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Lecture 1



Introduction

A black hole is a classical solution in general theory
of relativity with special properties.

It is surrounded by an event horizon which acts as a
one way membrane.

Nothing can escape from inside the event horizon to
the outside.

Thus in classical general theory of relativity a black
hole behaves as a perfect black body at zero
temperature and is an infinite sink of entropy.



It has been known since the work of Bekenstein,
Hawking and others that in quantum theory a black
hole behaves as a thermodynamic system with finite
temperature, entropy etc.

SBH =
A

4 GN

Bekenstein, Hawking

A: Area of the event horizon

GN: Newton’s gravitational constant

Our units: ~ = c = kB = 1



For ordinary objects the entropy of a system has a
microscopic interpretation.

We fix the macroscopic parameters (e.g. total electric
charge, energy etc.) and count the number of
quantum states – known as microstates – each of
which has the same charge, energy etc.

dmicro: number of such microstates

Define microscopic (statistical) entropy:

Smicro = ln dmicro

Question: Does the entropy of a black hole have a
similar statistical interpretation?



The best tests involve a class of supersymmetric
extremal black holes in string theory, also known as
BPS states.

Strategy:

1. Identify a supersymmetric black hole carrying a
certain set of electric charges {Qi} and magnetic
charges {Pi} and calculate its entropy SBH(Q,P) using
the Bekenstein-Hawking formula.

2. Identify the supersymmetric quantum states in
string theory carrying the same set of charges and
calculate the number dmicro(Q,P) of these states.

3. Compare Smicro ≡ ln dmicro(Q,P) with SBH(Q,P).



For these one indeed finds a match:

A/4GN = ln dmicro

Strominger, Vafa, ...

However this agreement also opens up new
questions.



1. The computation of the entropy on the black hole
side is valid when gravity is sufficiently strong so that
the horizon radius is much larger than the compton
wavelength.

The microscopic computation is valid in the opposite
limit.

How can we compare the two?

Suggested remedy: Use supersymmetric index
∼ Tr(−1)F

Protected from quantum corrections and is easier to
compute on the microscopic side.

Is it reasonable to compare this with black hole
entropy which counts Tr(1)?



2. Both A/4GN and dmicro are computed in the large
charge approximation.

On the black hole side this is needed to keep the
curvature at the horizon small so that we can use
classical Bekenstein-Hawking formula.

On the microscopic side the large charge
approximation is needed so that we can use some
asymptotic formula for estimating ln dmicro.

Does the agreement between the microscopic and the
macroscopic results hold beyond the large charge
limit?

– need tools for more accurate computation of
entropy on both sides.



3. On the microscopic side we can compute the
entropy in different ensembles, e.g. grand canonical,
canonical, microcanonical etc.

They all agree in the large charge limit, but differ from
each other for finite charges.

Which of these entropies should we compare with the
black hole entropy?



4. Do black holes carry more information than just the
total number of states?

Example 1: Can we tell if most of the black holes are
bosonic or fermionic, ı.e. is Tr(−1)F positive or
negative?

Example 2: Suppose the theory has a discrete ZZN
symmetry generated by g.

Can the black holes tell us the answer for
{

Tr(−1)Fg
}

?

⇔ distribution of ZZN quantum numbers among the
microstates.



Why do we want to study these questions?

On the black hole side addressing these questions
invariably leads us to the study of quantum gravity
corrections to the black hole entropy.

Thus successfully addressing these questions will
require understanding the rules for quantizing gravity.

Testing the gravity prediction against microscopic
prediction will enable us to test whatever tools we use
to study quatum gravity in black hole background.

We can then try to apply the same tools to more
general situations possibly going beyond
supersymmetric black holes.



Some exact microscopic results in D=4

Exact microscopic results are known for

1. Type II on T6,

2. Heterotic on T6 or equivalently type II on K3× T2,

3. Some special orbifolds of the above theories with
16 unbroken supersymmetries

– known as CHL models Chaudhuri, Hockney, Lykken



The role of index

The microscopic analysis is always done in a region
of the moduli space where gravity is weak and hence
the states do not form a black hole.

In order to be able to compare it with the results from
the black hole side we must focus on quantities which
do not change as we change the coupling from small
to large value.

– needs appropriate supersymmetric index.

The appropriate index in D=4 is the helicity trace
index.

Bachas, Kiritsis



Suppose we have a BPS state that breaks 4n
supersymmetries.

→ there will be 4n fermion zero modes (goldstino) on
the world-line of the state.

Consider a pair of fermion zero modes ψ0, ψ†0
satisfying

{ψ0, ψ
†
0} = 1

If |0〉 is the state annihilated by ψ0 then

|0〉, ψ†0|0〉
give a degenerate pair of states with J3 = ±1/4 and
hence

(−1)F = (−1)2J3 = (−1)±1/2 = ±i
Thus

Tr(−1)F = 0, Tr(−1)F(2J3) = i



Lesson: Quantization of the fermion zero modes
produces Bose-Fermi degenerate states and make
Tr(−1)F vanish.

