomb exchange functional.

How FE.. is constructed in LDA and PBE, a review.

E _1//d3rd37n/p(7?)pxc(ﬁ7ﬂ)
rc — 2

=7

=//d3rd3up(7?)pm(ﬁ77+ ’J)
2u

Angle- and system-averaged exchange-correlation hole is defined,
1 dS2z
o)) = 5 [ 0@ [ G puctiir+ )
Ec in terms of (pyc)(u):

E..= N/ 4wu2wdu.
0 2u

28



Alternatively, Exc written in terms of the local energy
density,

B = / o(Pexe(P)d3r,
thus

EJZC(F — /d3u10$0(7'77"+u).
2u
For the exchange energy density alone
ex(F) = /d3u/0x(r,fr-|-u).
2u
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LDA exchange hole:

pu(7, 7+ @) = p; " [p(7), u] = p(7)J (kru).
J(kpu) is an oscillating function of its argument:

. 2
_ siny — y Ccosy
Ty = —oj2 [FPUZYEY ]

where y = kru.

Such Friedel-like oscillations are expected in electron gas (metallic
systems), but not in every system. Not in finite systems, for
example.

System averaged exchange hole
1 o~
(o) () = [ oA TCkew)

retains some of this oscillation. To eliminate this Perdew and
Ernzerhof proposed a modified non-oscillating J: JPW92,

A 1 A
7PWo2 — 2 Dy?
(y)__?llg!y2+(?+3+cy>e 7

30



Some properties of the pPYW92 exchange hole

pPW92 has to satisfy [ d3uph Vo2 (7, 7+ @) = —1.
/47ru PWO2(o(7), 7+ @))du = /47ru PWO2(o(7), u)du

p(7) [
T 3 / y2JPW92(y)dy
r Jo
37
From the relation for LDA energy density,

eLPA(H(7)) = /OO 4wu2px(P(F),U) du
0

y2JPW92(y)dy — _1

2u

Hence
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A few other properties

Since J"W92(0) = —1/2, we get
— 1 —
pe(p(r),u = 0) = —5p(7).

This LDA on-top value of p, is correct for all spin-unpolarized
systems whose N-electron Kohn-Sham wave function is a single
determinant.

LDA and GGA approximations for p, and pg;. usually work well for
small e-e separations. Short-range part of p, is transferable to
inhomogeneous systems. Second derivatives of JPW92 gnd JtPA
matched at v = 0.

d2jLDA d2JPW92 1

d—y2|y=0 d—y2’y=0 — 5
These four conditions determines the four constants A — D.

Both J-PA and JPW92 have the same asymptote,
- ®)
lim J-PA(y) = lim JPW92(y) = ———.
Y—00 Y—00 4y2
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To avoid an unwanted shoulder in yJPW92 near y ~ 6, and addi-
tional term is added in a new function J-PA:

A 1 A >
JLDA —_ o B CQ E4 —Dy-
W= —iprst (B rortE)e

The fifth constant is determined by maximizing the information
entropy
S[—JPA] = 47r/ y2 JEPA(Y) In [—J-PAYdy.
0



GGA exchange energy is obtained from
ESA = [ rp(MeESA (o), 5(7),

where ex M (p(7), 5(7)) = " (p(M) P (s(7)).
FGGA(s) is the GGA (PBE) enhancement factor, is a function of
the reduced density gradient

s(7) = V()|
2krp

In analogy with the LDA exchange hole,

PEN) W) = [ BT (o), Kr ()

oo
27r/ pJCCA (s, Kpu) u du = ePA(p) FSCA(s).
0
And most importantly,

8 0. @)
5/ JCOCA(s,y) y dy = —F2"(s).
0]
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Perdew and Ernzerhof gave an ansatz for the function JCSGA in

JCP 109, 3313 (1998).
SR exchange functional in HSE modificaties of the PBE exchange.

Instead of JCGA use

PO = 19 xrse (22)
F

Enhancement factor is obtained as
8 O
Fy P55 (p,s) = —5/ yJPBESR(p, 5, 9)dy.
0

Short range exchange energy density is obtained as
e; =R (p(7), 5(7) = &P (p(M) Fy B55K,

The short range PBE exchange energy now is
EPRESR = [ p()eLBESR (o), ()
And the long range part is

EI;BE,LR — /p(f’) [EEBE . E;’BE,SR] d3’l“.
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Lattice constants and band gaps of some semiconductors
Heyd et al.. JCP 123, 174101 (2005),

L attice constants in A.
Solid LSDA PBE HSE Expt.

C 3.537 3.579 3.553 3.567
Si 5410 5.479 5.444 5.430
BN 3.584 3.629 3.603 3.616
MgO 4.178 4.268 4.218 4.207

Band gaps in eV.
Solid LSDA PBE HSE EXxpt.

C 4.23 4.17 5.49 5.48
Si 0.59 0.75 1.28 1.17
BN 4.45 451 598 6.22
MgO 4.92 434 6.50 7.22
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TABLE VI. Lattice constant error statistics for the SC/40 test set (&).

Solid LSDA PBE TPSS HSE
ME* -0.046 0.076 0.063 0.035
MAE® 0.047 0.076 0.063 0.037
rms® 0.058 0.084 0.071 0.044
Max (+)° 0.017 0.158 0.143 0.100
Max (-)¢ 0.139 e -0.014
“Mean error.

Mean absolute error.
“Root-mean-square error.

4Maximum positive deviation.
“Maximum negative deviation.

Average performance for a set of 40 semiconductors/insulators

TABLE VII. Band gap error statistics for the SC/40 test set (eV).

Solid LSDA PBE TPSS HSE
ME* -1.14 -1.13 -0.98 -0.17
MAE’ 1.14 1.13 0.98 0.26
rms" 1.24 1.25 1.12 0.34
Max (+)° 0.32
Max (-)° -2.30 -2.88 -2.66 -0.72
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