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1 Second quantization

Quantum field theory

— a technique for dealing with a quantum system of many particles
— necessary when the number of particles is not conserved, e.g.

e in a system of photons

e in high energy collision of two electrons which can produce electron positron
pairs besides two electrons

— also a convenient tool when the number of particles is large but conserved
We begin with a familiar system where the number of particles is conserved.

First consider the simplest case: A single particle in 3 dimensions moving under
the influence of a potential U (7).

Schrodinger equation:

N~
o
~ h o
h) = —%V%Jr U(7) 1

~

h: Hamiltonian

One way to find the general solution is to first find the eigenstates of h.

~

hu,(T) = epu,(7)

en: eigenvalues, wu,: eigenfunctions, e, >0



{u,}: complete basis of states, normalized as

/d?’r uy (7) U (T) = Oy,
General solution:

Y(t,r) = Zan (t)un(7), n(t) = an(0) e~ et/

n

Now consider a system of N particles of same mass, each moving under the
same potential, and with no mutual interaction

r;: position of the 7’th particle
65 the gradient operators with respect to the ¢’th particle coordinate

The wave function (¢, 7, - -, 7y) satisfies Schrodinger equation:

indY Zhye, A =Y "h ﬁ——h—QﬁMU(ﬁ)
8t N ¥, N—‘: X i om i 7

Choose basis of states:

General solution:

w(t7 Fl) oo Z anl, N n1,~-~,nN(F17 e 7FN)

Ny, NN

R O R A (1)

Note: If each u,(7) is normalized to 1, then so is Wy, ... ny



Now consider the case when the particles are identical and bosonic.
© must be symmetric under 7; <+ 7 for every pair 4, j

We can still expand ¢ in the basis {W,,, ...,y } but it is redundant since only
symmetric functions need to be expanded

For this reason it will be natural to choose the basis states to be also symmetric
under the exchange of any pair of particles.

Define new basis:

— — 1 — —
Upy ooy (T1, 0 TN) = ——= Z Uy (T1) * + Uny (TN)

v/ N! ) . R
Permutations of 7, -« - T'nx

Note: This basis is also automatically symmetric under the exchange of the
774‘78

e.g. u12 and ug; should not be counted as separate basis states

For this reason we can label the subscripts in a fixed order e.g. in the order of
increasing energy and/or other quantum numbers

€.g. U124, U1,124, U122 etc. but not U2.1,4 OI U212



— — ]' — —
un17"'7nN(T17 T 7TN) = W Z Un,y (Tl) o unN(TN)

Permutations of 77, - - -7y

Now let us check the normalization of the basis states.

/d37’1 s dBT’N unl,...’nN(T_”l, s ,FN)* Ulh...le(”I_"l, s ,77]\/')

e: Unless [; = n; for every ¢, the result vanishes
o: If [, = n; for every ¢ and all the n;’s are different, then the result is 1

—the 1/N!in the overall normalization cancels the N! contributions, each giving
1

— all cross terms vanish, e.g.
/ rid o, (PO (75t (71 )i, (75) = O
if nq # no.

The situation is more complicated if [; = n; for every i, and some of the n;’s
are equal, e.g. uj 2

In this case some of the terms in the expression for u,, ..., are equal since

N
permuting identical indices will not change the term.

To understand what happens in the case, it is useful to use a slightly different
way of labelling the basis states.

Instead of saying what states are occupied using the labels nq, - - -, ny, possibly
with some labels repeated several times, we specify how many times the label
1 appears, how many times the label 2 appears etc.

7



e.g. up 12 will be described as (2,1,0,0,---) — occupancy number
Occupancy number m; tells us how many particles occupy the i-th state u;

Occupancy number (mq,ms, - +) state means that the n’th state appears m,,
times

For an N particle state Y~ m, = N

Now let us consider the state

1

un17...7nN(771,-~-,77N) = W Z unl(fi)"'um\,(f}v)
" Permutations of 7, - - -y

with occupancy numbers (mq, mo, - - )
Inside the summation not all N! terms are different

—they are grouped into N!/(my!ms! - - ) groups, each group containing mq!mo! - - -
identical terms:
1

) ) N!
Uny oy (T15 7, TN) = ﬁml!mﬂ (W + W+ W), p= iyl - -

Different terms W{; are orthonormal since at least for one of the 7;’s the state
label differs

The total norm is:

1
N X (mylma! - )% x p=milma!---
Therefore the state uy, ... ny (71, - -+, ) is not normalized to 1.

We shall keep it this way.



Example:

1
Uil = \/g[ul (Fl)Ul(’FQ)UQ(Fg) + permutations of 7?1, 772, 773]
T o o
= %[2 U1 (7“1)161(7“2)1@(7“3) + 2 Ul(Tl)ul(Tg)UQ(T2> + 2 Ul(TQ)ul(Tg)UQ(Tl)]
3 3 3 * 1 2
/d Tld T2d Tgul,mul?l’g = 6 X2°x3=2
— agrees with mq!mo!--- =21 =2

Next we shall analyze the action of N particle Hamiltonian on these basis
states.

Ei Unp, (7?1) Tt Uny (FN) = €En,;Un, (771) Tt Upy (FN)

N
Hy Unp, (Fl) T unN(FN) - (Z eni> Un, (Fl) U unN(FN)
=1

Note: The eigenvalue of H ~ does not change under permutation of the r;’s on
both sides.

N
= HN Uny o ny (Fl, SRR FN) = (Z 6n1> unl,m,nN(Fla <o ,FN)

1=1

If the state has occupancy numbers (my, mo, - - -) then the energy eigenvalue is

00
E mMp€n
n=1



We shall now forget about this system and consider another quantum system

— a collection of infinite number of one dimensional harmonic oscillators with
angular frequencies wy, wo, - - -

Choose w,,’s such that:

wp = e, /h
= for each single particle energy eigenstate of the original theory, we have a
harmonic oscillator.

If there are k degenerate energy eigenstates in the single particle system for
some energy e, we introduce k£ independent distinguishable harmonic oscillators
of angular frequency e/h.

We can introduce creation and annihilation operators a,, al for each harmonic
oscillator:
I all =0, [an,a;] = Onp

[Cln, Clp] - 07 [a’n7 D

Hamiltonian of this system:

Zhwn(a a, + ;) Zhwna a, + C

C'": An overall constant which will have no physmal significance
(We shall only be interested in differences in energy eigenvalues of this system)

Ground state |0), also called the vacuum state, is defined as
a,|0) =0 for every n

Other states are created by applying arbitrary combinations of a! on the vac-
uum state.

Goal: We shall show that this quantum theory is related to the system consid-
ered earlier under certain identifications.

10



Identification of states:
unl7n27"'an1\7 e a/:‘f-ll U a/’—f‘-l]\]|0>
Note that like wy, p,....ny, the right hand side is automatically symmetric under

n; <> n;

Occupation number representation:
(a})"™ (a3)™ --- |0)
Next compute inner product of the states (CLDml(a;)m2 +-+|0) and (ai)mll(a;)m2 e
(0] (ar)™ (a2)™ - - ()™ (a3)™ - - - |0)

We can analyze this by taking a;’s to the right using the commutator between
a; and a}.

e Unless my = m}, mo = mj, etc. the result vanishes

Any excess a, or a will annihilate either |0) or (0.

Ex. Check that:
(0[(a1)™ (az)™ - - - (al)™ (al)™ - - - |0) = mqlmy! - --
Example:

(0l(a1)*(a})*0) = (Oararala}|0) = (Olai (ajar + 1)a}|0)

Now replace every ala{ in this expression by aial + 1 and use

Olal =0, a0y =0,  (0]0) =1

Result: 2 = 2!

Conclusion: aj,bl “e aLN\O> has the same norm as wy, ..., in the first theory.

N

11



This gives a map between the Hilbert spaces of the two theories.

Let us compare the energy eigenvalues in the two quantum systems.

(0]
Hail1 e aLN\0> = <Z hwnajzan) aLl e aILN\0>
n=1

Use

o0
[Z hwnajlan, a;] = hw, aj,
n=1

Hal, - af, J0) = Bl + o wny)aly -l [0

ni nn

= (€n1+"'+enN)aLl"'aT 10)

nn

Note: we have dropped the additive constant C
Example: Using H al, = ailﬁ[ + hwpal

Bal al |0y = (a;ﬁ + mn) al |0)

1712
= aLlaL2H’O> + a’jll Mn2a22‘0> + hwnlailla'jlg‘0> = (hwnl + hwnZ)aILlaILQ‘O>

This agrees with the energy eigenvalue of uy, n, ... ny

Eigenstates of H ~ get mapped to eigenstates of H with the same eigenvalue.

12



Later we shall see that every operator in the first theory can be mapped to an
operator in the second theory.

However the converse is not true.

Specifying the first system requires fixing a value of N — the total number of
particles

This is not the case in the second system, e.g.
al|0) is a single particle state, |0) is a zero particle state,

al af |0) is a two particle state etc.

13



2 Second quantization

We have considered two quantum systems.