Remedy: Define

B2n =
1

(2n)!
Tr(−1)F(2J3)2n =

1
(2n)!

Tr(−1)2J3(2J3)2n

Since there are 2n pairs of zero modes,

B2n =
1

(2n)!
TrrestTrzero(−1)2J(1)

3 +···2J(2n)
3 +2Jrest

3

×
(

2J(1)
3 + · · · 2J(2n)

3 + 2Jrest
3

)2n

= TrrestTrzero(−1)2J(1)
3 +···2J(2n)

3 +2Jrest
3 × 2J(1)

3 × · · ·2J(2n)
3

= (i)2n × Trrest(−1)2Jrest
3



B2n = (i)2n × Trrest(−1)2Jrest
3

Thus B2n effectively counts (−1)nTrrest(−1)F, with the
trace taken over modes other than the 4n fermion
zero modes associated with broken supersymmetry.

Note: B2n does not receive any contribution from
non-BPS states which break more than 4n
supersymmetries and hence have more than 4n
fermion zero modes.

Due to this property B2n is protected from quantum
corrections.



Examples

Type II on T6 has 32 supersymmetries.

1/8 BPS black holes break 28 of the supersymmetries.

Thus the relevant index is B14.

Heterotic on T6 (or type II on K3× T2) has 16
supersymmetries.

1/4 BPS black hole breaks 12 supersymmetries.

Thus the relevant index is B6.



Type II on T6

This theory has 12 NSNS sector gauge fields and 16
RR sector gauge fields.

Consider a dyon carrying NSNS sector charges.

– characterized by 12 dimensional electric and
magnetic charge vectors Q and P.

Q and P transform as vectors under the T-duality
group SO(6,6; ZZ)

Q2,P2,Q · P: T-duality invariant inner products.



Q2 = 2
6∑

i=1

niwi, P2 = 2
6∑

i=1

NiWi, Q · P =
6∑

i=1

(niNi + wiWi)

ni,wi: (momentum, winding) along i-th circle

Ni,Wi: (KK monopole, H-monopole) charge along i-th
circle

Define ∆ = Q2P2 − (Q · P)2

– invariant also under S-duality group

Restrict to states satisfying gcd{QiPj −QjPi} = 1
Dabholkar, Gaiotto, Nampuri



Then
B14 = (−1)Q·P

∑
s|Q2/2,P2/2,Q·P

s ĉ(∆/s2)

where ĉ(u) is defined through

−ϑ1(z|τ)2 η(τ)−6 ≡
∑
k,l

ĉ(4k− l2) e2πi(kτ+lz)

Shih, Strominger, Yin

ϑ1: Jacobi theta function η: Dedekind eta function

ĉ(−1) = 1, ĉ(0) = −2, ĉ(3) = 8, ĉ(4) = −12, ĉ(7) = 39

ĉ(8) = −56, ĉ(11) = 152, ĉ(12) = −208, · · ·
B14 is negative and for large charges we have

log[−B14] = π
√

∆−2 ln ∆ + · · ·



Although we have stated the results for black holes
carrying only NSNS sector charges, it also covers
many other black holes carrying purely RR charges or
both NSNS and RR charges, since U-duality
symmetry relates many of these black holes.



B14 < 0, log[−B14] = π
√

∆−2 ln ∆ + · · ·

Bekenstein-Hawking entropy SBH of a black hole
carrying the same charges is given by

π
√

∆

1. Why is there an agreement between ln |B14| and
SBH at the leading order?

2. Can we reproduce the subleading −2 ln ∆
correction from the black hole side?

3. Can we explain why B14 is negative from the black
hole side?



Heterotic string theory on T6

This theory has 28 U(1) gauge fields.

Thus a generic charged state is characterized by 28
dimensional electric charge vector Q and magnetic
charge vector P.

The theory has T-duality symmetry O(6,22; ZZ) under
which Q and P transform as vectors.

This allows us to define T-duality invariant bilinears in
the charges:

Q2, P2, Q · P



More general class of N = 4 supersymmetric string
theories can be constructed by taking orbifolds of
heterotic string theory on T6.

– CHL models Chaudhuri, Hockney, Lykken

These theories have (r + 6) U(1) gauge fields for
different values of r.

Thus Q and P are (r+6) dimensional vectors.

We can again construct O(r,6) invariant bilinears

Q2, P2, Q · P



In each of these theories, the index B6(Q,P) has been
computed for a wide class of charge vectors (Q,P).

In each case the result is expressed as Fourier
expansion coefficients of some well known functions
Z(ρ, σ, v), called Siegel modular forms:

B6 = (−1)Q.P
∫

dρ
∫

dσ
∫

dv e−πi(ρQ2+σP2+2vQ·P)Z(ρ, σ, v)

Z(ρ, σ, v): explicitly known in each of the examples,
and transform as modular forms of certain weights
under subgroups of Sp(2,ZZ).

