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Quantum Information (QI)
• Exploits basic features of quantum theory in
information processing.
• Fundamental new insight into nature of quantum
world and physical processes.
• QI technology utilizes resources that are not
available in classical world.
• Recent developments: Quantum computing,
Quantum teleportation, Dense Coding, Remote state
preparation, Quantum communications, Quantum
cryptography and many more.
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Classical and Quantum
Information
• Classical bit remains in either 0 or 1.
• Quantum bit (qubit) can not only remain in 0 or 1,
but also in 0 and 1.
• Any general two-state quantum system is a qubit:

|ψ(θ, φ)〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉.

• Quantum theory allows new ways of storing and
processing information which are not there in the
classical world.
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Quantum Theory
• System is described by a state vector |ψ〉 ∈ H.
• Physical observables are linear Hermitian operators.
• Quantum evolution is linear. Closed quantum
systems evolve unitarily, i.e., |ψ〉 → |ψ′〉 = U |ψ〉.
Unitary evolution preserves purity of a state.
• Measurement disturbs the state.
If we know the outcome: |ψ〉 =

∑

n cn|ψn〉 → |ψn〉
with probability |cn|2.
If we do not know the outcome:
|ψ〉〈ψ| →

∑

n |cn|2|ψn〉〈ψn| —— a mixed state.
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Quantum Theory ....
• State space of a composite system is tensor product
of individual Hilbert spaces H = H1 ⊗H2.
• If state of the composite system cannot be written as
|Ψ〉12 = |ψ〉1 ⊗ |φ〉2, then it is an entangled state.
• A general entangled state
|Ψ〉12 =

∑NM
nm=1Cnm|ψn〉1 ⊗ |φm〉2.

• Schmidt decomposition theorem: Any pure bipartite
entangled state can be written as
|Ψ〉12 =

∑N
i=1

√
pi|ai〉1 ⊗ |bi〉2.

• State of individual system can be obtained by partial
trace: ρ1 = tr2(|Ψ〉1212〈Ψ|) and ρ2 = tr1(|Ψ〉1212〈Ψ|).
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Quantum Theory ....
• Open system is described by mixed state
ρ =

∑

i pi|ψi〉〈ψi|. ρ is positive, trρ = 1 and ρ2 6= ρ.
• Purification: Any mixed state can be a part of a
composite system which is in a pure entangled state.
• General quantum evolution is a completely positive
map:

ρ→ E(ρ) =
∑

i

EiρE
†
i ,

where Ei’s are Kraus operators and
∑

iE
†
iEi = 1.

• E can be represented as a unitary evolution in an
enlarged Hilbert space.
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Quantum Information
• State vector |ψ〉 carries both quantum and classical
information.
• Quantum state contains potentially a vast amount
information which is inaccessible to an external
observer. This inaccessible information is quantum
information.
• The amount of information we can extract from a
quantum state via measurement is the accessible
information and this is classical information.
• Given a single quantum in an unknown state we
cannot determine it.
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• Quantum Information differs from classical
information in many ways. Some fundamental
differences are:

• No-Cloning Theorem: We cannot make copy of
an unknown quantum state (Wootter-Zurek,
Nature 1982, Dieks PLA 1982).

|ψ〉|0〉 → |ψ〉|ψ〉
• No-Flipping Theorem: We cannot flip an

unknown qubit (Buzek, Hillery, Werner PRA
1999, Pati PRA 1999).

|ψ〉 → |ψ̄〉
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• No-Deleting Theorem: We cannot delete an
unknown quantum state against a copy
(Pati-Braunstein, Nature 2000).

|ψ〉|ψ〉 → |ψ〉|0〉
• No-Partial Erasure Theorem: We cannot erase

part of the information of an unknown quantum
state (Pati-Sanders, PLA 2006).

