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We obtain the adiabatic Berry phase by defining a generalised gauge potential whose line
integral gives the phase holonomy for arbitrary evolutions of parameters. Keeping in mind
that for classical integrable systems it is hardly clear how to obtain the open-path Hannay
angle, we establish a connection between the open-path Berry phase and Hannay angle by
using the parametrised coherent state approach. Using the semiclassical wavefunction we
analyse the open-path Berry phase and obtain the open-path Hannay angle. Further, by
expressing the adiabatic Berry phase in terms of the commutator of instantaneous projectors
with its differential and using Wigner representation of operators we obtain the Poisson
bracket between the distribution function and its differential. This enables us to talk about the
classical limit of the phase holonomy which yields the angle holonomy for open paths. An
operational definition of the Hannay angle is provided based on the idea of the classical limit
of the quantum mechanical inner product. A probable application of the open-path Berry
phase and Hannay angle to the wave-packet revival phenomena is also pointed out. � 1998
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1. INTRODUCTION

In recent years, the quantal phase holonomy [1] of purely geometrical origin has
played an important and fundamental role in diverse areas of physics. Berry [2]
discovered this in the quantum adiabatic context, where the quantal eigenstate
acquires an extra phase when the Hamiltonian of the system is adiabatically trans-
ported arround a closed path in parameter space. At the classical level there is a
similar effect, namely, the angle holonomy, discovered by Hannay [3]. For integrable
systems (where it is possible to write the Hamiltonian of the system in terms of
action and angle variables), the Hannay angle is nothing but an extra angle shift
picked up by the angle variables of the classical system when the parameters
undergo adiabatic change along a closed path in the parameter space. After the
importance of Berry's discovery was realised in many areas of physics, it was
liberated from its restrictions to adiabatic, periodic variations of Hamiltonian
evolutions. Aharonov and Anandan [4] showed the existence of the geometric
phases for non-adiabatic, cyclic evolutions of quantal wavefunctions. Samuel and
Bhandari [5] generalised the idea of phase holonomy for non-cyclic, non-unitary
evolutions of quantum systems. Mukunda and Simon [6] have generalised the
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concept of geometric phase using kinematic concepts of the ray space. Recently, the
present author generalised it further to the case of non-cyclic, non-unitary, and
non-Schro� dinger evolutions of the quantum systems [15]. Notwithstanding the
wide generalisation of the Berry phase, its classical counterpart the Hannay angle
has not been generalised further except for non-adiabatic cases. Berry and Hannay
[8] have obtained the classical non-adiabatic angle as the holonomy of a non-trivial
connection in the phase-space bundle. The Hannay angle can also be understood as
an angle shift in transporting a classical tori in phase space [9]. Therefore, any
attempt to generalise and understand the classical angle holonomy for open paths
is quite challenging.

In this paper we generalise the Berry phase and Hannay angle for an adiabati-
cally evolving system with non-cyclic variation of the external paramaters of the
Hamiltonian. Before achieving that we provide a gauge potential description of the
open-path Berry phase. This defines a quantum one-form whose line integral gives
the Berry phase during an arbitrary variations of external parameters. Using the
parametrised coherent state approach we establish a connection between the Berry
phase and open-path Hannay angle. Also, we obtain the open-path Berry phase in
the semiclassical limit and relate it to the Hannay angle. Further, we express the
quantum one-form in terms of instantaneous projection operators and study its
classical limit using the correspondence between the quantum commutator and
Poisson bracket. Here, we have used the Wigner representation of quantum
mechanical distribution function and phase space functions. The generalisation of
the Hanny angle will have many important applications such as wave-packet
revivals [10], field theoretical models with fermions, and Grasmannian systems
[11]. The present work will be a first step in this direction. We will not give a treat-
ment of the open-path Hannay angle based on the classical Hamiltonian and its
cannonical transformation to action-angle variables, rather we will define the adiabatic
Berry phase for open paths in parameter space and obtain the Hannay angle as a
semiclassical limit of the former. For arriving at the Hannay angle the following
result will be invoked: The connection between the Hannay angle and Berry phase
[12] is valid not only for the adiabatic closed-excursions but also for the open-
excursions in the parameter space. The reason for doing this is that there is a difficulty
in attacking the problem purely at a classical level. For integrable, bounded
motions of classical systems action variables are the classical, adiabatic invariants
(in the quantum case, the quantum number is an adiabatic invariant). These angle
variables have some unavoidable arbitrariness in their definition and they cannot be
compared belonging to distinct initial and final Hamiltonians [3]. They can be
compared, however, if the Hamiltonian is varied arround a closed loop in param-
eter space so that the initial and final Hamiltonians are the same. Then one can
make the Hannay angle coordinate independent (in the quantum case this is equiv-
alent to making the Berry phase gauge invariant). If we wish to define the Hannay
angle for open paths from classical considerations we would face the problem. of
comparing the angle variables belonging to distinct initial and final Hamiltonians.
However, at a quantum mechanical level there is no problem in comparing the
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phases of two distinct (they do not form the same equivalence classes) initial and
final non-orthogonal vectors. Therefore, it seems natural to define the quantal
adiabatic Berry phase for open paths in parameter space and then analyse it within
the semiclassical and classical limits. Towards this end, an application of the present
work will be pointed out, where one can show the effect of the open-path Hannay
angle on wave-packet revivals. The effect of Hannay angle on revivals has been
recently discussed by Jarzynski [10] for cyclic variations of external parameters.
In a sense, the application of the present formulation will be an extension of his
prediction which says that the effect of adiabatic variation of parameters is to cause
a displacement of the location at which the revived wave-packet appears, even
though the parameters do not return to their original value over the revival time.