Dijkgraaf, Verlinde, Verlinde; Shih, Strominger, Yin; David, Jatkar, A.S.; Dabholkar, Gaiotto, Nampuri;

S. Banerjee, Srivastava, A.S.; Dabholkar, Gomes, Murthy; Govindarajan, Gopala Krishna; · · ·



Some microscopic results for −B6 in heterotic on T6

(Fourier coefficients of a Siegel modular form)

(Q2, P2)\Q.P −2 2 3 4 5 6 7

(2,2) −209304 648 327 0 0 0 0

(2,4) −2023536 50064 8376 −648 0 0 0

(2,6) −15493728 1127472 130329 −15600 972 0 0

(4,4) −16620544 3859456 561576 12800 3272 0 0

(4,6) −53249700 110910300 18458000 1127472 85176 −6404 0

(6,6) 2857656828 4173501828 920577636 110910300 8533821 153900 26622

(2,10) −510032208 185738352 16844421 −2023536 315255 −31104 1620



It is also possible to find the systematic expansion of
B6 for large charges.

In each case we find B6 < 0 in large charge limit.

ln |B6| = π
√

Q2P2 − (Q.P)2 + f

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O(charge−2)

f: a known function.
Cardoso, de Wit, Kappeli, Mohaupt; David, Jatkar, A.S.

For example, for heterotic string theory compactified
on a six dimensional torus,

f(τ1, τ2) = 12 ln τ2 + 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2)

η: Dedekind function



ln |B6| = π
√

Q2P2 − (Q.P)2 + f

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O(charge−2)

Bekenstein-Hawking entropy SBH of a black hole
carrying the same charges is given by

π
√

Q2P2 − (Q.P)2



1. Why is there an agreement between microscopic
index and exp[SBH] at the leading order?

2. Can we calculate the subleading corrections on the
black hole side?

3. Can we explain why B6 < 0 for large charges from
the black hole side?

4. Can we explain why B6 does not have definite sign
for finite charges?
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Review of main results

Exact microscopic results for helicity trace index
exist in type II string theory on T6, heterotic string
theory on T6 and four dimensional CHL models with
16 unbroken supersymmetries.

Relevent index: B14 for type IIA on T6 and B6 for
heterotic on T6 and CHL models.



Important results on B14:

1. B14 < 0

2. In the large charge limit

log[−B14] =π
√

∆−2 ln ∆ + · · ·

∆ ≡ Q2P2 − (Q · P)2

Bekenstein-Hawking entropy SBH of a black hole
carrying the same charges is given by

π
√

∆



Important results on B6:

B6 < 0 in the large charge limit but for finite charges
B6 can be either positive or negative.

In the large charge limit

ln |B6| = π
√

Q2P2 − (Q.P)2 + f

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O(charge−2)

f: a known function

Bekenstein-Hawking entropy SBH of a black hole
carrying the same charges is given by

π
√

Q2P2 − (Q.P)2



There are closely related results in 4+1 non-compact
dimensions e.g. in type II on T5, type II on K3× S1 and
their orbifolds.

Maldacena, Moore, Strominger; Dijkgraaf, Moore, Verlinde, Verlinde; Jatkar, David, A.S.



Twisted index

On special subspaces of the parameter space of the
N = 8 and N = 4 supersymmetric string theories in
(3+1) dimensions, the theory develops ZZN discrete
symmetry generated by an element g which
commutes with 16 supersymmetries.

Example: For heteroric on T6 we can have
N=2,3,4,5,6,7,8

On these special subspaces we can define the
twisted index:

Bg
6 =

1
6!

Tr
[
(−1)2h(2h)6g

]
Like B6, this index is also protected.



In each case we can calculate the twisted index Bg
6,

and find that the result is again given by Fourier
integrals of modular forms of subgroups of Sp(2,ZZ).

Bg
6 = (−1)Q.P

∫
dρ
∫

dσ
∫

dv e−πi(ρQ2+σP2+2vQ·P)Zg(ρ, σ, v)

Zg are known functions.

Furthermore for large charges we find

Bg
6 = exp[π

√
Q2P2 − (Q · P)2/N + · · · ]

Can we explain this behaviour of Bg
6 from the black

hole side?



Macroscopic analysis

Goal:

1. Develop tools for computing the entropy / index of
extremal black holes beyond the large charge limit.

2. Apply it to black holes carrying the same charges
for which we have computed the microscopic index.

3. Compare the macroscopic results with the
microscopic results.

4. Repeat the analysis for g-twisted index.



Computation of macroscopic degeneracy.

To leading order it is given by exp[SBH(Q)].

Our goal will be to study corrections to this formula.

In string theory the Bekenstein-Hawking formula
receives two types of corrections:

1 Higher derivative (α′) corrections in classical
string theory.

2 Quantum (gs) corrections.

Of these the α′ corrections are captured by Wald’s
modification of the Bekenstein-Hawking formula.

What about quantum corrections?



Since the metric and the dilaton at the horizon are
fixed by the charges, both the higher derivative
corrections and string loop corrections are controlled
by appropriate combination of the charges.