|ψ(θ, φ)〉 → |ψ(θ)〉

These limitations tell you what we can and cannot do
with quantum information.
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Hiding Classical Information
• Classical information can be hidden in two ways:
Moving the original system or/and by encrypting the
message.
• Vernam Cipher: Alice encodes a message M using a
random n-bit key K, i.e., C = M ⊕K. Original
message can be retrieved by receiver (say Bob) using
C ⊕K = M , where ⊕ is addition modulo 2.
• Encoded bit string contains no information of the
original message (Shannon, 1949).
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• Where does the information reside? Neither in the
encoded message nor in the key, but in the
correlations between these two strings.
• Quantum analogue: Can we encode a quantum state
into the correlations between two subsystems, such
that subsystems have no information?
• Impossible for any pure-state encoding. For e.g.
α|0〉 + β|1〉 → α(|00〉 − |11〉) + iβ(|01〉 + |10〉).
Individual subsyetms have some information about α
and β.
• That this holds generally is particularly surprising.
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Hiding Quantum Information
• Can we hide quantum information in same way like
classical information?
No. If the original information is missing then it must
move to somewhere else and it cannot be hidden in
the correlations between a pair of systems.
This we call the ‘no-hiding theorem’ (Braunstein and
Pati, PRL, 2007).

• This has many applications:
1. Randomization.
2. Quantum Teleportation.
3. Process involving Thermalisation– a Generalized
version of Landauer’s erasure.
4. Black hole Information loss paradox.
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Perfect hiding processes
• Hiding process maps an arbitrary state to a fixed
state

|ψ〉〈ψ| = ρ→ σ.

• Unitary evolution cannot transform this but a
general quantum operation can.

• Take an arbitrary input state ρI and encodes it into a
larger Hilbert space in a unitary manner:
|ψ〉I → |Ψ〉OA. If σO = trA(|Ψ〉OA〈Ψ|) is
independent of the input state, then it is a hiding
process.
• The remainder of the encoded Hilbert space is
ancilla A which itself could be a composite system.
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The No-Hiding Theorem
• Theorem: Let |ψ〉I → |Ψ〉OA such that
|ψ〉II〈ψ| = ρI → σO with σ fixed for all ρ. Then the
missing information is wholly encoded in the
remainder of Hilbert space with no information stored
in the correlations between the two subsystems.

• Quantum mechanics allows only one way to
completely hide an arbitrary quantum state.

• This is robust to imperfections. As more of the
original state becomes hidden, it smoothly becomes
more accessible in the remainder of Hilbert space.
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• Proof: For this process to be physical, it must be
linear and unitary. Unitarity allows us to suitably
enlarge the ancilla and that maps pure states to pure
states.
• Schmidt decomposition of the final state is

|ψ〉I →
K

∑

k=1

√
pk |k〉O ⊗ |Ak(ψ)〉A ,

where pk are the K non-zero eigenvalues of σ, {|k〉}
are its eigenvectors, and {|k〉} and the ancilla states
{|Ak〉} are orthonormal sets.

QUANTUM INFORMATION —-THE NO-HIDING THEOREM – p.15/36



• By linearity the ancilla will consist of an
orthonormal set of states even for superposed states

|Ak(α|ψ〉 + β|ψ⊥〉)〉 = α|Ak(ψ)〉 + β|Ak(ψ⊥)〉,

where |ψ⊥〉 is orthogonal to |ψ〉.

• Inner product gives

α∗β 〈Al(ψ)|Ak(ψ⊥)〉 + β∗α 〈Al(ψ⊥)|Ak(ψ)〉 = 0 .

For arbitrary α and β, all cross-terms must vanish.
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• Given any orthonormal basis {|ψj〉, j = 1, . . . , d}
spanning the input states we may now define an
orthonormal set of states, |Akj〉 ≡ |Ak(ψj)〉. Unitarity
allows us to map any orthonormal set into any other.
• We are free to write these as

|Akj〉 = |qk〉 ⊗ |ψj〉

where {|qk〉} is an orthonormal set of K states.
• By linearity, we have
|Ak(ψ)〉 = |Ak(

∑

j cj|ψj〉)〉 =
∑

j cj|Ak(ψj)〉
=

∑

j cj|qk〉 ⊗ |ψj〉 = |qk〉 ⊗ |ψ〉
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• Under this mapping the final state is

|ψ〉I →
∑

k

√
pk |k〉O ⊗ (|qk〉 ⊗ |ψ〉)A.