First system: N identical non-interacting bosons, each of mass m moving in
three dimensions under some potential U (7).

o, al h?
he — [ v — E EZ ﬁi — V24U 7
) T N, N 2 ) om Vi (7%)

Basis states:

Upy ooy (T2, TN)

% 3 i (71) i ()

N! . . .
Permutations of 77, - - -7y
u,(7): single particle energy eigenstates:

h Un(7) = e, up(7)

Second system: A collection of infinite number of harmonic oscillators, one for

each energy eigenstate of the first system for NV = 1, with angular frequency
wp =e,/h

If there are k degenerate energy eigenstates in the single particle system for
some energy e, we introduce k independent distinguishable harmonic oscillators
of angular frequency e/h.

an,al: annihilation and creation operators of the n-th harmonic oscillator, with

commutation relations:

[am ap] =0, [aju a;f)] =0, [am a;] - 67120

Hamiltonian of this system (after throwing away a constant term):

(0.¢] o0
H = g hwnajlan: g ena];an
n=1 n=1

14



Correspondence:

Uny gy < aj“ e ajw\o), a,|0) =0 for all n

Under this correspondence:
e The inner product between the states agree in the two theories

e The eigenvalues and eigenstates of Hy in the first theory agree with the
eigenvalues and eigenstates of H in the second theory.

However there is one major difference.

In the first description, for each N we have a different quantum theory.
In the second description, a single quantum theory can describe all N.
al|0) is a single particle state, |0) is a zero particle state,

al, al |0) is a two particle state etc.

In the second system, the information on N is encoded in the eigenvalue of a
certain operator, called the number operator:

N = Zaian, {J/\\f,a;} = a;rj, [N,ap] = —a,

n=1

]/\\falll---a}:N|0> = Nal, ---al |0)

nn

15



What about mapping of other operators between the two descriptions?
We begin by asking what kind of operators we have in the description 1.
Examples:

/33\17 ﬁly/x\?n v%;
Numbers in the subscript denote particle labels.

However none of these are good operators.

Since the particles are indistinguishable, it does not make sense to consider the
operator 7.

Which particle is particle 17

Good operators: Those which are invariant under permutations of 1,---, N,
e.g.
N N N
o~ o~ o~ _’2
E L, E piyxja E via
i=1 ij=1 i=1

We can divide good operators into different classes.
e One body operators:
N
By =Y b
i=1
/I;Z- is constructed from the position and momentum operators of the i-th particle,

e.g.
o~ o~ _)2
:Cipi:w via

16



e 2-body operators:
N

VN = EJ\Z'J'

ij=1

i#j
v;; is constructed from the position and momentum operators of the i-th particle
and j-th particle, e.g.

Tipjy, /|75 — 7]

Note 1: The 7 = j term is removed from the sum since that sum can be regarded
as a one body operators.

Note 2: The two body operator vanishes if N = 1.
Similarly one can define 3-body, 4-body, - - -, k-body operators.

Question: What do these operators get mapped to in the second description?

17



Consider the one body operators:

N
By =) b
i=1
Claim: This is mapped to the operator:

(6.9]
B= Z bypal a,

n,p=1

bnp = /d3T1 UZ(FI)/b\l Up(Fl)

Note: Since 7 is an integration variable, we could replace ; by ; for any i

To verify this we need to check:

N
/d3r1 : --d37“Nun1,...,nN(F1,---,FN)*ZI% U oty (1, TN)
1=1
— <O|an1"'anNBaL/l"'aL;V\@

We'll check this for N = 1 and leave the general case as exercise.

For N =1,

r.h.s. = (0]ay, (Z bnpajlap> ajla\O) = Z brp OninOpnt = byt

n,p=1 n,p=1

th = /d37“1un1 (7?1)*/51 Un’l (F1> = bnln’l

Therefore two sides agree!

For general case, first show that on both sides of the identity, the sets {n, - - -

and {n},--- ny} can differ at most in one entry for non-zero result.

Then study this case.

18
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Next consider 2-body operators:

N
Vv = Vij, Vij = Uj;
i,j=1
i
Claim: In the second description, this is mapped to the operator:

oo

TV E Tt
V - Um7n>p7qamanapa/q
m,n,p,q=1

Um,n,p,q = / d37”1d37“2 um(ﬂ)*un(f'g)* /1712 up(ﬂ)uq(f’g)

To verify this we need to check:

3 3 — — * ~ — —
/d Ty AT N Uy ey (T, -+ TN) g Vij | Ung ooty (71,7 TN)

= <0|an1...aanaill...a;,Nm)

We'll check this for N = 2 and leave the general case as exercise.

_ § T 1 Tt
m,n,p,q=1

/ / / / / / / li
UnlanQanth + U’I’LQ,’I’L]_,TLI,’I’LQ —l_ UnlvnQ,n27n1 + Un27n17n27n1

1
lhs. = / Brid®ry i, (7)), (75)* -+t (F2) i, (7))

(@12 + @21) {unll (771)%’2(7?2) =+ Un’l(_é)un’g(??l)}
Unl,ng,n’l,ng + Unz,nl,n’l,né + Unl,ng,n’Q,n’l + Ung,nl,né,n’l

The two sides agree!

For the general case, first show that the result vanishes if the sets {ny, -+, ny}
and {n},---,ny} differ in more than two entries, and then study the non-
vanishing case.

19



Possible applications:

Suppose we have a system of particles, each moving under some potential U,
and furthermore they interact pairwise via some interaction terms v;;.

Hamiltonian in the first description:

)
=
_|_
DO |
it-
)

In the second description this can be translated to,

o0 o0

_ T 4T
H = E :ena an"’ E , Ym,n,p,qQmAnAplq

n=1 m,n,p,qzl

The second description does not have any explicit N.

N is the eigenvalue of the number operator N = S

nln

Using the second description we can study properties of the system for all N
at one go

20



We can find similar maps for general k-body operator.

Note: In the second description, these operators commute with the number

operator
o0
N = Z azak
k=1
since there are equal number of ¢ and af in B : V etc.
oo o0
B = Z brpanap, V= Z Ym,n,p,qm ndplq
n,p=1 m,n,p,q=1
e.g.
[N, ailap] = [N, ail]ap + aL[N, ap] = aiﬂp - ailap =0

This is not surprising since in the first description all operators conserve particle
number.

The converse is not true.

21



In the second description we can construct operators like:

o0
Z Crnyp ainajlap

m?”’pzl

which do not conserve particle number.
al ala, increases the number of particles by 1

— removes a particle in state u, and creates a pair of particles in state u,, and
Un.

Such operators do not exist in the first description since we work with a fixed
number of particles.

Due to this, the second description has certain advantages.

If experiments show that particle number is not conserved, we can try to ex-
plain this by adding operators, that do not conserve particle number, to the
Hamiltonian.

22



3 Second quantization

Today we shall consider a third quantum system.

We go back to the single particle Schrodinger equation:

- W, ;
h =~V 4 U (7)o

We regard this as the classical equation of a field (¢, 7) and quantize it
— second quantization.
How do we do this?
1. Find a classical Lagrangian that gives this equation of motion
2. Find the canonically conjugate momenta and the Hamiltonian
3. Quantize it using standard procedure
Classical Lagrangian:
Op(t,T)

L= [#rutey 200 T

In this equation think of h as some differential operator and not an operator
acting on the Hilbert space.

23



We can now write down the action and use variational principle to derive the
equations of motion.

- / dt / d*rap(t, 7)* [mawg;’ ) —ﬁzp(tf)]

Under arbitrary variation of 1,
0S8 = /dt/d?’r léw(t,f’)* {iha¢éi’ 7) —Ew(t,f’)} + (t, )" {ih—a5¢§f’7?) —B(Sw(t,f')}]

In the second { }, we carry out two manipulations:

e We integrate by parts in ¢ and ignore the boundary terms since, as part of
the action principle, 01 vanishes at initial and final time.

e We use the hermiticity of h
o5 = [ar [ vty {in®0 7 Futen |+ {-n® G 00,0 - Ghwte. )06 |

Even though the correct procedure will be to write ¢ = 11 + 109 and set the
coefficients of d1); and 01, to zero, this is equivalent to setting the coefficients

of 9 and d¢* to zero

—as if 1 and ¢* are independent variables

e.g.
0P F + 00" G = (091 + i6¢9) ' + (0th1 — i02) G = o1 (F + G) + i 099 (F — G)
=F+G=0, F-G=0 = F=G=0

Therefore we get

oY) (L, )"
ih 5 — hy(t,7) =0, —th———— 5 —{h@b( ™} =0

— correct equations

= we have the correct Lagrangian

24



L= / d’r(t,7) [mang;ﬂ — h(t, 7)

We shall now directly check that the Euler-Lagrange equations from L gives
the equations of motion.

Since {u,} form a complete basis of functions, we can expand 1 as:

Yt ™) =Y an(t) ua(7)

n=1

Knowing the a,’s we can determine v and vice versa.
Therefore we can regard the a,’s as our degrees of freedom.

Substitute this in the expression for L:

L= i an(t)* / Pru, (7) lmdc‘;—;” U () — apm(t) Eum(m]

m,n=1

—

Using ity (7) = e um (7) and the orthonormality of the u,,’s we get

L= i an(t)* [z‘hda;”‘t(t) e am(t)} S = i an(t)* [z‘hda;t(t) —en an(t)}

m,n=1 n=1

25



LZan[

dan( )

— e ap(t)

Treat a, and a; as independent degrees of freedom and write down the Euler-

Lagrange equations.

d OL

dt Oa,,

oL
oa,,

=0,

d
= th—a, +eya, =0,

dt

—

Using ¢ = Y an(t)u,(r), we get

8w(t T)
ot

— correct equations!

d oL 0L
dtdar,  Oaf
L day(t) B
ih o a,(t) =0
O, )" 5 e
—ith——— Ta hi(t, )" =0

If in doubt, write a, = b, + i ¢,, with real b,, ¢, and write the equations for b,

and ¢,

— gives the same result.