α′ and gs expansion⇒ an expansion in inverse power
of charges.

Example: Consider a black hole in type II string
compactification carrying only RR charges, each of
order Λ for some large number Λ.

For such a black hole gS ∼ Λ−1 at the horizon.

Thus string loop expansion gives an expansion for
the entropy in inverse powers of Λ.



Proof:

Classical action S(φ, ψNSNS, ψRR) satisfies:

S(φ− ln Λ, ψNSNS,ΛψRR) = Λ2S(φ, ψNSNS, ψRR)

φ: Dilaton field, ψNSNS, ψRR: NSNS and RR fields

Thus given any classical solution we can get another
solution by scaling RR fields by Λ and eφ by 1/Λ.

scales RR charges by Λ and gS by 1/Λ.

Thus the correction to the entropy of order Λ−2n+2

comes at the n-loop order.

Tree level: Λ2, One loop: Λ0, ln Λ, etc.



How can we calculate these quantum corrections to
the entropy?

Strategy: Use euclidean path integral formulation and
make use of the presence of AdS2 in the near horizon
geometry.



Example: Reissner-Nordstrom solution in D = 4

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ 2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2
+

, r =
2ρ− ρ+ − ρ−

2λ

and take λ→ 0 limit keeping r, t fixed.

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

AdS2 × S2



This feature holds for all known extremal black hole
solutions.

Postulate: Any extremal black hole has an AdS2 factor
/ SO(2,1) isometry in the near horizon geometry.

– partially proved

Kunduri, Lucietti, Reall; Figueras, Kunduri, Lucietti, Rangamani

The full near horizon geometry takes the form
AdS2 × K

K: some compact space that includes the S2 factor.

Presence of the AdS2 factor allows us to apply the
rules of AdS/CFT correspondence.



1. Consider the euclidean AdS2 metric:

ds2 = a2
(

(r2 − 1)dθ2 +
dr2

r2 − 1

)
, 1 ≤ r <∞, θ ≡ θ + 2π

= a2(sinh2 η dθ2 + dη2), r ≡ cosh η, 0 ≤ η <∞

Regularize the infinite volume of AdS2 by putting a
cut-off r ≤ r0f(θ) for some smooth periodic function
f(θ).

This makes the AdS2 boundary have a finite length L.



2. Define the partition function:

ZAdS2×K =

∫
Dϕexp[−Action]

ϕ: set of all string fields

Boundary condition: Asymptotically the field
configuration should approach the classical near
horizon geometry of the black hole.

By AdS2/CFT1 correspondence:

ZAdS2×K = ZCFT1

CFT1: dual (0+1) dimensional CFT obtained by taking
the infrared limit of the quantum mechanical system
underlying the black hole microstates.



3. Note on boundary condition:

Near the boundary of AdS2, the θ indepndent solution
to the Maxwell’s equation has the form:

Ar = 0, Aθ = C1 + C2r

C1 (chemical potential) represents normalizable mode

C2 (electric charge) represents non-normalizable
mode

→ the path integral must be carried out keeping C2
(charge) fixed and integrating over C1 (chemical
potential).



Two consequences:

(a) The AdS2 path integral computes the CFT1
partition function in the microcanonical ensemble
where all charges are fixed.

(b) This also forces us to to include a
Gibbons-Hawking type boundary term in the path
integral

exp[−iqk

∮
∂(AdS2)

dθA(k)
θ ]

A(k)
µ : gauge fields on AdS2.

qk: associated electric charge



4.
ZAdS2×K = ZCFT1= Tr(e−LH) = dhor e−L E0

H: Hamiltonian of dual CFT1 at the boundary of AdS2.

(dhor,E0): (degeneracy, energy) of the states of CFT1.

5. Thus we can define dhor by expressing ZAdS2×K as

ZAdS2×K = eCL × dhor as L→∞

C: A constant

dhor: ‘finite part’ of ZAdS2×K.

We identify (ln dhor) as the quantum corrected black
hole entropy Smacro



Classical limit

ZAdS2×K = exp[−Classical Action− iqk

∮
dθA(k)

θ ]

= exp
[
−
∫ r0

1
dr
∫ 2π

0
dθ[
√

det gLE + iqk F(k)
rθ ]

]
LE: Euclidean Lagrangian density integrated over K.

Now in the near horizon geometry:√
det g = a2, LE = constant, F(k)

rθ = −iek

Thus

ZAdS2×K = exp
[
−(a2LE + qkek)

∫ r0

1
dr
∫ 2π

0
dθ
]



∫ r0

1
dr
∫ 2π

0
dθ = 2π(r0 − 1)

Length of the boundary of AdS2 is

L =

∫ 2π

0

√
gθθ dθ = 2πa

√
r2

0 − 1 = 2πr0a +O(1/r0)

Thus ∫ r0

1
dr
∫ 2π

0
dθ = L/a− 2π +O(L−1)

ZAdS2×K = exp
[
−(a2LE + qkek)

∫ r0

1
dr
∫ 2π

0
dθ
]

= exp
[
−(a2LE + qkek)(L/a− 2π)

]
⇒ dhor = exp[2π(a2LE + qkek)] = exp[Swald]



We shall now try to compute quantum corrections to
ZAdS2×K and compare them with the microscopic
results.