2. ADIABATIC BERRY PHASE FOR OPEN PATHS

2a. Berry Phase for Closed Paths

Before providing the generalised Berry phase formula, it is useful to recapitulate
the standard Berry phase formula. Consider a quantum system which is bounded,
integrable, and driven by a slowly changing Hamiltonian H(R(t)); [R=Ri] is the
set of externally controllable parameters. Then using the adiabatic approximations,
the solution to the Schro� dinger equation is given by

|9(t))=exp _&
i
� |

t

0
En(t) dt exp(i#n(t))& |9n(R(t))) , (1)

where the |9n(R(t)))'s are instantaneous eigenstates of the Hamiltonian with non-
degenerate eigenvalues En(t). This foregoing Eq. (1) says that the system remains in
the eigenstate with quantum number n apart from phase factors. The first phase
factor is the usual dynamical one. The extra phase factor exp(i#n(t)) becomes physi-
cally important and non-trivial only when the parameters are changed along a
closed path over some time (large enough) T, such that R(T)=R(0). Otherwise,
these extra phases can always be chosen identically to be zero by choosing a different
eigenfunction. The non-trivial phase is the Berry phase for closed paths in the
parameter space, given by

#n(C)=i �
C �9n(R) | {9n(R)� } dR=�

C
An(R) } dR. (2)

This is nothing but the line integral of a vector potential An(R) (called the Berry
potential or Berry one-form) arround the closed curve in parameter space and
which can also be written as a surface integral of a vector field (two-form) where
the surface is bounded by the closed curve C. As is well known, this is non-
integrable in nature and depends only on the geometry of the path in the parameter
space. In addition to this, it is gauge invariant. The phase #n(C) is independent of
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the rate at which the circuit C is traversed, provided the adiabatic approximation
holds. Therefore, the Berry phase is an essential ingredient of the adiabatic cyclic
evolution of a quantum system.

2b. Generalisation of the Berry Phase to Open Paths

Suppose that the parameters which have been adiabatically changed along an
arbitrary curve 1 do not come back to their original value after some time tf . Can
we still assign a geometric phase to such an adiabatically evolving quantum state?
The answer is yes, though the phase, in this case, is not given by the expression

#n(1 )=|
R(tf )

R(0)
An(R) } dR. (3)

In the past it has been mentioned incorrectly that the non-cyclic Berry phase would
be still given by the above expression [13]. The reason being that the above expres-
sion is not gauge invariant under local gauge transformations of the eigenstates. We
call an expression of the type (3) the ``Berry term'' which reduces to the Berry phase
for a closed loop in parameter space. To obtain the Berry phase formula for open
paths we have to take care of the contributions from the end points of the open
path. When we do that the whole expression can be made gauge invariant.

The mathematical and physical basis underlying the open-path Berry phase
formula can be given in terms of the fiber bundle descriptions of the adiabatically
evolving eigenstates. As illustrated by Simon [1], the fiber bundle has a base space
M (which is the space of parameters), has fibers (the set of phase factors, namely
the group U(1)) and has the bundle space E (in which the adiabatic eigenstates
exist). The bundle space E over M is defined by associating R � |9n(R)) given by
H(R) |9n(R)) =En(R) |9n(R)) with fibers U(1). Geometrically we can imagine
that the time evolution of the eigenstate is represented by a path in the bundle
space E. The path in the bundle space can be constructed by the knowledge of path
that is actually followed by the parameters in the base space. For example, in the
case of cyclic change of parameters the path in the base space is a closed curve,
whereas the path in the bundle space is an open one with the initial and final points
belonging to the same fiber. However, if the parameters do not come back to their
original value after some time tf , then the base space path is an open path and
correspondingly the lift of this is also an open path in the bundle space. But in this
latter case the initial and final points of the bundle path are not on the same fiber.
We are concerned here precisely with this type of adiabatic evolutions.

In general (irrespective of adiabaticity, cyclicity, and unitarity), when the initial
and final states of the evolving quantal system belong to two different fibers, we can
compare the phases by taking the inner product between them. This is in the spirit
the Pancharatnam [14] way of defining the phase difference between two different
polarisation states of light. However, the only restriction here is that the initial and
final states should not be orthogonal to each other. Let |9(t)) # H be the state of
a system at some instant of time. During a non-cyclic evolution of the state vector
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in H it traces an open curve whose projection is also an open curve 1: \(0) � \(t)
� \(tf){\(0) in the projective Hilbert space, where \(t)=|9(t))(9(t)| is a pure
state density operator. The total phase difference between the initial and final states
is given by

8T=arg(9(t i) | 9(tf)) =arg(9(0) | 9(tf)). (4)

Using the projective geometric structure of the Hilbert space, it has been shown by
the present author [15] that the geometric phase during an arbitrary evolution of
the quantum system is given by

8g=i | (/(t) | d/(t)) , (5)

where | /(t)) is a ``reference-section'' defined from the actual state as |/(t))=
((9(t) | 9(0)) )�( |(9(t) | 9(0)) | ) |9(t)) and i(/(t) | d/(t)) is a connection-form
defined over the projective Hilbert space of the quantum system. Thus, 8g can be
regarded as the holonomy of the U(1) bundle over the projective Hilbert space P

of the quantum system.
When the quantum evolution is necessarily adiabatic and the open path arises

from the adibatic evolution of external parameters, then we obtain the open-path
Berry phase, which is given by