26



L= f: an(t [ da"t( ) e, an(t)]

n=1
Find the canonically conjugate momenta p,,, p,.
oL ., oL
oay,

=1tha,, pp,= By =0
a

n

Pn =

o0 ¢
H = Z [pnén + Ppa, — L] = Z ena ay,

Note: The p,’s and p,’s are determined in terms of a, and a’ and are not
independent variables.

To proceed systematically, we should use Dirac’s procedure for quantizing con-
strained systems.

However in this case the constraints are simple and we can simply regard a, ()
and p,(t) = iha,(t)* as canonically conjugate variables and proceed.

1 00
- L Zenpnan
1h —

Hamilton’s equations:

dp, ~ OH  da, OH

dt Oa,” dt  Op,

gives
,hda;’; 1 . da, 1
? = ——EnPn = —EpQy, — = £Enln
at "t it ih

— reproduces the correct equations.

27



pn(t) = ihay(t), H = Z ena ay,

n=1

We can now proceed to quantize.
(s Pl = ih0pmn = [an,ihal ] = ili0pmn = [an,al ] = Omn

T aT]:O

m?n

oo
H = g ena];an
n=1

— precisely the second system that we studied.

[, a,] =0, la

28



Summary

Given a single particle Schrodinger equation, the dynamics of multi-particle
states without any mutual interaction is described by the following steps:

e Regard the wave-function as a classical field and the Schrodinger equation
as the equation of motion of the classical field

e Quantize this classical field theory

— second quantization.

We shall now try to rewrite the commutation relations and the Hamiltonian in
terms of 9, 7.

29



n=1
Gt =Y anua(P), DT =Y an() ()
n=1 n=1
Note: 1, %', a,,al are operators
u, and u* are fixed functions (eigenfunctions of h)
(™), 0t 7] = D wn(Pun(7)am(t), an(t)] =0, [o(t, D), (¢, 7)1 =0
m,n=1
W7, 07N = (P)un(F7) Jam (), an(t)]
m,n=1
= > U@ () G = Y g (Aun () = 68 (7 = )
m,n=1 n=1

using completeness relation.

Next we shall study the representation of other operators in this description.

30



4 Second quantization

We shall repeat the previous analysis with real variables:

) QD)1 T i, o
L—/ [ ih(t, )" —Ethw(t,r)—w (t,7) h(t,T)

Since {u,} form a complete basis of functions, we can expand 1 as:

0
g ap(t) uy(7)

n=1

This gives

L=% Bm an(t)’ da;ft) - %m daggf)* an(t) — e an(t)” an(t)

n=1

Write

This gives

L= |na 5 - ab ™5 — e, + o)

n=1

b,(t) and ¢, (t) are the degrees of freedom

31



L=y

n=1

Equations of motion:

dor oL
dt 9b,  Oby,
de,, de,,

[hcn t) — hby(t)

dt 0¢,, (‘3cn

dby, db,,
oy
dt dt

+ 2e,c, =

Use first 4+ ¢ x second equation and a,, = b, + ic,

= —ih

— correct equations

day,
%4—6”&”:0

32
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L= Z [h cn(t) db;t(t) — hbn(t)dcgt(t) — e {bn(t)? + cu(t)?}

n=1

Define ‘momenta’ conjugate to the ‘coordinates’ b, c,:

~ L L
ob,, ¢y,
H=3 {bby+cnf =L =3 ea{bu®® + et} = Y enan(t)an(t)
n=1 m=1 m=1

This recovers the previous expression for the Hamiltonian.

Now we need to understand how to quantize the system in terms of the inde-
pendent variables b, and ¢, i.e. how to compute [b,, ¢,,] etc.

If we just substitute ¢, = En /h and use [bm,gn] = 1h d,,,, we shall get
(b, €] = ih 6pn /B =1 Oy

This is wrong!
Both constraints need to be accounted for together.

We have to go through Dirac’s procedure for quantizing constrained system.

33



For this we shall restrict to some particular n since variables for different n

commute anyway.

Define: N
Xlzbn_hcna X225n+hbn

The constraints are
x1 =0, X2 =10

We shall now review Dirac’s procedure and apply it to our system.

34



Suppose we have a system with coordinates qi,-- -, qx, conjugate momenta
p1,- -+, px and M constraints:

Define:

1<a,B<M

K
IXaOXxp  OXa OX
Maﬁ — {XomXB}PB - Z [aq 8]95 - 8]9' 8qﬁ )

1=1

PB stands for Poisson bracket
If det M # 0, the constraints are known as second class.

In that case, given any pair of functions F' and G of ¢;’s and p;’s, we define the
Dirac bracket as follows:

{F,G}ypp = {F,G}pp— Y {F.xa}rs (M Vg {xs,G}rp
a,f=1

M1 matrix inverse of M (defined if det M # 0)

Note: Like PB, DB is anti-symmetric under F' <> G
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Now among ¢;’s and p;’s choose a set of 2K — M independent variables
Call them Q1,- -+, Qar—nmr
Compute {Q., Q»}pp and call the result Wy,

Quantization: Regard (),’s as operators with commutation relations:

[QaaQb]:thab fOflSa,bSQK—M

Note: In the absence of constraints, DB = PB and this gives the standard
quantization procedure, i.e. in the Poisson bracket relations between the ¢’s
and p’s, replace { , }pp by [, ]/(ih).

For full details of quantization of constrained systems, see the book

Paul Dirac, Lectures on Quantum Mechanics, Lecture 1
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Now apply this to our system.

XIZEn_hcna X2:En+hbn

{x,xatr =0, {x2.x2}re=0, {x1,x2}pre=—2h, {x2,x1}pp=2R

(0 —on L1 /0 1
M_(2h o)’ M _%(—1 0>
{bn.x1}pe =1, {x1,bntpp=—-1, {bn.x2}r=0, {x2,bn}pp =0,

{cn,x1}rB =0, {x1,cutpp =0, {cw.x2tre=1, {xo.cn}rp=—1,

{bn, e} o = {bn, cn}pe — {bn, X1} PE(M ™ D2{x2,c}pp = 0— (1) = (—1) = —

Quantization:

1 1
_bnan:_ nyCn| — 3
zﬁ[ Cnl o7 = [bn, )

Full set of commutation relations:

[bm Cm] - %5mn7 [bma bn] = 07 [Cma Cn] =0
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[bna Cm] = %5mn> [bma bn] = 07 [Cma Cn] =0

Using a,, = b, + icp,, a}: = b, —1c, we get:
[, an) = [bm + iCm, by +icp] = b, ca] + t[cm, by] =0
Similarly we can compute other commutators, leading to:

[am; am = 5mn7 [ama an] =0, [ajn, am =0

H = ien 1)2+c Zen an—l—a — (ap T)Q}

e [(an)2 + (CLIL)2 -+ ana;fl + aILan — (an)?* — (a,t)2 + anaib + a;flan}

[
-
Mg

n=1

o0
€n [ + al an E en al nQp + constant
1 n=1

I
| —
K

n

— same as what we had found earlier.

Z: t) up, (7)
Wit 7), 0, 7)1 =@ F—"), [ 7)) =0, [P, eE )] =0

We shall now try to find representation of other operators in the third descrip-
tion.
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One body operator By = Zfil/b\l

B= f: Dot (£) i, (2)

n,p=1
by — / Bt (7)) By ()

B= Z /d3r1 u;(f})a (7 ) an (1) ay(t) = /d?’ﬁ@b(t,ﬂﬁalb(t,ﬂ)

n,p=1

Note: 1 and ' are the operators in the Hilbert space and bis just a differential
operator

Algorithm:
1. Take expectation value of by in the single particle wave-function (¢, 77)
2. In the resulting expression, regard 1, ! as operators.

The number operator:

== 3

The Hamiltonian:

H= /d3r¢(t,F)Tﬁ¢(t,F)
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Two body operator:
N

Vv = Vij, Vi = Uj;

ij=1
i#]

In the second description, this is mapped to the operator:

oo

T
E , Um n,pqa nApQq

n,p,q

Um,mp,q = / d37”1d37“2 um(fi)*un(f’g)* /1712 up(ﬂ)uq(@)

In the third description:

Vo= Z /d rd’ 7 U (T1) Up (T2)" 7112Up(7“1)uq(7“2)aJf Tapaq

m,n,p,q=1
= /d37“1d37’2¢(75,771)w(t,T?z)T@zw(t;”f?l)w(t,@)

V12 is not an operator in the Hilbert space but should be regarded as a differ-
ential operator acting on

€.g. if @\12 = ﬁl.ﬁg then
Do ¥ (t, 1) ¥(t,7) = (—ih)*V1ib(t, 7). Varb(t, 75)
Algorithm:
1. Take expectation value of U5 in the two particle wave-function ¢ (t, 7 ) (¢, 75)
2. In the resulting expression, regard 1, 1! as operators.

The same procedure works for k-body interaction.
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5 Second quantization

Recall that we started with:
Lo~
L= [ &ry*|ih— —h
/ r [z By w]

and derived, after quantization:

H= /di’w(t,fﬁﬁw,f) = " enan(t)an(t)

Y(t,7) = Zan(t) U (7), w(tf)T = Zan(t)Tun(F)*

[am(t),an(t)T] = Omn, [am(t)7an(t)] =0, [am(t)T,an(t)T] =0

[¢(t7f),¢(t,F/)T] - 6(3)(F_F/)v [¢(tvf)v¢(tafl)] =0, [¢(t7F)T7¢(t7F/)T] =0

We shall now try to give physical interpretation of ¢ (¢, ) and (¢, 7).
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Recall the interpretation of a,, a!