• |ψ〉 can be swapped with any other state in the
ancilla ⇒ QI that is encoded globally is in fact
encoded entirely within the ancilla.
• No information about |ψ〉 is encoded in system and
ancilla correlations.
• If the original information is missing it must be
moved to reminder and it cannot be hidden in the
correlations— the ‘no-hiding theorem’.
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Imperfect hiding processes
• Imperfect hiding must allow for some imprecision
in the encoding.
• To fully specify the mapping, we now need to
describe its action on entangled states.
• Input subsystem I is initially entangled with an
external subsystem I ′: |ψ〉I ′I ≡

∑

j

√

λj|j ′〉I ′|j〉I
so that ρI = trI ′(|ψ〉I ′I〈ψ|) =

∑

j λj|j〉〈j|.
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• Linearity and hiding map imply that a perfect hiding
process has the form |ψ〉I ′I → |Ψperfect〉I ′OA

≡
∑

jk

√

λjpk|j ′〉I ′ ⊗ |k〉O ⊗ (|qk〉 ⊗ |j〉)A

• The specification we sought takes the form
ρI ′I ≡ |ψ〉I ′I I ′I〈ψ| → ρI ′ ⊗ σO, where ρI ′ is the
reduced state of the reference.
• An imperfect process can be described by
ρI ′I → ρI ′O where the output only imprecisely hides
the input with tr |ρI ′O − ρI ′ ⊗ σO| < ε, for some ε.
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• Purification of ρI ′O is a global state |Ψimperfect〉. The
tensor product ρI ′ ⊗ σO is guaranteed by any
purification which takes the form of |Ψperfect〉.
• Global state of the imperfect output will strongly
overlap with some global state whose form perfectly
satisfies the no-hiding theorem

〈Ψimperfect|Ψperfect〉 ≥ 1 − ε/2 .

• Demonstrates robustness of the “no-hiding
theorem” to imperfections.
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Randomization
• Randomization takes an arbitrary pure state to a
complete random mixture: |ψ〉〈ψ| → I

d
. A qubit can

be randomized via a quantum operation |ψ〉〈ψ| →

1

4
[I|ψ〉〈ψ|I+σx|ψ〉〈ψ|σx+σy|ψ〉〈ψ|σy+σz|ψ〉〈ψ|σz] =

I

2

• Exact randomization requires an ancilla of
dimension at least d2. If we see the enlarged Hilbert
space, the missing information will be in the ancilla
part in accordance with the ‘no-hiding’ theorem.
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Quantum Teleportation
• An object is destroyed at one end and recreated at a
distant location using quantum entanglement and
classical communication (Bennett et al 1993).
• Teleportation equation:

|ψ〉|Ψ−〉 =
1

2

3
∑

j=0

|Ψj〉Alice
⊗ U †

j |ψ〉Bob
.

• Alice measures in Bell basis {|Ψj〉} and
communicates her measurement result to Bob via a
classical channel.
• Depending on classical message Bob applies Uj to
recover the state. This completes the quantum
teleportation.
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Quantum Teleportation
• To apply the no-hiding theorem to teleportation, we
require a globally quantum description or a unitary
description.
• Classical message is replaced by quantum system
and being send from Alice to Bob (if we allow
decoherence we will get classical message,
(Braunstein 1996).
• For a single qubit in an arbitrary pure state |ψ〉, the
teleportation protocol reduces to

|ψ〉 → 1

2

3
∑

j=0

|Ψj〉Alice
⊗ |j〉

message
⊗ U †

j |ψ〉Bob
.
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• Each of the three subsystems is in the maximally
mixed state for that space. Bob needs to undo the
randomizing operations to retrieve |ψ〉.