#n(1 )=i |
1

(/n(R) | {/n(R)) } dR=|
1

0n(R) } dR, (6)

where | /n(R)) is the ``reference-eigenstate'' defined from the adiabatic eigenstate
as |/n(R)) = ((9n(R) | 9n(R(0))) ) � |((9n(R) | 9n(R(0))) | ) |9n(R)). This can be
obtained from (5) by inserting the adiabatic approximate wavefunction as given
in (1). We have denoted the adiabatic open path Berry phase as #n(1) to distinguish
from the more general geometric phase 8g . Thus, the adiabatic Berry phase is noth-
ing but the line integral of a generalised gauge potential 0n(R)=i(/n(R) | {/n(R))
over the parameter space. The relation between this gauge potential and Berry
potential can be worked out and it follows that

0n(R)=An(R)&Pn(R), (7)

where Pn(R) is a new gauge potential, given by

Pn(R)=
i

2 |(9n(R(0)) | 9n(R)) |2 [(9n(R(0)) | ( |{9n(R))(9n(R)|

&|9n(R))({9n(R)| ) |9n(R(0)))]. (8)

By virtue of its transformation property under a local gauge transformation one can
make sure that Pn(R) is a vector potential in the parameter space (see below).
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Thus, like the Berry potential An(R), Pn(R) is a vector potential defined over the
whole parameter space except that the latter depends on the initial point of the curve.
For example, if we change the initial value of the parameter the value of the gauge
potential will be different. In fact, this property of the gauge potential Pn(R) ensures
the non-integrable nature of the open-path Berry phase. Now the open-path Berry
phase can be given a gauge theoretic description in terms of these potentials as

#n(1 )=|
R(tf )

R(0)
[An(R)&Pn(R)] } dR, (9)

which says that the open-path Berry phase is the line integral of the difference of
these two potentials in the parameter space.

This phase has the following properties. It is real, because both the potentials are
real. It is independent of the parameter that we use to parametrise the evolution
curve. It does not depend explicitly on the Hamiltonian or eigenvalue of the system.
It is non-additive in nature which in turn attributes a memory to the adiabatically
evolving quantal state. Hence, it qualifies to be called as the Berry phase for open-
paths in parameter space. One can check that in the limiting case, the open-path
Berry phase formula obtained by us precisely goes over to the cyclic Berry phase
when the parameters come back to their original value after some time tf=T.

Next we explicitly show the invariance of the open-path Berry phase under gauge
and phase transformations. Under U(1) local gauge transformation of the adiabatic
eigenstate |9n(R)) , we have |9n(R) � ei:(R) |9n(R)) . It induces a gauge transfor-
mations on An(R) as well as on Pn(R):

An(R) � An(R)&{:(R)
(10)

Pn(R) � Pn(R)&{:(R).

Therefore, the open-path Berry phase is clearly gauge invariant, because under local
gauge transformations these vector potentials transform in the same way and hence
their difference is gauge-compensated.

Further, it can be shown that the open-path Berry phase is also invariant under
phase transformations. On redefining the phases of the adibatic eigenstate as

|9n(R)) � |9n(R)) exp \i |
R

0
K(R$) } dR$+ , (11)

we can see that it affects both the vector potentials. The Berry potential and the
new potential undergo transformations as

An(R) � An(R)&K(R)
(12)

Pn(R) � Pn(R)&K(R).
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Therefore, the open-path Berry phase is unchanged under a phase transformation.
These properties enables us to define the concept of Berry phase even for an infinite-
simal path in the parameter space. For example, if the parameters are changed by
an amount 2R, the corresponding change in the Berry phase would be given by

2#n=[An(R)&Pn(R)] } 2R. (13)

Here, some remarks concerning the gauge potential Pn(R) can be made as to
whether it is a new geometric structure on the Hilbert space of quantum states. We
will show that it is not only a new geometric structure but also can be regarded as
a much richer gauge structure in the sense that the Berry potential is only a part
of it. Indeed, we will show that it can be split into two parts: one is just the Berry
potential and the other is related to the matrix elements of the product of projec-
tion operators and the force operator (the force operator is &{H(R). To see this
explicitly, let us express Pn(R) as

Pn(R)=
i
2 _

(9n(R(0)) | {9n(R))
(9n(R(0)) | 9n(R)

&
({9n(R) | 9n(R(0)))
(9n(R) | 9n(R(0))) & . (14)

On inserting a complete set of eigenstates at parameter value R, we have

Pn(R)=An(R)&Im :
m{n

(9n(R(0)) | 9m(R))
(9n(R(0)) | 9n(R))

(9m(R)| {H |9n(R))
(En(R)&Em(R))

, (15)

where we have used the fact that An=&Im(9n | {9n). The above expression
clearly shows the richness of the new gauge structure and brings out the fact that
the Berry potential is only a part of it. Also, it provides a suitable formula for the
open-path Berry phase as

#n((1)=|
1

Im :
m{n

(9n(R(0)) | 9m(R))
(9n(R(0)) | 9n(R))

(9m(R)| {H |9n(R))
(En(R)&Em(R))

} dR, (16)

which clearly shows the independence of the choice of the phase of the eigenstates.
(One may recall the expression for the field strength Vn which was provided in the
original paper of Berry [2] and note the similarity here.) The formula (16) is very
useful and has been recently studied in connection with linear response theory of
adiabatic quantum systems and in understanding the damping of collective excita-
tions in Fermi systems [16], where the dynamics is chaotic. Also, this generalised
Berry phase theory has been applied to physical systems (like the collection of
electrons and nuclei) where one applies the Born�Openheimer approximation and
it is found that the quantum fluctuation in the generator of the parameter change
is related to the time correlation function of the ``fast'' system [17], thus estab-
lishing a fluctuation-correlation theorem in the many-body context. The connection
between the quantum metric tensor, force-force correlation, and the open-path
Berry phase has been discussed for integrable and chaotic quantum systems.