At t =0,

al]0) describes a single particle state with wave-function (%)

al al |0) describes a two particle state in states u,(7) and wu,,(7) etc.

Q. What state does (0, 7,)7|0) represent for some fixed vector 7?
(0, 7)10) = Zu 70)*an,(0)0)

1. Since this is a linear combination of single particle states, it is a single
particle state

2. The wave-function of the state:

D un () un (7) = 6P (7 — )

Therefore (0, 7,)'|0) represents a one particle state in position eigenstate at
position 7j.

= 1,7 play the same role as a,,al, but in a basis of position eigenstates
instead of basis of energy eigenstates.

Given this, one can ask: Is it possible to derive the commutation relations of
1, " and the expression for the Hamiltonian in terms of ¢, ¢! directly, instead
of going through the a,, a/’s?

The main issue: Dealing with a continuous label 7" instead of discrete label n
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Why do we want to rederive an established result?
Recall the motivation from lecture 1:

Quantum field theory is useful for multi-particle system but essential for cases
when the particle number is not conserved.

Eventually we want to apply it to the cases where the particle number is not
conserved and state labels are continuous

— relativistic quantum field theory

But before applying a new method to a new system, we need to check that
the new method works in systems where old methods also work and results are
known.

The multi-particle quantum mechanics with discrete energy levels is such a
system.

We want to test all the techniques of quantum field theory on this system before
applying it to systems for which the answer is not known by any other method.
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L:/d?’mb [Zh%—w—h¢:|

Trick: Use the definition of an integral as the limit of a sum, but take the limit
later.

Discretize space as a lattice of points:

7= wi, w small, i = (g, 0y, 02), i, by, 1,0 integers

Dynamical variables:

SN R O KIS S

oY(t,r) o~
3 =\ * ’ 3 ~
/d rot ) = = w Zwi(t)
1
Defining h requires a little more effort since h contains spatial derivatives

O (t,7) = w™! (Vip+1,0. — Yiniyi.)  ete
o(t,7) = w (0u(t, 7+ (w,0,0)) — 1p(t,7))
— w’ {(Vi,42:,0. — Yiviriyi.) — (Yiitiyi. — Vivigis) }

= w? {wix—&-liy.iz —2Ui 41,4, T zbigﬂ,iy’iz} etc.

Using this we can map ﬁw(t, ) to some quantity that we shall call h V(t)

L= 3wl 2 o
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e

We can now regard ()" and Y=(t) as independent dynamical variables and
proceed.

e.g. conjugate momenta 7y to ¥> and 77 to @/J%’f are:
. . oL
c= — = hw Y, m™=—=0

H =Y {rna+ 7 — L=w® Y vAt) ho; — /d%/)(t, 7)Y ha(t, 7)

Quantization: Make 1, 9! as operators and use equal time commutators:

[¢Z7 wj'] - 07 [ﬂ-;? ﬂ-;] - 07 [ i 7T_‘] - Zhé_’_' 5 5130.730619‘795 sz

1,77
This translates to

1
Wruf =0, RLel=0.  Waoll= 5

J

Let D(7,7") be the continuous function whose discrete version is 5~~/ w” with

F=wi, 7 =wj

Then given any function F(7), we have

[ & D P 3255;;% Foo P



This is not yet fully satisfactory.

1. We would like to get a more direct approach without going through dis-
cretization

2. The formula > = i hw? wlff does not have a good continuum limit
In the w — 0 limit the rhs vanishes

We shall now try to rectify both shortcomings using ‘functional derivative’

Define:
oF 1 OF

SU(t, 7)) wd Ot

for any functional F', as w — 0.

= 1 OY=(t 1
o(t, ") ij():_ﬁ:(g(@(f’_f”)’ F=wi, 7 =wj

SY(t, 7)) wd dY(t) w3

Define:

(t, 7) oL 1 0L 1

= there is a well-defined relation between II and ¥* as w — 0.

-

H=>Y mi;—L=uw’) T—L — /d%H(t,fW(t,f) —L

. 1 1 | L
(&, ), 10, ™) = I = Sl ] = EZM;,;:ZM(S)(T—T)
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Based on this analysis, we can now formulate the rules for quantization directly
in the continuum.

Define conjugate momentum to 1 (t,7) as

M =S50

H= /d?’rH(t,F)zb(t,fF) —L

Quantization:
[ (t, 7,11t 7)) = ihd® (7 — )
For 3 .
L= /dgrw(t,F)* [m wgt’ 7) — hap(t, 7)
this gives

I(t,7) = m/d3r¢(t,f)*5<3>(f—f') — ilp(t,r)*

H= [ droen o
Quantization:
H = / d*r o (t, ) hap(t, 7)

— New derivation of earlier results
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A useful relation:

For any quantity I’ that depends on ¢, under an arbitrary variation of :

1 OF 0F By
OF = Z (W#—w?’z vl o /dgrcwtﬂcw(tw)
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6 Second quantization of fermions

We shall now repeat the analysis (from lecture 1 onwards) for identical fermions
(spinless).

Single particles satisfy the same Schrodinger equation:

~

h: Single particle Hamiltonian

Eigenvalues and eigenstates of h.

htn(7) = entin (7)

{u,}: complete basis of states, normalized as

/dgr Uy (7) U (T) = Oy
General solution:

Y(t,r) = Z () un, (1), an(t) = a,(0) o—ieat/h

No difference with the case of single boson.
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Now consider a system of N identical fermions of same mass, each moving
under the same potential, and with no mutual interaction

r;: position of the 7’th particle
65 the gradient operators with respect to the ¢’th particle coordinate

The wave function (¢, 7, - -, 7y) satisfies Schrodinger equation:

i

~ ~ ~ ~ h? -
—H Hy = . W2 7
hor = Hy v, N Z hip  hi=—5=Vi+U(R)

Y is anti-symmetric under the exchange of any two 7;’s.

Choose basis of states:

U (P oo ) = % 3 (7)<t () (= 1)

Permutations of 7, -+ - Tnx
(—-1)":
1 if we reach the permutation by even number of exchanges from 1,2,---, N
-1 if we reach the permutation by odd number of exchanges from 1,2,---, N

Example: For N = 3,
(—=1)¥ =1 for 123, 231, 312

(—1)" = —1 for 213, 132, 321
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. . 1 . .
um,'--,nN(Tla T 7TN) = W Z ) Up, (7“1) s unN(rN)(—l)P

Permutations of 77, - - - 7y

This basis is also automatically anti-symmetric under the exchange of the n;’s
e.g. u12 and ug; should not be counted as separate basis states

We label the subscripts in a fixed order e.g. in the order of increasing energy
and /or other quantum numbers, as in the case of bosonic theory

e.g. uj24 but not us 4 or uj 4o

Furthermore, a given index cannot be repeated more than once since the result
will vanish by anti-symmetry, e.g. u12 =0

— different from bosons

In the occupancy number representation this means that occupancy number
m,, of the n-th state can be either 0 or 1, but not > 1

— Pauli exclusion principle
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. . 1 . .
Uny - nn (Tla T 7TN) = W Z Up, (7“1) s unN(rN)(—l)P

Permutations of 77, - - - 7y

Normalization of the basis states.

3 3 — — * — —
/d ry:e-- d N un1,~-~,nN <T17 e 7TN) ull,'",lN (Tl, e 7TN) = 5lln15l2n2 tee 5ZNTLN

All cross terms vanish as in the bosonic case, e.g.
/ rid o, (PO (75t (71 )i, (75) = O
if nq # no.

The extra complication that we had in the bosonic case for occupancy number
> 1 is absent here since m,, = 0 or 1.

Action of N particle Hamiltonian on these basis states.

N
Hy = E h;
i=1
N
Hy Uny, -y (Tlv 7TN) = €n; | Uny,ny (7“17 7TN)
=1

— same as for bosons.
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We shall now consider a second quantum system.

A Hilbert space on which acts a set of operators aq, as, - - - and their hermitian
conjugates ai, ag, -+ - satistying:

{am,a,} =0,  {af,,al} =0,  {am,al} =0
Definition:

{A,BY=AB+BA

Hamiltonian:

(0.¢]
H = Z en a];an

n=1

This system is some time called the ‘fermionic harmonic oscillator’, but this is
not a harmonic oscillator.

As in the case of harmonic oscillators, the ground state |0), also called the
vacuum state, is defined as

a,|0) =0 for every n

Other states are created by applying arbitrary combinations of a! on the vac-
uum state.

Note: Since (a!)? = 0, each a/ can be applied at most once.

Goal: We shall show that this quantum theory is related to the system consid-
ered earlier under certain identifications.
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Identification of states:

unlanQa“'anN e aill e aILN|0>

Note that like uy, y, .
under n; <> n;

.ny, the right hand side is automatically anti-symmetric

Check that r.h.s have the same inner product as l.h.s

<O‘an1van1vf1 U amazfl o az[N|0> = 6l1n1512n2 T 5anN

Note: Since a,’s for different n anti-commute, the ordering is important for
determining the sign.

Conclusion: aih e aLN\O> has the same norm as uy, ..., in the first theory.