However we need to address several issues first.



1. Microscopic results are for the index but the black
hole entropy is related to degeneracy.

We must find a way to relate the two.
A.S.; Dabholkar, Gomis, Murthy, A.S.

2. On the macroscopic side there may be additional
modes living outside the horizon – known as hair
modes – which contribute to degeneracy / index.

– supersymmetric deformations of the black hole
solution with support outside the horizon.

N. Banerjee, Mandal, A.S.; Jatkar, A.S., Srivastava

3. Besides single centered black holes we may also
have multi-centered black hole solutons carrying the
same total charges. Denef; · · ·

We need to include their contribution as well.



Example of hair modes:

The fermion zero modes associated with the broken
supersymmetry generators are always part of the hair
modes.

Proof: Take a black hole solution and deform it by
infinitesimal local supersymmetry transformation
with parameter ε(x) such that

ε(x)→ ε0 as x→∞

ε(x) = 0 for |x| < R0 for some R0

1. Deformations have support outside the sphere of
radius R0.

2. This is not a pure gauge deformation if ε0 is not the
asymptotic value of a Killing spinor.



Lecture 3



Algorithm for computing quantum black hole entropy

1. Regularize infinte volume of AdS2 by putting a
cut-off r ≤ r0 so that the boundary has a finite length
L.

2. Calculate

ZAdS2×K =

∫
Dϕexp[−Action− iqk

∮
∂(AdS2)

dθA(k)
θ ]

3. Define dhor through:

ZAdS2×K = eCL dhor as L→∞

4. Identify ln dhor as the quantum corrected entropy.



Issues to be addressed

1. Microscopic results are for the index but dhor
computes degeneracy.

We must find a way to relate the two.

2. On the macroscopic side there may be additional
modes living outside the horizon – known as hair
modes – which contribute to degeneracy / index.

e.g. the zero modes associated with broken
supersymmetries are hair modes.

3. Besides single centered black holes we may also
have multi-centered black hole solutons carrying the
same total charges.

We need to include their contribution as well.



To address these three issues we begin with a
general multi-black hole configuration:

Horizon

Horizon

HorizonHair

Q1

Q

Q

2

n

Qhair

Qi denotes both electric and magnetic charges of the
i-th black hole.



We shall denote the degeneracy associated with the
horizon degrees of freedom by dhor and those
associated with the hair degrees of freedom by dhair.

dhair can be calculated by explicitly identifying and
quantizing the hair modes.

The total degeneracy:

∑
k

∑
{~Qi},~Qhair∑k

i=1 ~Qi+~Qhair=~Q

{
k∏

i=1

dhor(~Qi)

}
dhair(~Qhair; {~Qi})



Now let us compute B2n for the same configuration.

B2n =
1

2n!
Tr(−1)2h(2h)2n =

1
2n!

Tr(−1)hhor+hhair (2hhor + 2hhair)
2n, h ≡ J3

For black hole with four unbroken supersymmetries:

SUSY + SL(2,R) isometry of AdS2 → SU(1,1; 2) supergroup

– symmetry group of the near horizon geometry.

SU(1,1; 2) ⊃ SU(2)

→ horizon must be spherically symmetric.

Furthermore since the black hole is in the
microcanonical ensemble,

spherical symmetry→ zero angular momentum

→ hhor = 0.



B2n =
1

2n!
Tr(−1)2h(2h)2n =

1
2n!

Tr(−1)hhor+hhair (2hhor + 2hhair)
2n

hhor = 0

Thus
B2n =

1
2n!

Tr(−1)hhair(2hhair)
2n

‖ Tr⇒ TrhorTrhair

∑
k

∑
{~Qi},~Qhair∑k

i=1 ~Qi+~Qhair=~Q

{
k∏

i=1

dhor(~Qi)

}
B2n;hair(~Qhair; {~Qi})



Let us for now focus on the contribution from single
centered black holes (k=1).

Often for single centered black holes the only hair
modes are the fermion zero modes.

In this case Qhair = 0.

To compute B2n;hair we note that quantization of each
pair of fermion zero modes produces states with
h = ±1/4 and hence Tr(−1)2h(2h) = i.

Thus 2n pairs of fermion zero modes will gives

B2n;hair = (i)2n = (−1)n

Thus
B2n(Q) = (−1)ndhor(Q)



B2n(Q) = (−1)ndhor(Q)

– explains why we can compare the microscopic
index with the macroscopic entropy, and also
predicts that A.S.; Dabholkar, Gomes, Murthy, A.S.

B6 < 0, B14 < 0

provided we can ignore the effect of

1. multi-centered black holes,

2. hair modes of single centered black holes other
than the fermion zero modes,

The hair modes of single centered black holes are
quite restrictive, and known hair modes in D=4 carry
positive B2n;hair.