184 ARUN KUMAR PATI



3. CONNECTION BETWEEN THE HANNAY ANGLE AND
BERRY PHASE USING COHERENT STATES

Consider the classical counterpart of the quantum system with N degrees of
freedom, where the Hamiltonian of the system is given by H(q, p, R). We assume
that there exist N constants of motion in involution and the dynamical system is
thus integrable. The classical trajectories are confined to the N-dimensional manifold,
which is an N-dimensional torus. It is known that for integrable systems, we can go
over to the action-angle (Ii , %i), i=1, 2, ..., N, description where the actions remain
invariant during an adiabatic excursion. The angle variables undergo additional
shift (Hannay angle) during a cyclic variation of parameters. The total change in
the angular coordinate of the trajectory in phase space is thus given by

%i (T )=% i (0)+|
T

o
.i (I, R(t)) dt+� ��%i

�R� } dR. (17)

The above expression consists of a dynamical angle shift (given by the time integral
of the instantaneous frequency) and a geometric angle shift, the latter being known
as the Hannay angle [3]. Like the Berry connection which does not depend on the
precise form of the Hamiltonian but only on its symmetries, similarly the Hannay
one-form depends on the symmetries of the classical Hamiltonian. The symmetries
in this case are the canonica1 automorphism of the invariant tori in phase space [18].
The standard formula for the Hannay angle, however, is not valid if the parameters
are not brought back to their original value because under a rotation with respect
to the angle variables of the phase space trajectories, the Hannay angle does not
remain invariant. Remembering the difficulties encountered in this problem, which
we have mentioned in the Introduction, it is natural to look for the connection
between the open-path Berry phase and geometrical angle shift.

Here, we bring out the connection between the phase holonomy and angle
holonomy using the parametrised coherent state formalism that describes the action
and angle variables in the classical limit. In the sequel, we closely follow the
methods of Maamache et al. [19]. For simplicity, let us restrict ourselves first to
one degree of freedom. Given an adiabatically changing Hamiltonian H(R) we can
define a coherent state for the quantum system as

|:, R) =e&|:|2�2 :
�

n=0

:n

- n !
|9n(R)). (18)

We can also define an excitation operator or quantum counting operator N(R) as

N(R)= :
�

n=0

n |9n(R))(9n(R)| (19)

185ADIABATIC BERRY PHASE AND HANNAY ANGLE



and N(R) satisfies an eigenvalue equation

N(R) |9n(R)) =n |9n(R)) . (20)

In the classical limit (h � 0, n � �) the action is related to the excitation number
n as I=n�, which is finite. The coherent state is best suited for studying the classical
limit as it represents a point in the phase space. The evolution of the coherent
state represents the trajectory along which the actions remain invariant. Quantum
mechanically, |:|2 represents the average value of the counting operator and in the
classical limit � |:|2 represents invariant action. Physically it has been argued [19]
that the complex parameter |:(t) is related to the action and angle variable of the
system as

:(t)=�I
�

e&i%(t). (21)

We can also express the adiabatic eigenstate in terms of action-angle state using
the over completeness property of the coherent state. Since

|9n(R(t))) =
1
? | d 2:e&|:|2�2 :*n

- n !
|:, R) , (22)

where d 2:=d(Re :) d(Im :)=1�(2�) dI d%, we can express the correspondence
between the quantum eigenstate and a point in phase space parametrised by the
action and angle variable as

|9n(R(t))) =
1

2?�(n�2+1) | dI d%e&I2�2�2 I n�2 e&in%

- n!
|I, %, R) , (23)

where we have denoted |:, R) =|I, %, R).
As the system evolves from some parameter value R(0), the classical trajectory

starts from some initial angle coordinate on the constant action surface. We wish
to compute what would be the angle shift for some arbitrary parameter value R(tf).
Quantally, consider the evolution of the initial coherent state |:(0), R(0)) . Then, at
a later time t, the state is given by

|:(t), R(t))=U(t) |:(0), R(0)) =e&|:|2�2 :
�

n=0

:n

- n !
ei8n (t) |9n(R(t))) , (24)

where we have used the fact that U(t) |9n(R(0)))=e(i$n (t)+i#n (t)) |9n(R(t)))=
ei8n (t) |9n(R(t))). Since, in the classical limit, the sum over n is highly peaked
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arround the value N=|:|2, most of the contribution to the sum comes from n=N.
With this idea, we can expand 8n(t) to first order in (n&N)

8n(t)=8N(t)+(n&N)
�8N(t)

�N
. (25)

Now, the parametrised coherent state at a later time t is given by

|:(t), R(t))=ei(8N (t)&N(�8N(t)��N) |:(0) ei(�8N (t)��N), R(t)). (26)

To know the angle shift during a non-cyclic variation of external parameters, we
take the inner product of the initial and final (at time t=tf) coherent state, which
is given by

(:(0), R(0) | :(tf), R(tf)) =ei(8N (tf )&N(�8N (tf )��N)) e&|:|2 :
n, m

:(0) Vn

- n !