N

This gives a map between the Hilbert spaces of the two theories.
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Let us compare the energy eigenvalues in the two quantum systems.

o0
Hail1 e aIlN\O> — (Z hwnajlan) aih e aIlN\O>
n=1

Use

~

Hal - -al \0}:(enl—l—~-~—|—enN)aIL1---aJr 0)

- same energy eigenvalue as the first system
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Map of other operators:

Consider the one body operators:

Claim: This is mapped to the operator:

B = Z bypal a,

n,p=1

bnp = /d3T1 UZ(Fl)/b\l Up(T—')l)

Next consider 2-body operators:

N
VN = Vi, Vij = Uj;
ij=1
i
Claim: In the second description, this is mapped to the operator:

oo

o T T
V= E Um,n,p,qQpm AnAqQp

m,n,p,q=1

Um,mp,q = / d37”1d37“2 um(fi)*un(f’g)* /1712 up(ﬂ)uq(f’g)

Note: Order of a,a,

Proof of these will be left as exercise.
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7 Second quantization of fermions, Klein-Gordon equa-
tion

We shall now study quantum field theory for describing a system of identical

fermions.

Goal: Reproduce the relations:

{am7 an} - 07 {ajna CLIL} = 07 {am; CLL} = (5mn

0
H = g enajlan
n=1

We shall begin with the same classical system that we had for the system of
identical bosons.

H— [ @rnenien -1 = [droenhoen
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T, 7) = ik (t,r)*
H= / Prap(t, ) ha(t, )

Quantization: Regard the fields as operators, and use:
{0, 7, 10(t, 7))} = ih 6 (7 =), {b(t,7), 0, 7)} =0,  {I1(t,7),T1(¢,7")} = 0

A= [dro@nhown. 167 = mw(r)
{A,B} = AB + BA
Note the difference: [, | = {, }

This is an ad hoc rule, and does not follow from the standard rules for quan-
tizing a classical system.

For this reason, there is really no classical limit of a fermionic field theory.

Correspondence principle does not hold.
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For example, in the bosonic theory we can construct a quantum state that
closely approximates a classical field configuration ¥ (0,7) = f(7) as follows:

1. Decompose f(F) in eigenfunctions of h:
n=1
fn: numbers

2. Compare this with the expansion of the quantum field:

P(0,7) = anun (i),  an = a,(0)

n=1

An approximate classical field configuration will be described by a quantum
state for which the expectation value of a, is f, and the variances in various
quantities are small compared to their mean

— coherent state

~ requires applying large number of af on the ground state.
In fermionic theory, we cannot apply al more than once!

— no classical limit

Nevertheless, as a quantum theory it makes perfect sense since the laws of
quantum mechanics are not violated, e.g. the Heisenberg equations of motion
remain the same:

ih —W({;F’) = —[H,(t,7")]
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{(t,7), (¢, 7))} = ih 6 (7 — )

II(t,7) = if(t,r)!

This gives
{o(t.7), 0 (7)1} = 69 (7 =)
Also
[0l P06 7Y} = 0, {667, (7)1 0

H= /df’w(t,f)@w(t,f)

Let us check that the Heisenberg equations of motion give the correct evolution.

A~

[H, (¢, 7)) = Hp(t, ) — (¢, 7 H
_ / (e, Rt (e ) — (e 7)ot ) (e, 7))

_ / (00,7 (e, PR 00 T) — 007 (e, 7 T ot )
— /d3r( SO (7 — 7 Yhap(t, )>:_h,¢( -

W . hwith 7 replaced by 7’

. 8¢(t,F’) _ 77
1h o

— correct equation

Ehrenfest theorem still holds!
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Recovering the algebra of a,, al:

Define a,,, a! via the expansion of 1, ¥:

D=3 W u@. R =3 ant) ()

n=1 n=1

(1) = / FBrun (PO, an) = / Br (7)o (t, 7)

{an(t).an(®)1} = /f [ ) e 7,07
/d3 /d3r’ U (F)* 1 (F') 6O (F = 71) = /d3r U (T)* Up (T) = Oy,

Similarly

lam@®),an(} =0,  {am(®), an®)} =0

H= /d?’wtﬂhw

= > am(t) an(t) ey mn = Z en an(tﬂan@)
m,n=1

Therefore we have reproduced the relations needed for describing a system of
identical fermions.

Number operator:
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Map of other operators:

One body operator
N
=2
i=1

is mapped to the operator:

o0
B= Z bypal a,

n,p=1

bnp = /d37”1 u;(ﬂ)a Up<7?1)

This gives

Z /d ryuy (77) bl up(rl)a a, = /d3T1 @b(t,Fl)Tl;l Y(t, 1)

n,p=1

2-body operator

Vv =) i, Vij = Vji
i,j=1
i
is mapped to the operator:
(0]
E , Um D, qa aqap
n.p.q

Um,n,p,q = / d37”1d37“2 um(ﬂ)*un(f'g)* /1712 up(f’l)uq(f'g)

This gives:

V= /d?’?“l Bryp(t, 7)) (t, 7)) D b (t, 7)) (¢, 7)
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Now we shall discuss relativistic particles.

From now on, we shall work in units:
h=1, ¢ (speed of light) = 1

In any formula, we can recover powers of i and ¢ using dimensional analysis.

If we get an equation A = B, its actual form is
A=hr"cB

Find a and b by comparing the dimensions of the two sides.

In these units, the relativistic relation £ = \/ p2c? + m2c* between energy E
and momentum p takes the form

E =+/p?+m?
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What is the generalization of the free particle Schrodinger equation?

Recall the original motivation that led to Schrodinger equation

oY 1 =,
ZE_ 2mv¢

— plane waves of the form e~ #**" should satisfy Schrodinger equation when
the non-relativistic relation between E and p holds:
-9

=Pt
2m

E = \/p? +m?

Now we want:

Problem: Any differential operator with finite number of derivatives will always
produce polynomial in p acting on plane waves

— simple modification of the right hand side of Schrodinger equation will not
work.

One route: Dirac equation — make the wave-function multi-component

Apparently simpler route: Square the relation between F and p:

E? = 5 +m?
— follows from the equation:
0*¢ =2 2
—w = —V Qb +m QZS

— Klein-Gordon equation
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0 =9 2
—@——V ¢+m¢

1. The equation has second order time derivative
— we need to specify ¢(t,7) and ¢(to, 7) initially to find ¢(t,7) at later time
2. The equation is real

— if the initial ¢ and ¢ are real, ¢(t,7) will remain real.

Put another way, if we take ¢ = ¢r + i ¢;, then the real and imaginary parts
of K-G equation gives:

P or =9 2 ¢r =9 2
—pp =V OrRTmMOR,  — = Vg +miy

¢r and ¢ evolve independently, and can be considered as two real fields.

For this reason we shall take ¢ to be real.

3. If we substitute the plane wave:
=i BHiDF

into the K-G equation, we get

— has two solutions:
E = +\p?+m?

If we start with a generic initial condition, and then express the solution as
superposition of plane waves, then both solutions will appear.

ot.7) = [ dp [Ape VI BT B = A(p)
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gb(t,F) _ /d3p {A(ﬁ)e—im /ﬁ2+m2+iﬁf'+ B(ﬁ)eit’ /ﬁ2+m2+iﬁf} : B(ﬁ)* _ A(—ﬁ)

Alternatively, we could allow ¢ to be complex and set B(p) = 0.

However the initial condition that leads to such solutions involve long range
correlation between ¢ and ¢:

¢<t,F) _ /dSpA(ﬁ) e—it\/ﬁ2+m2+iﬁf
66.7) = [ ' A) (=i ) e VI
At t = ty, the initial conditions on ¢ and gb are not independent.

But ¢(t, ) depends on ¢(t, F’) for 7' far away from 7, since
A(ﬁ) _ (2 ) /d3 / zto\/ p2+m2—ip.r’ ¢(t 7;»/)

— non-local initial condition.

For free particle one could live with it, but it is difficult to construct interacting
theories out of this without introducing action at a distance.

Conclusion: We should proceed by taking ¢ to be real and keeping both solu-
tions.

What is the interpretation of the negative energy solutions?

It is difficult to find an interpretation in the first quantized formulation in
which we regard ¢ as the wave-function of a particle.

However we get a consistent interpretation in the second quantized formulation
where we regard ¢ as a quantum field describing a system of bosons.
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Quantization of the Klein-Gordon equation

Step 1: Write down a Lagrangian from which we can derive the K-G equations

L=y [@r[@or - Fop-m].  a0-5

S — /dtL_ /dt/d3 atgb (Vo) — 2@;2}

Under an arbitrary variation d¢,

Action

5= [ at [ &r[@56)06 ~ (956).50 ~ m(56) o

1. In the first term, integrate by parts in time and ignore boundary terms at
initial and final time since d¢ vanishes there

2. In the second term, integrate by parts in z,y, z and ignore boundary terms
by requiring ¢ to vanish at spatial infinity.