Thus they do not change the sign of B2n.



For type II on T6 the multi-centered black holes do not
contribute to B14 for ∆ > 0. A.S.

– predicts B14 < 0 for ∆ > 0

– in perfect agreement with the explicit microscopic
results.



In N = 4 supersymmetric string theories
multi-centered black holes contribute to the index but
their contribution is exponentially suppressed in the
large charge limit.

A.S.; Dabholkar, Guica, Murthy, Nampuri

Thus the previous argument predicts B6 < 0 in the
large charge limit, in agreement with the microscopic
results.

What about for finite charges?



Some microscopic results for −B6 in heterotic on T6

(Fourier coefficients of a Siegel modular form)

(Q2, P2)\Q.P −2 2 3 4 5 6 7

(2,2) −209304 648 327 0 0 0 0

(2,4) −2023536 50064 8376 −648 0 0 0

(2,6) −15493728 1127472 130329 −15600 972 0 0

(4,4) −16620544 3859456 561576 12800 3272 0 0

(4,6) −53249700 110910300 18458000 1127472 85176 −6404 0

(6,6) 2857656828 4173501828 920577636 110910300 8533821 153900 26622

(2,10) −510032208 185738352 16844421 −2023536 315255 −31104 1620

Red entries: Negative index

Blue entries: ∆ ≡ Q2P2 − (Q.P)2 < 0 and hence no
single centered black holes



Strategy: Calculate the contribution to the index from
multi-centered black holes and subtract from the
above result.

(Q2, P2)\Q.P -2 2 3 4 5 6 7

(2,2) 648 648 0 0 0 0 0

(2,4) 50064 50064 0 0 0 0 0

(2,6) 1127472 1127472 25353 0 0 0 0

(4,4) 3859456 3859456 561576 12800 0 0 0

(4,6) 110910300 110910300 18458000 1127472 0 0 0

(6,6) 4173501828 4173501828 920577636 110910300 8533821 153900 0

(2,10) 185738352 185738352 16844421 16491600 0 0 0

No more negative index or ∆ < 0 states.



Similar results hold for other N = 4 supersymmetric
CHL models.

The above results illustrate the power of black holes
to explain features of black hole microstates beyond
the leading Bekenstein-Hawking entropy.

Proving these positivity relations for all (Q2,P2,Q.P)
remains a challenging problem for the
mathematicians and reflects some non-trivial
properties of the Siegel modular forms.

Partial progress by Bringmann and Murthy



We shall now try to derive more quantitative
predictions about microstates from the black hole
side.

This will be done by comparing the asymptotic
expansions of entropy / log |index| in the large charge
limit.

In this limit the contribution from multicentered black
holes as well as the hair modes are exponentially
suppressed and so we can directly compare dhor with
|B2n|.



Logarithmic corrections to the black hole entropy

– corrections of order ln Λ if all charges scale as Λ

– arise from one loop contribution to the path integral
from massless fields.



Final results: S. Banerjee, Gupta, Mandal, A.S.; Ferrara, Marrani; A.S.

The theory scaling of charges logarithmic contribution microscopic

N = 4 with nv matter Qi ∼ Λ, AH ∼ Λ2 0
√

N = 8 Qi ∼ Λ, AH ∼ Λ2 −8 ln Λ
√

N = 2 with nV vector and nH hyper Qi ∼ Λ, AH ∼ Λ2 1
6 (23 + nH − nV) ln Λ ?∗

N = 6 Qi ∼ Λ, AH ∼ Λ2 −4 ln Λ ?

N = 5 Qi ∼ Λ, AH ∼ Λ2 −2 ln Λ ?

N = 3 with nv matter Qi ∼ Λ, AH ∼ Λ2 2 ln Λ ?

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV − 3) ln Λ

√

or K3× S1/ZZN with nV vectors J ∼ Λ3/2, AH ∼ Λ3/2

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV + 3) ln Λ

√

or K3× S1/ZZN with nV vectors J = 0, AH ∼ Λ3/2

*: various proposals exist but no definite result
Ooguri, Strominger, Vafa; Cardoso, de Wit, Kappeli, Mohaupt; Denef, Moore;

David; Cardoso, de Wit, Mahapatra



General procedure

Supersymmetric black holes have some moduli fields
which are not fixed at the horizon (e.g. hypermultiplet
fields in the N=2 theories).

Utilizing these flat directions we can take all moduli of
order 1 at the horizon and the only large number will
be the ratio of the horizon size a to Planck length.

Then calculate the one loop determinant of massless
fields in the AdS2 × K background and collect terms
of order ln a in the entropy.

The integration over the zero modes need to be done
separately.



Lecture 4



Logarithmic corrections to black hole entropy

1. Consider an extremal black hole in D=4 with
horizon size a

ds2 = a2
(

dr2

r2 − 1
+ (r2 − 1)dθ2 + dψ2 + sin2 ψdφ2

)
+ ds2

compact

2. Evaluate the one loop contribution to ZAdS2×K from
massless fields.

3. Identify contribution to ln ZAdS2×K proportional to
ln a.



Some details of the computation

Let {ψr} denote the set of fluctuating massless fields
around the near horizon background.