:(0)m

- m !

_eim(�8N (tf )��N) (9n(R(0)) | 9m(R(tf))) . (27)

Using the random. phase approximation, one can neglect terms n{m and thus the
above expression reduces to

(:(0), R(0) | :(tf), R(tf)) =ei(8N (tf )&N(�8N (tf )��N)) e&|:|2 :
n

|:|2n

n !

_ein(�8N (tf )��N)ei;n (tf ) |(9n(R(0)) | 9n(R(tf))) |, (28)

where ;n(tf)=�R(tf)
R(0)

Pn(R) } dR. Following a similar argument as above, we replace
the phase ;n(tf) in the classical limit to its first order approximation, viz., ;n(tf)=
;N(tf)+(n&N)(�;N(tf)��N). Therefore, the inner product between the initial and
final coherent state is given by

(:(0), R(0) | :(tf), R(tf))

=ei(8N (tf )&N(�8N (tf )��N))ei(;N (tf )&N(�;N (tf )��N))

_e&|:|2
:
n

|:|2n

n !
ein(�8N (tf )��N)+(�;N (tf )��N)) |(9n(R(0)) | 9n(R(tf ))) |.

(29)

The phase factors appearing outside the summation are just the global phase factors
and do not contribute to the relative phase shift of the adiabatic eigenstate, which
would correspond in the classical limit to the relative angle shift. Therefore, the
total angle shift would be given by the terms that appear inside the summation, i.e.,

%(tf)&%(0)=2%=&
�8N(tf)

�N
+

�;N(tf)

�N
=&

�$N(tf)

�N
&

�#(1)
�N

, (30)
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where the first term is the usual dynamical angle shift and the second term �#N(1)��N
=���N(#N(tf)&;N(tf)) is the geometrical angle shift or Hannay angle for open-path
excursions of the parameters. Therefore, the connection between the Hannay angle
and Berry phase in the classical limit is given by

%(I, 1 )=&�
�#(I, 1 )

�I
. (31)

For N-degrees of freedom, the system admits Ii and %i , i=1, 2, ..., N, action and
angle variables, respectively. It is straightforward to generalise the connection between
the Hannay angle and Berry phase using product coherent states 6i |:i (t), R(t)) ,
where each :i (t) describes the Ii th action and %i angle variable. When the parameters
follow a non-cylic variation, then each angle variable %i undergoes an additional
shift given by

%i (I, 1 )=&�
�#(I, 1 )

�Ii
. (32)

4. SEMICLASSICAL LIMIT AND HANNAY ANGLE

In the foregoing discussions we describe how to obtain the semiclassical Berry
phase and the Hannay angle for open-path excursions in parameter space. Berry
[12] has analysed his closed-path phase in the semiclassical limit and established
a connection to the classical Hannay angle. In the same spirit one can analyse the
open-path Berry phase and derive the expression for adiabatic angle holonomy for
open-path excursions of the classical Hamiltonian. In the semiclassical analysis, it
is assumed that the eigenfunction is associated with a torus and the actions are
quantised according to the Bohr�Sommerfeld [20] rule. The semiclassical expres-
sion for the wavefunction [12] is

9n(q; R))=(q | n(R))=:
:

a(:)(q, I; R) exp \ i
�

S (:)(q, I; R)+ , (33)

where the amplitude a2
(:)=(1�(2?)N)(d%(:)�dq)=(1�(2?)N) det(�%(:)

i ��qi) and : labels
different branches of the multivalued, classical generating function S (:)(q, I; R).
Each of the actions S (:) satisfy the Hamilton�Jacobi equation. The existence of an
invariant Lagrangian surface (torus) is important on which the multivalued actions
S (:) are defined. Using this wavefunction it is interesting to get the semiclassical
Berry phase for open paths. Upon substitution, one will have two terms viz., the
Berry term and the new term. The Berry potential can be easily evaluated and is
given by

An(R)=&1�� | dq :
:

1
(2?)N

d%(:)

dq
{S (:)(q, I; R), (34)
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where � dq=>N
j=1 �+�

&� dqj and in evaluating this, it is assumed that products of
terms from different branches of : do not contribute because they give rise to rapid
oscillations and cancel semiclassically on integrating over q. The additional term
is not so straightforward to evaluate. However, we provide the closest simplified
expression for it. Note that the vector potential Pn(R) can be written as

Pn(R)=&Im
(9n(R(0)) | {9n(R(t)))
(9n(R(0)) | 9n(R(t)))

. (35)

Within the semiclassical approximation this can be expressed as

Pn(R)=
X(I; R) {Y(I; R)&Y(I; R) {X(I; R)

(X(I; R)2+Y(I; R)2)
, (36)

where

X(I; R)=| dq :
:

a(:)(q, I; R(0)) a(:)(q, I; R)

_cos _1
�

(S (:)(q, I; R)&S (:)(q, I; R(0))& (37)

and

Y(I; R)=| dq :
:

a(:)(q, I; R(0)) a(:)(q, I; R)

_sin _1
�

(S (:)(q, I ; R&S (:)(q, I ; R(0))& . (38)

Here, also those terms in the above expression survive which come from the
product of the same branches of :. Thus, the semiclassical Berry phase formula for
the open path excursion in parameter space is given by

#n(1 )=&|
R(tf )

R(0) _
1
� | dq :

:

1
(2?)N

d%(:)

dq
{S (:)(q, I ; R)

+
X(I; R) {Y(I; R)&Y(I; R) {X(I; R)

(X(I; R)2+Y(I; R)2) & } dR. (39)

In a simplified notation, the above formula can be expressed as

#n(1 )=&| _1
�

({S (:))+
X {Y&Y {X

(X2+Y2) & } dR, (40)

where the integral over q has been converted to an integral over the angles using
the Jacobians a2

(:) and the limits of the integration is supressed because the curve
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in parameter space is arbitrary. Unless otherwise stated, the above limit is under-
stood as starting from some initial value to a final value of the parameters. This is
the semiclassical limit of the open-path Berry phase.