5S = / dt / Br | —(50)92¢ + (6¢) V26 — m2(5¢) ¢}
Requiring 6.5 = 0 for arbitrary d¢ gives:
—2p+ V2 —m*p =0

— Klein-Gordon equation

Can also be derived using Euler-Lagrange equation:

i (se) ~ (i) =0
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8 Klein-Gordon field

Last time we derived the Lagrangian for Klein-Gordon equation

L= [ |2 (Fop - mie

We now turn to step 2 for quantization

— define conjugate momentum and Hamiltonian

N N 0Pt 7) [ 5 i o B) (= =1\ _ ifp
I(t, ") = 5q5(t,77’) —/d rgb(t,v*)dé(t,??/) —/d ro(t,r) 8 (r—r") = o(t, T

H = [@rnemin - L= [ [0 + (9ot + m? o(t. 7]
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= / dr |TU(E 792+ (Vo(t, 7)) + m? o(t, 7]

It will be useful to use momentum space basis, and introduce new independent
variables gb(t P),11(t, ) via:

. 1 7 . 1 W
o(t,7) = — [ &’p o(t,p) e (¢, 7) = —75 EpIi(t, p) e
(2m)3/ (2m)3/
Inverse relations:
1

Qg(t»ﬁ) -

3 - _ 3, ) o= T
)3/2/d ro(t, ) e P, (t p) = B )3/2/d I1(t, ) ,
o(t,p)" = o, —p), TI(t,p)" =II(t,—p)

(27

Note different use of the word ‘momentum’

— p refers to arguments of functions after Fourier transformation
— conjugate momentum II is canonically conjugate variable to ¢
This gives

/dgrd)tr /d3 / d33/2/ dg)s,/z o(t,p) €77 ot ) e

- /(2C7Zr)3/z/(2cjr)?:/2 06,66, 87) (2m 007 + 7 /dgp(btﬁ)w 7

Similar analysis can be done for other terms, leading to

H = 5 [ & [P + 7 6t -9l ) + ' ot~ )

_ % / d'p [T1( 7)TU(E B) + 52 0(t, )" 6(8 B) + m? 6(t, )" 6L, )
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Why did we expand in the momentum space basis?

General rule: Expand in the basis of eigenfunctions of the spatial part of the
differential operator that appears in the equations of motion

— in this case the operator is V? — m?

Its eigenfunctions are e'?"

This simplifies the part of H given by

% / dPr [(%(t,f»um%(t,mﬂ = % / d’r ¢(t, 7) [—§2+m2} o(t,7)

This is the analog of finding the normal modes in the small oscillation problem
in classical mechanics.
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=5 [ @ [T + 5 0065005 + m 6(e.5)"5(0.7)]

2
o(t,0)" = o(t,—p), T(t,p)" =TI(t, =)

Step 3: Quantization

Regard ¢ and II as operators satisfying:
[o(t,7), 11(t, 7)) = i 6O(F = 7", [o(t,7), o(t, 7)) = 0, [TI(¢, 7), TI(t,7")] = 0
This gives

BP0 = [ [ e Lo [arno,e e

_ 1 3y o~ T 8, =i 7 §3) (7 _ 1) — 1
(2m)3 /d /d L ) (27)? /
0t 5), o, F)] =0,  [TI(t, ), TI(t, 57")] = 0

2
d37” e—i(ﬁ—l—ﬁ/)i’ _ 25(3)(ﬁ+ﬁ/)

ot 7)1 = o(t, —p), T1(t,p)" = TI(t, —p)

)
I

[ [T 5 i) + 7 6. )16 5) + m 00,5600,
[ [T ~p)Ti5) + 57 Gt ~P(e.) + m* Gt ~(e.)
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[0t 2), 11t 7)) = i 6@ 7+ 7"),  [o(t, 7). ot 5")] = 0, [11(t, ), TL(t,5")] = O
ot 7)1 = o(t, —p), T1(t,p)" = TI(t, —p)

= [ @ [Aep s + 5+ m*) ot 6 )
Except for the {’s, the system looks like independent harmonic oscillators for
each p, with angular frequency \/p? + m?2

Define

By = /p?+m?
alt, ) = f( 26 5) + i By T 7))

oft.7) = (/00— — i £, M1t -)

Note that a(t,p)! is the hermitian conjugate of a(t, p).

Ex. Check that
la(t, ), alt,p)] =0,  [a(t,p)],alt,p)] =0,  [a(t,P), a(t,p")] = 6 (p—p"
H= /d3p Ega(t,p)la(t, p) + constant

[ﬁLa(t?ﬁ)] = _Eﬁa(t7m7 [H a(t ﬁ)T] = (t ﬁ) Ey = p?+m?
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[a(tvﬁ)v a(tvﬁl)] =0, [a(tvﬁ)Tv a(taﬁl)w =0, [a’(t:ﬁ)v a(taﬁl>w = 5(3)(ﬁ_ﬁ/)

H= /d3p Eza(t,p)a(t,p) + constant
[H,a(t,p)] = —Ega(t,p), [H,a(t,p)!] = Eya(t,p)f
We introduce basis states at ¢t = 0:

Define vacuum state |0) to satisfy
a(p)|0)y =0  forall p

Excited states:

H’ﬁlv"'vﬁN> - (Eﬁl +Eﬁ2 +"'+EﬁN)|ﬁ17"'7ﬁN>

—

— same energy as N free particles with momentum p1,-- -, py
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So far we have not introduced momentum operator.

Next time we shall use Noether’s theorem to define the momentum operator in
this quantum field theory.

Result:
ID\Z- = /d3ppi a(t,ﬁ)Ta(t,ﬁ), i=x,1,2

Using
D1, ov) = a(p)a(@) - - a(pn)7|0)

one can easily show that
P lpy, -, pn) = (i + -+ pwi)|p1, -, Pw)
We also had

H‘ﬁla'“7ﬁN> = (Eﬁl+Eﬁ2+'“+EﬁN)|ﬁ17"'7ﬁN>

We shall interpret |p1, - -+, p) as a state containing N free particles with mo-
menta pi, -+, py and energy Ep,, -, By, .
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Noether’s theorem in classical theory

For every continuous global symmetry, there is a conserved quantity
— valid in classical mechanics as well as in classical field theory

The proof will be given in the next lecture.

Today we shall introduce some notations.

Consider a general classical field theory with fields ¢, ¢o, - -, ¢

— they could be multiple scalars, components of a vector (like the vector po-
tential in electromagnetic theory) etc.

Action S|¢1, - -, ¢y is functional of these fields
This means that given n functions of space-time coordinates, ¢1(t, Z), - - -, ¢, (t,7),
S generates a number

e.g. for a single scalar field describing Klein-Gordon theory,

St = [ at [ @ [0 — (Vo - mie?

1)



A transformation: Given a set of functions ¢y, -+, ¢y, a transformation is a
rule by which we generate new set of functions ¢4, - -, ¢,.

Examples:

L. i(t,F) = —¢i(t, )

2. 6i(t, ) = i(t, —7)

3. 0u(t.7) = ot ), Ga(t.7) = Gu(t.7), Gt ) = 0i(t,7) for i > 3
Note: In all these cases the new functions are determined by old functions.

A transformation is a symmetry of the action if

Slor, -+, bul = Slr, -+, byl

Example: The transformation gb (t,r7) = —o(t,7) is a symmetry of

/ dt / &Br [(0:0)? — (Vo)? m2¢2]

/ dt / Pr [(8,0)? — (V)? —m%ﬂ = S[¢]

since
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9 Symmetries and conservation laws

Consider a general classical field theory with fields ¢1, ¢, - -, ¢n

— they could be multiple scalars, components of a vector (like the vector po-
tential in electromagnetic theory) etc.

Action S[¢q, -, ¢y,] is functional of these fields

This means that given n functions of space-time coordinates, ¢1(¢,7), -+, ¢, (t,7),
S generates a number

e.g. for a single scalar field describing Klein-Gordon theory,

st = [ ar [ @ [0 - (F0)? - e

A transformation: Given a set of functions ¢y, -, ¢, a transformation is a
rule by which we generate new set of functions ¢1,-- -, ¢,.
Examples:

3. 91(t,7) = do(t,7),  do(t,7) = du(t,7),  &ilt,7) = ¢i(t, F) for i > 3

Note: In all these cases the new functions are determined by old functions.
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We shall consider transformations that are smooth and invertible.
Invertible:

For a given transformation,

the knowledge of ¢; determines d~>z uniquely,

and

the knowledge of 52 determines ¢; uniquely.

Smooth:

Two field configurations, that are close to each other, gets mapped to field
configurations that are close to each other.

If ¢; is mapped to 51 then ¢; + d¢; is mapped to 51 + 551
If 0¢; = ef; than 557; = eg; + O(e?) for smooth functions f;, g;.
Smoothness + Invertibility

= for given sets of functions f1, - - -, f,, we can determine the functions g, -, g,
uniquely and vice versa.
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A transformation is a symmetry of the action if

S[b1, -+, n) = S, -+, byl

Example: The transformation ¢ ,T) = —¢(t,7) is a symmetry of

/ dt / &Br [(0:6)? — (Vo)? m%Q]
/dt/d3 atgb (Vo)? - } = S5[¢]

Similarly gb(t ) = ¢(t, —7) is also a symmetry.

since

./dg/d3 [(016(1, 7)) — (Vo(t, ~1)* — mPo(t, )

Change variable of integration 7' = —r

—

V=-V , d3r = d3r' after changing limits of integration

~:%/ﬁ/f“WwwWW—vﬁwwWW—m%wﬂfzsm

While checking if a transformation is a symmetry of the action, we shall ignore
integrals of total derivatives.
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If a transformation is a symmetry of the action then it maps solutions of the
equations of motion to solutions of the equations of motion.

—if ¢;(t,7) satisfies equations of motion, so does ¢;(t, 7)

Proof:

Suppose that under the symmetry transformation:

¢; is mapped to 51

Smoothness: Given any set of functions fi,-- -, fu,

¢; + €f; is mapped to 52 + €g; + O(€?) for some set of functions gi,-- -, gy,
We have, by symmetry,

S[{éi}] = S[{ai}]. S + egit] = S[{¢: + efi}] + O(e?)

Now suppose that ¢;(t, ) satisfies equations of motion.