• Our key result can be recovered by rewriting the
teleportation process in terms of a bi-partite system.

• Since the reduced density matrix of Bob’s
subsystem contains no information about the hidden
state |ψ〉, it must lie entirely in the remainder of
Hilbert space (encoded within the union of the Alice
and message subsystems). Same argument holds for
other subsystems.
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• Quantum teleportation is consistent with our result.
When the original disappears it must appear
somewhere else.

• Unitary variation of teleportation could serve as an
experimental verification of the no-hiding theorem,
where the bi-partite systems could be reconstructed
separately to identify in which subsystem the qubit
was encoded.
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Thermalization
• The no-hiding theorem offers deep new insights
into the nature of quantum information.
• Generalizes Landauer’s erasure (1961):—- any
process that erases a bit must dump k log 2 entropy
into the environment. Landauer’s principle applies
universally to classical or quantum information
(Bennett 1982).
• Erasure takes |ψ〉 → |0〉 for all |ψ〉. This cannot be
performed by unitary transformation. Why? Suppose
you could, then |ψ〉 → |0〉 and |φ〉 → |0〉. Taking the
inner product we have 〈ψ|φ〉 = 1 which is a
contradiction.
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• Our theorem applies to any process hiding a
quantum state, whether by erasure, randomization,
thermalization or any other procedure.

• Landauer’s principle provides fundamental insight
into thermodynamic reasonings. In contrast, data
hiding provides more insight into the nature of
thermalization processes. The terminology used
above — input, output and ancilla — now takes on
thermodynamic interpretations (e.g., initial system,
final system, environment; or input system etc).
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• In the case of a single system and environment, as
the state of the system thermalizes, it contracts to a
thermal distribution independent of its initial
description.

• Perfect hiding implies complete thermalization,
whereas imperfect hiding may shed some light on the
approach to an equilibrium state.

• Either way, as the state vanishes from one subspace,
it must appear in the remainder of Hilbert space.
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Black Hole Information Loss
• How does this result apply to the black-hole
information paradox?
• Hawking’s work on black-hole evaporation
precipitated a crisis in quantum physics. Whatever
matter falls into it, a black hole evaporates in a steady
stream of ideal featureless radiation.
• If we throw a pure state into a black hole we will get
a mixed state: |Ψ〉〈Ψ| → σ.
• Where has this information gone?
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Options
There have been various proposals to resolve this
paradox (Preskill hep-th/9209058).
• Information may come out during later stage.
• Information may be there in correlations between
the quanta emitted early and the quanta emitted latter
on.
• Information may be stored in a left out remnant.
• Information could be hidden in the correlation
between the Hawking radiation and inside state of
black hole.
• Collapse induces nucleation of a ‘baby universe’
and this new universe carries away the original
information.
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No-hiding theorem and
Information loss
• In our formulation in-falling matter would
correspond to subsystem I and out-going Hawking
radiation would be subsystem O.
• The no-hiding theorem implies that no information
is carried either within the out-going radiation or in
correlations between the out-going radiation and
anything else.
• Rejection of the correlations option is based on two
assumptions: unitarity and Hawking’s analysis.
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• No-hiding theorem rigorously rules out any that the
information escapes from the black hole but is
nevertheless inaccessible as it is hidden in correlations
between semi-classical Hawking radiation and the
black hole’s internal state.

• Provides a criterion to test any proposed resolution
of the paradox. Any resolution that preserves unitarity
must predict a breakdown in Hawking’s analysis.
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Summary
• Quantum information is fundamentally different
than classical information.
• Copying, deleting, flipping, and partial erasure
etc....are impossible in quantum world.
• No-hiding theorem provides new insight into the
different laws governing classical and quantum
information. Unlike classical information, QI cannot
be completely hidden in correlations.
• Applications: Randomization, Quantum
teleportation, Thermalization, Black hole evaporation
and many more.
• Whenever information disappears from one system
it moves to somewhere else.
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THANK YOU
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