During an adiabatic transport arround a closed-circuit, the above expression
reduces to that of the well known result of Berry [12]. When the time tf is so
choosen that R(tf)=R(T )=R(0), then the last term does not contribute to the
semiclassical geometric phase, i.e., the closed line-integral over the parameters gives
us

� _X {Y&Y {X
(X2+Y 2) & } dR=0, mod 2?n (41)

and hence the closed-circuit Berry phase for a loop C is given by

#n(C)=||
�A=C

Vn(R) } dS (42)

with Vn(R)=(1��) { 7 � ({S (:)) } dR.
Next, we obtain the Hannay angle for adiabatically evolving systems around an

open circuit that was promised in the beginning of this paper. Using the connection
between the quantal geometric phase and the classical Hannay angle one can express
the latter as

%H(I; 1 )=&h
�#n(1 )

�I
. (43)

Therefore, the classical angle holonomy during the adiabatic variation of the
Hamiltonian along an arbitrary path in parameter space connecting the points R(0)
and R(tf) is given by

2%H(I; 1 )=
�
�I | ({S (:)) } dR+

�

(X 2
f +Y 2

f ) \Xf

�Yf

�I
&Yf

�Xf

�I + , (44)

where Xf=X(I ; R(tf)) and Yf=Y(I ; R(tf)).
Thus, the adiabatic system admits a Hannay angle for for an open-path which is

the semiclassical limit of the quantal adiabatic phase. The open-path Berry phase
and its relation to the Hannay angle constitute the central results of these last sections.
The original Hannay angle (for closed-paths) is invariant under parameter-depen-
dent and action-dependent transformations of the origin from which the angle % 's
are measured. Here, the generalised Hannay angle will remain invariant under a
more general type of parameter-dependent and action-dependent transformations.
The additional term takes care of the invariance of the Hannay angle under arbitrary
transformations. At the quantal level, this property corresponds to the invariance
of the open-path Berry phase under parameter-dependent phase transformations of
the eigenfunctions.
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5. CLASSICAL LIMIT OF THE OPEN-PATH BERRY PHASE AND
CONNECTION TO THE HANNAY ANGLE

5a. Berry Phase from Instantaneous Projectors
In this section, we intend to obtain the classical limit of the Berry phase when the

parameters need not follow a cyclic evolution. Essentially, the problem reduces to
finding the classical limit of the generalised one-form 0 (1)

n or the vector potnetial
0n(R), so that one may be able to shed some light on what would be the classical
angle holonomy for non-cyclic variations. To this end, we express the open-path
Berry phase in terms of the averages of the commutators of the instantaneous
projection operators Pn(R)=|9n(R))(9n(R)| as it will facilitate the classical limit
with ease. This one-dimensional projection operator depends on the parameter
continuously and undergoes a continuous evolution in parameter space. Since we
are dealing with non-cyclic evolutions of parameters, Pn(R(tf )) is not equal to
Pn(R(0)). To express the Berry phase in terms of these projectors, note that (5) can
be written as

#n(1)=
i
2 |

1 \(/n(R) | {/n(R))&({/n(R) | /n(R))+ } dR. (45)

By expressing the ``reference-eigenstate'' |/n(R)) as |/n(R))=(Pn(R) | 9n(R(0))) )�
( |(9n(R) | 9n(R(0))) | ), we have

(/n(R) | {/n(R))=
(9n(R(0))| Pn(R) {Pn(R) |9n(R(0)))

(9n(R| Pn(R) |9n(R(0)))

&
1
2

(9n(R(0))| {Pn(R) |9n(R(0)))
(9n(R)| Pn(R) |9n(R(0)))

. (46)

Inserting the above equation into the geometric phase formula, we can write the
open-path Berry phase in terms of the commutator of the projector and its gradient
over the space of parameters, as is given by

#n(1 )=
i
2 |

(9n(R(0))| [Pn(R), {Pn(R)] |9n(R(0)))
(9n(R)| Pn(R) |9&n(R(0)))

} dR. (47)

Thus, the generalised phase one-form would be given by

0(1)
n =

i
2

(9n(R(0))| [Pn(R), dPn(R)] |9n(R(0)))
(9n(R)| Pn(R) |9n(R(0)))

, (48)

where d is the exterior derivative with respect to the parameters. A similar formula
has been derived by Mead [22] for the case of cyclic evolutions and by Wagh [23]
for non-cyclic evolutions in the projective Hilbert space of the quantum system after
the present author introduced the concept of ``reference-state.'' It is interesting to
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remark that the open-path Berry phase has its origin in the non-commutativity of
the instantaneous projection operator with its exterior derivative in the parameter
space, which is purely quantum mechanical in nature. This expression is more
suitable to study the classical limit because there is a direct correspondence between
the quantum mechanical commutator of hermitian operators and the classical
valued Poisson bracket.