SHoi + € fi}] = S[{ei}] + O(¢?)

since equations of motion = first order term in the variation of S vanishes

This gives, up to correction terms of order €

SUei +eg:}] = Sy + efi}] = S[{oi}] = S[{61)]

g;’s are arbitrary, since by invertibility, for any set of g¢;’s we can find the
corresponding f;’s

= ¢i(t,7)’s satisfy the equations of motion.
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Special case: Continuous symmetry:

The transformation laws depend on a parameter that can be varied contin-
uously, such that for every value of the parameter the transformation is a
symmetry.

Example: g(t, ) = ¢(t, 7+ d) is a symmetry of K-G action for every real value
of @ = (ay,ay,a).

~ 1 S
St =5 [ dt [ @ [@oe.7+ @)~ (ot + ) - mio(t.+ o]
Change integration variable to 7/ =7+ a, = d%' =dr, V' =V

St =5 [t [ @ [@o(e. 7))~ (Fo(t7) = mPo(e, 7] = Sl

In this case we have three continuous symmetries labelled by parameters a,, a,, a.
Time translation is also a continuous symmetry.

Another example: Consider Schrodinger field theory

S:/dt/d?’rw* [@h%—f—ﬁwl

This has a symmetry:

~

it 7) =Pt ), P, =e PPt )

for any real parameter 6.

81



Identity transformation:

— always a symmetry of the action.

A continuous symmetry is called connected to identity if for some value of the
continuous parameter(s) the transformation reduces to identity transformation.

Example: @ = 0 for translation, # = 0 for Schrodinger action
We shall focus on these symmetries although this is not strictly necessary.

We normally choose the parameter of transformation a in such a way that a = 0
corresponds to identity transformation.

Infinitesimal transformation: a infinitesimal
— transformations close to identity

Continuous global symmetry: The symmetry transformation parameter does
not depend on space-time coordinates t, 7

e.g. g(t,F) = ¢(t,7 + @) is not a symmetry of K-G action if @ becomes an
arbitrary function of ¢, 7.

We can still change integration variable to 7/ = 7+ d(t, 7), but

= & £ dPr, \V4 =+ \V/
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Noether’s theorem: For every continuous global symmetry, the theory has a
conserved quantity Q(¢):

d
—~0=0
dtQ

Global symmetry: Transformation parameters do not depend on ¢, 7.

The conserved quantities associated with space translation are called momen-
tum

— universal definition in all theories
— measures total physical momentum of a state
The conserved quantity associated with time translation is called energy

— coincides with the Hamiltonian
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10 Symmetries and conservation laws

Noether’s theorem: For every continuous global symmetry, the theory has a
conserved quantity Q(¢):

d
~0=0
dtQ
Global symmetry: Transformation parameters do not depend on ¢, 7.

We'll now give a proof of Noether’s theorem.

For this it will be useful (not necessary) to set up a relativistic notation
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Define: 2% = t, (2, 2%, 2%) =7

Four vector o = (20, 21, 2%, 2?)

Oy

9
ozt
The matrix n* = diag (—1,1,1, 1), nw = diag (=1,1,1,1)

Indices appearing twice in a product are automatically summed over 0,1,2,3,
e.g.

3
0.0 00 = Y 1" ud 0,6 = —(000)'+(D10)°+(0:0)"+(050)* = —(0:9)*+(V)*

pv=0

In this notation, the K-G action may be written as:

1
S =3 / d'z [—0" 0,0 0y — m*¢°]

Raising and lowering indices: Given any 4-vector A*, we define:

Ay =n, A", At =n" A,

85



Proof of Noether theorem:

Consider an infinitesimal continuous global symmetry

() = ¢i(x) + e xi(x)

¢: an infinitesimal parameter
Xi(x): Some known functions, constructed from the ¢;’s

Example: Consider infinitesimal translation along z':
(bi(mov xla (EQ: TB) - (/57:(370’ :El T €, 372, :B?)) — ij(ﬂfo, xla $2> rg) T € 81¢i<$07 :’Ulv xzv 1,3)

In this case,

Xi(7) = O1¢s(x)

Symmetry:
Sl{eit] = S[{¢i + exi}]

Now take an arbitrary function f(z).

S{pi}] = S[{¢: + efx:}] if f(z) is a constant.
= when f(z) is not a constant:

SHei+efxit]l = S[{oi}] + e /d4$[Kf($) Ouf + K5 (2)0,00f + -]

K", K§”, -+ are constructed from the ¢;’s and their derivatives (but not f)

Taking f to vanish at oo, we can integrate by parts and get

SHortefxit] = S[{dit]+e /d4$f(fv) Op " (x),  J" = =Ky (2)+0, Ky (x)+ -
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We have proved that if N

di(r) = ¢i(x) + e xi(w)
is an infinitesimal symmetry transformation, then for any function f(x) that
vanishes at oo, we have

SHei + efril] = SH{o:H + ¢ / 2 f(2) 0, (x)

for some quantity J#(x) constructed from the fields ¢;(z).
Now suppose that ¢;’s satisfy equations of motion.

In this case under any variation of the fields, the change in the action vanishes
to first order.

Sl{¢i +efxit] = S[{#:}] + O(*)
Therefore
/d%f(x) 0y J"(z) =0
Since f(x) is an arbitrary function, this gives
0, J"(x) =0

when equations of motion are satisfied

J# is called conserved current

J'=—-V.J, J=(J'J?J?

d o
E/cl?’rJO(t,F) = —/d3rV.J:0

assuming that the boundary terms vanish

— no current flowing out to infinity
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Conclusion: Given a continuous global symmetry, we can construct a quantity
Q= /d%« JO(t,7)

which satisfies
dQ

=0
dt

when equations of motion are satisfied.
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Construction of () simplifies for a special class of actions:

5 / &'z L({éi}, {0,6:))

L: Lagrangian density — an ordinary function of the n + 4n variables ¢;’s and

@Lgbi’s

e.g. for K-G field theory

L= _%nMV@M¢&/¢ - %m2¢2

— an ordinary function of ¢, dyp, 01¢, Os¢, D3¢

Suppose

oi(2) = ¢i(x) + exi(x),  Oudi(x) = Oudhilw) + e xi()

i1s a symmetry.

Then, in order that [ d*z £ remains invariant under this transformation,

LH{:},{0,0:}) = L6}, {u0i}) + € D K"

for some K*.

+ —eﬁﬂxi] = €0, K"

T o]
2 |96, N 0(0,00)

This gives the identity:

“.[oL oL
— X + 0 z] =0,K"
2 [a@x 0 Dpon) N

89



n

oL

] R

Now define

0i(x) = ¢i(x) + e f(@) xi(w),  Fudilx) = Bugi(x) + € Bu(f(x)xi())
Then

oL

LUG(@)} 10,0:(2))) = LUGi(0)}, {8, +Z [Sqf St D60 €

001 )

Sltor et =St = [ a3 {55 ert g eantsn)

L oc or
= [ > [a@ eFxit a@@«) T B0 O X”]
= /d%ef@u

-2 50,50 m
On the other hand, we defined J* via

Sl + exi)) = Sl{on)) = [ diwes o,
Comparison of the two equations gives:

" oC

By our previous argument, 9,J* =0, = Q= [d’rJ° is conserved
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11 Symmetries and conservation laws

Relevant result for

g_ / d'z L({6:}, {0,0:))

Suppose

oi(2) = ¢i(x) + exi(x),  Oudi(x) = Oudhilw) + e Dxi()

Is a symmetry.

Then, in order that [ d*z £ remains invariant under this transformation,

L{d:}.{0,0:}) = LU{bi}, {0u0i}) + €D, K"

for some K*.

Then

" oL
T Rk
== GG N

satisfies

8, J" =0

Q= d®rJY is conserved
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Example: Schrodinger field theory

S = /dt/d?’mp* [i%—%+%§2¢—(](ﬁ¢]
— [ [ [¢ . U(f)zp*w]

oY 1

£(¢7 77/)*’ 6,@, Qﬂﬁ*) = [W* E - 6¢*6¢ - U(F)¢*¢:|

2m

Symmetry

~

Ut F) =Pt P, Pt F) = e (t, )
L, {0,401, {0,47}) = L, ", {0,0}, {0,0"})

Infinitesimal version: 0 = e€:

w(t? 7:)) - w(ta F) + iﬂﬂ(ﬁ F)v w(t? F)* - ¢(t> F)* - iew(tv F)*

Recall our definition of y; and K*:
6i() = ¢i(z) +exi(@), LU} {0:6:}) = LU} {0u6:}) + € O K

under infinitesimal symmetry.
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o0 1 -
£, (B}, (00 = 10" 00— Gy T~ U

= X =1Y(t, 1), X" = —w(t,r), Kf=0

u:_” oL Foh o .. oL .,
J £ 2@ ¢ T SIGRD) (i) 6‘(6‘uw*)( i)
o 0L o |
P = =5 W) =

R S L P
J' = 500" (i) + g0 (=iy") = 5 —{Ydy" — ¢ 0}

Conserved quantity

N = / B (t, Pt )

— in quantum theory this becomes the number operator
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Next we find conserved quantities in K-G theory associated with space-time
translation.