Let the eigenfunctions of the kinetic operator K be:

ψr = f(n)
r (x), x ∈ AdS2 × S2

with eigenvalue κn.

Kf(n) = κnf(n)∫
d4x
√

g
∑

r

f(n)
r (x)f(m)

r (x) = δmn



Kf(n) = κnf(n),

∫
d4x
√

g
∑

r

f(n)
r (x)f(m)

r (x) = δmn

Heat kernel sans zero modes:

K′(x,x′,s) ≡
∑
n,r

′
e−κnsf(n)

r (x)f(n)
r (x′)

One loop correction to ln Z from non-zero modes:

∆ ln Z =−1
2

ln det′K = −1
2

∑
n

′
lnκn =

1
2

∫ ∞
ε

ds
s

∑
n

′
e−κns

ε: a string scale UV cut-off.

∆ ln Z =
1
2

∫ ∞
ε

ds
s

∑
n

′
e−κns =

1
2

∫ ∞
ε

ds
s

∫
d4x

√
det g K′(x,x; s)



∆ ln Z =
1
2

∫ ∞
ε

ds
s

∫
d4x

√
det g K′(x,x; s)

Homogeneity of AdS2 × S2

⇒ K′(x,x; s) is independent of x.∫
d4x
√

det g = 4πa2 × 2πa2(r0 − 1) ' 8π2a4(
L

2πa
− 1)

Drop the part proportional to L.

One loop correcton to entropy from non-zero modes:

−4π2a4
∫ ∞
ε

ds
s

K′(x,x; s)



K′(x,x′,s) =
∑
n,r

′
e−κnsf(n)

r (x)f(n)
r (x′)

Since the eigenvalues κn are proportional to a−2, and
f(n)
r (x) ∝ a−2, a4 K′(x,x; s) is a function of s̄ = s/a2.

One loop correcton to entropy from non-zero modes:

−4π2a4
∫ ∞
ε

ds
s

K′(x,x; s) = −4π2a4
∫ ∞
ε/a2

ds̄
s̄

K′(x,x; s)

The logarithmic correction ∝ ln a comes from the
O(s̄0) term in the small s̄ expansion of K′(x,x; s).

If C0 denotes the s-independent term in the small s
expansion of a4K′(x,x; s) then

∆ ln Z = −4π2 C0 ln a2

Note: κn = 0 modes must be removed.



Zero mode contribution:

The path integral over the fields is defined with the
standard general coordinate invariant measure, e.g.
for gauge fields:∫

[DAµ]exp
[
−
∫

d4x
√

det g gµνAµAν

]
= 1

SInce
√

det g gµν ∼ a2 this shows that [aAµ] has a
independent measure.

Zero modes of Aµ are of the form ∂µΛ with Λ not
vanishing at∞.

Changing variables from aAµ to Λ⇒ ‘a’ per zero mode

Net contribution to ZAdS2×K from gauge field zero
modes is aNz where Nz is the number of zero modes.



Computation of Nz:

Let
Aµ(x) = h(k)

µ (x), k = 1,2, · · ·

be the zero mode wave functions Camporesi, Higuchi

Nz =
∑

k

1 =

∫
d4x
√

det g gµν
∑

k

h(k)
µ (x)h(k)

ν (x)

cz ≡ a4gµν
∑

k h(k)
µ (x)h(k)

ν (x) is independent of x and a
after summing over k.

Nz = cz a−4
∫

d4x
√

det g = 8π2cz(r0 − 1)

= 8π2cz

(
L

2πa
− 1 +O(L−1)

)



Nz = 8π2cz

(
L

2πa
− 1 +O(L−1)

)
⇒ gauge field zero mode contribution to ZAdS2×K:

aNz = exp
[
8π2cz ln a

(
L

2πa
− 1 +O(L−1)

)]
Comparing with ZAdS2×K = dhor e−E0L we get the
logarithmic contribution to ln dhor from the zero
modes:

−8π2cz ln a

Contributions from other zero modes can be found
similarly.



One loop correction due to massive string loops

Integrating out massive string modes gives a local
one loop correction to the effective action.

The contribution of this term to ln dhor is identical to
the correction to the Wald entropy due to this local
correction to the effective action.

Caution: Only some special one loop correction to
the effective Lagrangian is known and we can make
further progress by assuming that only these terms
contribute to the entropy at this order.



Consider the CHL models obtained by ZZN orbifold of
type IIB on K3× S1 × S̃1.

At tree level there are no corrections at the four
derivative level, but at one loop these theories get
corrections proportional to the Gauss-Bonnet term in
the 1PI action. Harvey, Moore; Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline√

−det g∆LE

= −ψ(τ1, τ2)
√
−det g

{
RµνρσRµνρσ − 4RµνRµν + R2}

τ = τ1 + iτ2: modulus of the torus (S1 × S̃1).