5b. Classical Limit of the Berry Phase

To analyse the classical limit of the open-path Berry phase we use the Wigner�
Weyl representation of quantal expression and take the lowest order term (in
powers of �) that will correspond to the classical limit of the former. In Wigner
representation [24] the quantum mechanical operator O� is representated as a
phase space function OW (q, p), where

OW (q, p)=| d Ny(q+y�2| O� |q&y�2) e&ip } y��. (49)

The Weyl symbol of the operator reduces to the classical valued function in the
� � 0 limit. If we choose O� to be a density operator \̂=|9)(9 | constructed from
a pure state wavefunction, then we get the Wigner function

\W (q, p)=| d Ny\(q&y�2, q+y�2) e&ip } y��. (50)

Wigner representation of the phase space density and phase space function is an
alternate approach to ordinary quantum mechanics where one can talk of the
classical limit of various quantities with ease. In this representation, we can express
the average of the commutator as a phase space average of the Weyl symbol of the
commutator between the projection operators, i.e.,

(9n(R(0))| [Pn(R), {Pn(R)] |9n(R(0)))

=| d Nqd NpPn(q, p)([Pn(R), {Pn(R)])W (q, p) (51)

and similarly, we have for the denominator

(9n(R(0))| Pn(R) |9n(R(0)))=| d Nqd NpPn(q, p) Pn(q, p, R). (52)

The Weyl symbol of the commutator is given in terms of the Moyal bracket

([Pn(R), {Pn(R)])W=
2
i

Pn(q, p, R) sin _ {Pn(q, p, R). (53)
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where _ is given by

_= :
N

i=1

�

2 \
��

�p
}
��

�q
&

��

�q
}
��

�p+ , (54)

where the left and right arrows on the differential operators imply that they act on
the functions which lie to the left and right, respectively. Since we are interested
only in the classical limit of the generalised vector potential, the Weyl symbol of the
commutator goes over to the poisson bracket of the corresponding distribution
functions on phase space. Hence, we have

([Pn(R), {Pn(R)])W �
1
i

[Pn(q, p, R), {Pn(q, p, R)]P } B . (55)

Also, for an integrable system we know that the invariant manifold is the torus on
which N actions remain constant and the initial phase space distribution can be
taken as a microcanonical distribution, where P(q, p) is given by [25]

Pn(q, p)=
1

(2?)N $N(I(q, p)&I). (56)

This N-dimensional delta function tells us that the Wigner function for an eigen-
state is concentrated in the region that a classical orbit visits over an infinite time.
The phase space average of any function is defined as

( f ) I=
1

(2?)N | d Nq d Np f (q, p, R) $N(I(q, p)&I). (57)

Therefore, the classical limit of the gegeneralised vector potential is given by

0c(R)=
&1�2 � d Nq d Np $N(I(q, p)&I ) } [P(q, p, R), {P(q, p, R)]P.B

� d Nq d Np $N(I(q, p)&I) P(q, p, R)
(58)

Thus, the classical angle holonomy %c
H for integrable systems would be given by

%c
H=| 0c(R) } dR=&

1
2 |

([P(q, p, R), {P(q, p, R)]P.B) I

(P(q, p, R)) I
} dR, (59)

which suggests that the origin of the angle holonomy could be due to the non-
vanishing nature of the torus average of the phase space density with its gradient
in parameter space. However, it is not at all clear to the author how to prove this
statement purely using classical arguments.
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5c. Operational Definition of the Hannay Angle for Open-Paths

Although it is difficult to derive the non-cyclic Hannay angle at classical level, we
can try to give an operational definition of it. This would require the knowledge of
the classical analog of the quantum mechanical inner product of any two vectors in
the Hilbert space of the quantum system. In quantum theory the most important
thing is the inner product between two non-orthogonal states which is in general
a complex number. Physically, this represents the survival amplitude of a system in
a certain state once it is prepared in a given initial state. Is there any such thing in
the classical world? This is a question which bothers some physicist that I know
and the answer is not quite clear. However, we can try to see what is the classical
limit of the quantum mechanical inner product. It may be remarked that the square
of the modulus of the inner product (transition probability) between two states
can be expressed in terms of Wigner functions and in the classical limit this will
represent the overlap integral of microcanonical distributions corresponding to two
possible configurations.

Consider two quantum states |91) =|9(0)) and |92) =|9(t)) whose inner
product is defined on the Hilbert space of the quantum system. If U(t) is the unitary
operator that generates |92) from |91) , then the inner product can be expressed
as

(91 | 92)=(9(0)| U(t) |9(0)) =tr(\(0) U(t))

=| d Nq d Np \W (q, p) UW (q, p, t), (60)

which is nothing but the phase space average of the unitary operator over the
Wigner distribution. The classical limit of this would correspond to the phase space
average of the classical function that generates the canonical transformation. For
adiabatic eigenstates let U(R(tf)), R(0)) be the unitary operator that relates the
states |9n(R(tf))) and |9n(R(0))). Then the inner product between the initial and
final adiabatic eigenstates can be written as an average of the unitary operator
U(R (tf)), R(0)). Thus, (9n(R(0)) | 9n(R(tf ))) = (9n(R (tf)) | U(R(tf)), R(0))
_|9n(R(tf))) . Since any unitary operator can be written as U=C+iS, where C
and S are commuting hermitian operators, the quantum mechanical inner product
is given by (C)+i(S) , which is in general a complex number. We replace the
quantum mechanical averages by its classical ones, where the averages of C and S
are taken over microcanonical distributions and are given by