L= [-n"0.90,¢ —m*¢’]

N | —

Symmetry: N
¢(z) = d(z +a)
0.1 .2

a = (a’ a',a? a®): An arbitrary constant four vector

We should have four conserved quantities and the associated currents J(“p)

Infinitesimal version: a = (e, €, €2, €3)

~

¢(x) = o(x +€) = p(x) + € 0,0

L(@(@), {0,0(x)}) = L((x+ ), {Dd(x +)})
= L(¢(2),{9,0(2)}) + € 9pL(d(2), {9,¢()})

Compare with our definition of y; and K*:

bi(w) = di(w) +exilw), LG} {0,0}) = LU {0,0i}) + €O K"

Since we have four transformations, and one field, we write this as

~

o(x) = o) + ¢ x(p)(2), L(6,{0,0}) = L($,{0,0}) + ¢ DKL)

This gives

X(p) = 0,0, 8MK&) =0,L = K&) = Léfj, 55 : Kronecker §
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L= [0 0,006~ m*

X(p) = 0,9, Ké;) = Loy, ol : Kronecker ¢

oL
X(p) + K,

[ =1 0,6 0,0 + L

Conserved quantity:

P, = /dST J(Op) = /d3r [770’/ 0,0 0,0 + E(Sg}
We define

P? =y P, = / d’r [1"0°"8,6 8,6 + L1"]

P [ @ - 2] = 5 [0 + (Fo? + ]

agrees with H (energy)
Pi:]%:/d?’r[—@()(b&iqb] = —/dSTH@»(ﬁ fori=1,2,3

— defined as i-th component of physical momentum
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Recall Fourier transformation formulee:

— 1 Iy T — 1 7 DT
qb(t,’f’) - (271')3/2 /d?’p(b(tvﬁ’)ep. ) H(t,?“) = (271')3/2 /d?’pH(t,ﬁ)ep )

P = _/d3TH(t7F) 0ip = — /d?’pﬁ(t, _ﬁ) (sz) g(taﬁ)v fori=1,2,3

In quantum theory, where ¢ and Il are operators, we have

1 ~ _ ~
a(t,p) = 7 <E;/2¢(t,ﬁ) +iE; 1/2H(t,ﬁ))

oft.) = =5 (B0~ i B, e )

Eﬁ = \/P?%+m?
Using this we can rewrite P’ in the quantum theory as:

ﬁiz/d‘gppia(t,ﬁwa(t,ﬁ) + constant

This was used earlier to show that the state:

1, - pn) = a(py) a(@) - - - a(pn)']0)
satisfies R
P |py,---,0on) = (p1i+ - -+ pni) |1, - - DN)
We also had

—

H‘pla"'aﬁN> = (Eﬁl +Eﬁ2+'“+EﬁN)|ﬁ17'”7pN>

This allowed us to interpret |pi,---,pn) as a state containing N free particles
with momenta p,---,py and energy Ej,-- -, Ej,.
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Why did we have to construct a conserved quantity for defining momentum?

For free particles we did not need to go through the exercise.

Momentum of each particle is individually conserved, i.e. the state |p1, - -, Dn),
if evolved in time via Schrodinger equation, will just pick up a phase and will
still have the interpretation of an N particle states with momenta pi,-- -, py.

However, once we introduce interactions, this will no longer be the case.

The particles may be able to exchange momenta, produce new particles, anni-
hilate themselves etc.

Nevertheless, the total momentum and energy should not change.

This will be the case if in the interacting theory we define the energy and mo-
menta as conserved quantities associated with space-time translation, provided
space and time translations are symmetries of the theory.

For Noether theorem to be useful in quantum field theory, it is important that
a quantity conserved in the classical theory is also conserved in the quantum
theory

— generally true since the quantum field operators satisfy the same equations
of motion as the classical fields.

However in some cases this fails.
Such symmetries are known as anomalous

— will not be discussed any further in this course.
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Now let us return briefly to the currents J(“p ) associated with space-time trans-
lation.

It is called the energy-momentum tensor and written as 7%,
Note that the two indices are on different footing.
1 labels the component of the conserved four current

p labels the particular direction of translation that leads to this conserved
quantity.

p = 0 associated to time translation, p = 1,2, 3 associated to space translation
symmetry

We also define
TH = n”pT“p

Then
Energy = / dr T, momentum = / dr T

For the Klein-Gordon field:
T = Jls = 0 [0 Dy 0o+ L] = 070 0y o+ L1

— symmetric under p <> o
This is a general property of the energy momentum tensor

— can be made symmetric, if necessary, by adding a tensor K*? with the prop-
erties:

1. 9,Kr =0, 2. [d* K" =0
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12 Lorentz invariance and associated conserved quanti-
ties

Last time we analyzed the conserved quantities in K-G theory associated with
translation symmetry.

~

O(x) = ¢(z +€) = ¢(x) + € 0y

This gives
L(H(x),{0,0(2)}) = L(B(x + €), {Dud(x + )})

= L(¢(2),10,0(2)}) + € 0,L(6(2), {9uo(7)})

Using the general definitions:

~

(@) = d(x)+e' x(p)(x),  L(D(@), {9,0(x)}) = L(H(x). {Du(w)}) + €D, K,

we get, by comparison,

X(p) = Op®, K&) = Loy, of, + Kronecker 4

This gave conserved current associated with translation along p direction:

oL
Lo
X)) = 5,97 %P T L%

We called this T/“fo.

Note: Up to this point we do not need explicit form of £, but after this step
we used the form of £ in K-G theory.
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Up to this point the analysis also holds for multiple fields if we just sum over
all fields in the first term.
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Lorentz invariance of K-G action:

A: Lorentz transformation matrix

(Az) = A2, AnAl =q

In components
Apu n" A, =

We shall first check that this is a symmetry of K-G action.

L(3() {0.5()}) = g0, 0(2)0,(x) — smB(x)
= o B0(AR)0,0(A) — I o(Ax)
Define
a'? =N x°
Then 5 90 8
4y /
T Dxh T Ozl Ozr A%
This gives
L) AN = — N, ola' A, Byo(a’) — Sm’o(a)
1 1
= ) (') — Gl = L(o(), {0,6(x)

Since |det A| = 1, we also have d'z’ = d'z
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L(&(2), {0,0(x)}) = L(B("),{0,6(z")}),  d'w=d"
This gives

S| = / d'z L($(2), {0,0(2)}) = / d'z' L(p(2'),{0,8(z)}) = S[g]

Therefore Lorentz transformation is a symmetry of the action.
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We shall now construct the associated conserved quantity.

For this we need to consider the infinitesimal version of Lorentz transformation.

A=T+ew, AN =" +ew

AnAT=n = ([+ew)n(I+ew’)=n = ewnt+nw’)=0

W W, =0 = W+ =0
where we have defined

[ 2N VN 7
W' =W n

Therefore w"” is an arbitrary anti-symmetric matrix

Woo = Npu Now W 1s also an antisymmetric matrix

— 6 independent paramaters

3 boost and 3 rotations

Goal: Find the conserved charges associated with Lorentz transformations

— we need to construct the y;’s and K*’s for each of these six independent
infinitesimal transformations.

We'll do it all together just as for translation we found all the conserved charges
together.
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Recall that
L(¢(x), {0,0(2)}) = L(&(x'), {0, p(2)})

For infinitesimal trasformation:

ot = A g = (6 + ewh)” = ot + ewt ¥

Therefore

L($(2),{0,6(x)}) = L($(x), {D.0(0)}) + ew’, 2" L(H(x), {D,0()})

This can be written as

L($(2),{0,6(x)}) = L($(x), {0,6(x)}) + €0, [, 2 L($(x), {D,0(x)})]

since
1 Vo SV P Vo, up _
wh, Oy ¥ = W, 6 = whny, o) = w'n,, =0

by anti-symmetry of wH”.
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Recall our general definition of y; and K*:

dilw) = di(@) +exi(w), LAY (0,0}) = LU, {0ui}) + € D K"

under infinitesimal symmetry.

Here we have

L(¢(x), {0,0(x)}) = L($(x), {0,p(x)}) + €0, [, 2” L((x), {Dpp(x)})]

This gives

Kt =wh, z" L(Pp(x),{0,¢(x)})

We also have

This gives
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X(x) =wh, 2" 00, K" =uwh, 2" L(d(x),{0,¢(x)})

Conserved current

oL oL

v

00,0 " T T 000,0)

JH = — wh, 2" Opp + W, 2 L((2),{0,¢(x)})

Recall the construction of TH = n"? J(“p):
X(p) = 0,9, Ké:)) = Lo ol + Kronecker 4

P’
oL Kto= -5 o464 co

Lo
0= 0,0 0 0 T T50,0)

(

This gives the conserved current for Lorentz transformation:

JH=w’, " J‘;) = 0" Wy ¥ J“p

1
( () = Wrv ' TH = §ww [x” THT — 2™ TH]

Since w;, is an arbitrary antisymmetric matrix,

MM = " TWT — g™ T

is conserved, i.e.

0, M"™7 =0
This implies that T* must be symmetric.

0= 8, M™T = 9, {a" T — 2™ T} = 6" T — §, T =T —T"

Note: In this derivation we did not need to use the explicit form of L

As long as the action is Lorentz invariant, this derivation will work for general
Lagrangian, even for multiple scalar fields.
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MM = gV THT — g

Conserved quantity
jm' — /d37“ MOI/T — /d37“ [Qj‘y TOT . I'TTOV]
T = /d?’r [xZ TY — l‘jTOi]

SInce TY represents momentum density, [:z:Z TV — :UjTOi] represents angular
momentum density:.

J¥ represents the three independent components of angular momenta of the
system

jOi — /d?)?“ MOOi — /d37“ [ZL‘O TOi . xiTOO]

These are conserved quantities associated with Lorentz boost
Note 