ψ: a known function dependent on the theory

This contributes 8π2a4∆LE to the Wald entropy to first
order.



Result for the Wald entropy

π
√

Q2P2 − (Q.P)2

−64π2ψ

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O

(
1

Q2,P2,Q.P

)
– agrees exactly with the result for ln |B6(Q,P)|
calculated in the microscopic theory to order charge0.

Cardoso, de Wit, Kappeli, Mohaupt; David, Jatkar, A.S.



Twisted index

Suppose we want to compute the index

Bg
6 =

1
6!

Tr
[
(−1)2h (2h)6 g

]
g: some ZZN symmetry generator.

After separating out the contribution from the hair
degrees of freedom, and using hhor = 0, we see that
the relevant quantity associated with the horizon is

−Trhor(g)

What macroscopic computation should we carry out?



By following the logic of AdS/CFT correspondence
we find that we need to again compute the partition
function on AdS2, but this time with a g twisted
boundary condition on the fields under θ → θ + 2π.

Other than this the asymptotic boundary condition
must be identical to that of the original near horizon
geometry since the charges have not changed

The ‘finite part’ of this partition function gives us
Trhor(g).



Recall AdS2 metric:

ds2 = a2
[

(r2 − 1)dθ2 +
dr2

r2 − 1

]
= v

[
sinh2 ηdθ2 + dη2

]
The circle at infinity, parametrized by θ, is contractible
at the origin r = 1.

Thus a g twist under θ → θ + 2π is not admissible.

→ the AdS2 × S2 geometry is not a valid saddle point
of the path integral.



Question: Are there other saddle points which could
contribute to the path integral?

Constraints:

1. It must have the same asymptotic geometry as the
AdS2 × S2 geometry.

2. It must have a g twist under θ → θ + 2π.

3. It must preserve sufficient amount of
supersymmetries so that integration over the fermion
zero modes do not make the integral vanish.

Beasley, Gaiotto, Guica, Huang, Strominger, Yin; N. Banerjee, S. Banerjee, Gupta, Mandal, A.S.



There are indeed such saddle points in the path
integral, constructed as follows.

1. Take the original near horizon geometry of the
black hole.

2. Take a ZZN orbifold of this background with ZZN
generated by simultaneous action of

a) θ → θ + 2π/N

a) φ→ φ + 2π/N (needed for preserving SUSY)

c) g.
N. Banerjee, Jatkar, A.S.; A.S.; Pioline, Murthy



To see that this satisfies the required boundary
condition we make a rescaling:

θ → θ/N, r→ N r

The metric takes the form:

a2
(

(r2 − N−2)dθ2 +
dr2

r2 − N−2

)
Orbifold action: θ → θ + 2π, φ→ φ + 2π/N, g

The g transformation provides us with the correct
boundary condition.

The φ shift can be regarded as a Wilson line, and
hence is an allowed fluctuation in AdS2.



The classical action associated with this saddle point,
after removing the divergent part proportional to the
length of the boundary, is Swald/N.

Thus the leading contribution to the twisted partition
function Bg

6 from this saddle point is

Zfinite
g = exp [Swald/N]

This is exactly what we have found in the microscopic
analysis of the twisted index.



Localization
N. Banerjee, S. Banerjee, Gupta, Mandal, A.S; Dabholkar, Gomes, Murthy

Presence of supersymmetry often allows one to
restrict the path integral over a finite dimensional
subspace which is invariant under a subset of the
supersymmetries.

Nekrasov; Pestun; Drukker, Marino,Putrov; · · ·

Can we do this for ZAdS2×K?



The path integral over massless fields in four
dimensional N ≥ 2 supersymmetric theories involve:

1. Integration over vector multiplets

2. Integration over gravity multiplet

3. Integration over hypermultiplets

4. Integration over gravitino multiplets (for N > 2)

So far the integration over the vector multiplets have
been localized over a finite dimensional subspace.

Dabholkar, Gomes, Murthy



Conclusion

Quantum gravity in the near horizon geometry
contains detailed information about not only the total
number of microstates. but also finer details e.g. the
ZZN quantum numbers carried by the microstates, the
sign of the index etc..

Thus at least for extremal black holes there seems to
be an exact duality between

Gravity description⇔ Microscopic description



General lesson

Euclidean quantum gravity can be trusted beyond the
classical approximation.

Even without the detailed knowledge of ultraviolet
completion of the theory we can use this to extract
properties of the theory which must hold for all
consistent UV completion.

Example: Logarithmic correction to black hole
entropy

A proposed UV completion that fails to reproduce
either the leading classical result or the subleading
logarithmic corrections, must not be a consistent UV
completion of gravity.



Inspired by the success we can try to extend the
Euclidean gravity techniques to non-supersymmetric
black holes.

Example: An extremal Kerr black hole in D=4 has
logarithmic correction:

16
45

ln AH

Can Kerr/CFT correspondence explain this
microscopically?