(C) I=
1

(2?)N | d Nq d NpC(q, p, R(tf), R(0)) $N(I(q, p)&I), (61)

(S) I=
1

(2?)N | d Nq d NpS(q, p, R(tf), R(0)) $N(I(q, p)&I). (62)
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Here, as before the averages [3] are taken around the Hamiltonian contour on
which the point (q, p) lies and they are functions of the action I, initial and final
parameter value. The quantities Cc , (q, p, R(tf), R(0)) and Sc(q, p, R(tf), R(0)) are
classical valued functions whose Poisson bracket vanishes and is related to the
generator of the canonical transformation in classical phase space. Therefore, one
could write the classical analogue of the quantum mechanical inner product as
(C) I+i(S) I . With this idea one can give an operational definition of the non-
cyclic Hannay angle as

%H(I ; 1 )=| ��%
�R� } dR+tan&1 \(S) I

(C) I+ , (63)

where the first term is the usual Hannay term and the second term represents an
additional angle coming from the argument of the classical limit of the quantum
mechanical inner product. In the future one may be able to derive the open-path
Hannay angle within the classical mechanics�which seems to be a difficult task at
present.

6. DISCUSSION AND CONCLUSION

In this section we discuss briefly an application of the open-path Berry phase and
conclude the formalism that has been developed in this paper. The open-path Berry
phase and its classical counterpart can have important applications in many areas
of physics. Here, we will illustrate how it shows up in an interesting way for the
case of wave-packet revivals. The revival phenomenon refers to the case where a
quantal wave-packet spreads following a classical trajectory, reassembles after some
time TR (called the revival time), and then takes the course of the classical trajectory.
This phenomenon [21] which was well studied for time-independent Hamiltonians,
recently has been generalised by Jarzynski [10] to the case of adiabatically chang-
ing Hamiltonian systems. He has shown that if initially the quantal wave-packet is
at some point (say) (q0 , p0) in phase space, then the effect of adiabatic changes of
external parameters can be manifested as a displacement of the location of the
revived wave-packet along its classical trajectory. The amount by which the packet
is shifted is equal to the adiabatic, closed-circuit Hannay angle. In carrying out his
analysis it is assumed that the external parameters are varied in a cyclic manner
and the time period T over which the parameters return to their original value is
just equal to the revival time TR . He has concluded that the effect of the Berry
phase on the revival phenomenon is meaningful only when the revival time TR

coincides with the cyclic time. As we have shown in this paper the Berry phase and
Hannay angle are not only well defined for closed paths but also for open paths.
It must be now evident that the effect of the classical Berry phase on wave-Packet
revival can be seen even when the parameters do not come back to their original value
at time TR . Hence, we argue that the nice conclusion of Jarzynski need not be
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restrictive to the case considered by him, although his analysis may need a
modification (to properly take into account the contributions coming from the new
vector potential). If one probes the location of two identically prepared wave-pack-
ets during their evolution along the classical trajectory by keeping the parameters
of one packet constant and varying the parameters of the other in any desirable
way, one will be able to demonstrate the existence of the open-path Hannay angle
in wave-packet revivals. By observing the relative shift in the locations of the
revived packet one may infer the effect of the open-path Hannay angle.

To conclude this paper, in Section 2, we obtained the Berry phase for quantum
(whose classical counterpart is integrable) systems when parameters follow an open
path during an adiabatic evolution. The reason for such a motivation has been
clearly brought out. It is found that a generalised gauge potential (quantum one-
form) can be defined over the parameter space whose line integral gives the Berry
phase for open-path excursions of the parameters. The open-path Berry phase is
shown to be gauge invariant and also phase invariant. Further, the non-cyclic Berry
phase goes over to the usual Berry phase formula for the cyclic path.

The classical angle holonomy for the open path is not known and there is no way
to proceed because for non-cyclic variations of external parameters it is not clear
how to compare the angle variables. In Section 3, we provided a connection
between the open-path Berry phase and Hannay angle using parametrised coherent
states, which describes action-angle variables appropriately. It is found that the
open-path Hannay angle can be obtained by taking a partial derivative of the open-
path Berry phase with respect to the quantum number in large n limit (classical
limit).

In Section 4, using the semiclassical approximation for the wavefunction we
evaluated the open-path Berry phase and subsequently derived the semi-classical
Hannay angle. The open-path Hannay angle contains an extra term which is
ususally absent for the cyclic angle holonomy of the integrable system. In Section 5,
we analysed the classical limit of the quantum one-form by expressing it in terms
of the commutator of the instantaneous projection operators with its exterior
derivative. This enables us to take the classical limit by using the correspondence
rule between the commutator and the Poisson bracket. Using the Wigner represen-
tation of the distribution function and its classical counterpart we expressed the
angle holonomy in terms of the torus averages of the Poisson bracket of the phase
space density with its exterior derivative. It may be argued that the quantum
mechanical inner product has a classical limit which gives rise to an additional term
in the Hannay angle for open path excursions. The operational definition of the
non-cyclic Hannay angle is given within the classical mechanics�whose derivation is
still an open problem. As an application we outlined how this angle holonomy can
have an important effect in wave-packet revivals. The future challenge lies in estab-
lishing the open-path Hannay angle purely from classical considerations. Since not
much is known about this interesting angle holonomy when the parameters do not
follow a closed path, it is hoped that this work will be an important step in this
direction.
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