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Introduction 
 
Quantum information theory is a marriage between 
two scientific pillars of the twentieth century science, 
namely, quantum theory and classical information 
theory. Quantum theory as developed by Planck, 
Einstein, Schrodinger, Dirac, Heisenberg, and many 
others in early part of the last century is one of the 
finest theories that explains phenomena ranging 
from molecules to electrons, protons, neutrons and 
other micro particles. Mathematical theory of 
classical information was also propounded by C. 
Shannon in the midpart of the last century.  
Whatever revolution in information technology we 
see at present is partly due to the ground-breaking 
work by C. Shannon, A. Turing, A. Church and many 
others.   
 
When the ideas from classical information theory are 
carried over to quantum theory  there emerges a 
revolution in our ability to process information. The 
very basic ways of expressing and manipulating 
information require physical states and processes. 
In quantum theory we know that the physical 
processes are fundamentally different than those of 
classical physics. Therefore manipulation of 
information based on quantum physical processes 
has to be also fundamentally different than their 
classical counterparts [R. Feynman, Found. of 
Physics 16 (1986) 507]. It is this urge to understand 
what we can do with the new ways of expressing 
information, which has led to several surprising 
discoveries in last two decades or so. The subject of 
Quantum Information is quite vast, and very broadly 
deals with topics such as Quantum Computing, 
Quantum Cryptography, Quantum Entanglement, 
New protocols for information processing and many 
more tasks which cannot be achieved classically 
[see for example: A. Zeilinger, Phys. World (March), 
35-40 (1998)]. Here, we plan to give a brief overview 

of recent excitement in quantum computation and 
some fundamental limitations on quantum 
information. 
 
Quantum Computation 
 
Physics of information and computation are 
intimately related. Information is encoded in a state 
of a physical system. Computation is processing of 
information on actual physical system that obeys 
certain laws. Therefore, the study of information and 
computation are linked through a study of underlying 
physical processes. If the physical processes obey 
the rules of classical physics, the corresponding 
computation is classical. If the underlying processes 
are subjected to quantum mechanical rules, the 
resulting computation will be “quantum 
computation". The logic that lies at the heart of 
ordinary computers and quantum computers is 
completely direct. Quantum computation is a 
particular way of processing information which 
utilises principle of linear superposition, quantum 
entanglement and quantum measurement.  
 
In conventional computers (present-day-computers) 
information is stored in bits such as 0's or 1's. To 
represent a bit, i.e., 0 or 1 one can use any physical 
system like a voltage in a circuit is at zero or at a 
positive bias, or current in a circuit in positive or 
negative direction, or by saying that a switch is on or 
off. A two bit information can be in any one of the   
22 = 4 possible states (e.g.00; 01; 10; 11). A three 
bit information can be in any one of the 23 = 8 
possible logical states (e.g. 000; 111; 011; 110; 101; 
001; 100; 010). An n bit information can exist in any 
one of the 2n possible logical states one at a time. 
Information stored in these binary digits can be 
manipulated using elementary logic gates that obey 
Boolean algebra. For example, in a classical 
computers one can manipulate information using 



  

sequence of logical operations such as AND, OR, 
NOT, and XOR gates. Computations that are done 
in our desk top computers basically use these logic 
gates. 
  
Quantum Bit or Qubit  
  
Suppose we represent a bit 0 or 1 by saying that the 
spin of a neutron is up or down, or we could say an 
atom is in ground or in an excited state, or a photon 
is horizontally or vertically polarized. All these 
systems are called two-state quantum systems 
because they can remain in any of these two logical 
states. Therefore, when a photon is in a defnite 
polarization state it carries classical information (as 
it represents a 0 or a 1). However, quantum theory 
also allows a state of a spin-half particle, which is in 
a linear combination of spin up and down. This 
implies a new possibility for representing information 
by a two-state quantum system which can be both 0 
and 1, i.e., a state of the type 10 βα + with α 
and β being complex numbers in general and     
α 2 + β 2 = 1. (According to Dirac a quantum state 

is denoted by a ket .. , which for a two-state 
system is a column matrix with two entries). This is 
called a quantum bit or `qubit'. As we will see in 
subsequent section an arbitrary qubit contains a 
large amount of information. It is possible to design 
several new type of logic gates acting on qubits 
which can perform many computational tasks in 
parallel (due to linear superposition principle) which 
cannot be realised with classical computers [D. 
Deutsch, Proc. R. Soc. London. A, 400, 97-117 
(1985)]. One may recall that it is this linear 
superposition that lies at the heart of interference of 
quantum particles when they are made to pass 
through a Young's double slit experimental setup. 
  
Quantum Register 
 
It is a collection of qubits on which a program is to 
be executed. For example, if we have two qubits, 
they can exist in four logical states 00; 01; 10 and 11 
and they can also exist in a linear superposition of 
all four logical states. In the latter case a typical 

state will be 11100100 γδβα +++ . If 
there are n qubits they can exist in any one of the 2n 
possible logical states and also can exist in a linear 
superposition of all 2n logical states. This latter 
property in case of two or more quantum systems 
can give rise to quantum entanglement (inter-
twinedness). A composite state is entangled if it is 
not a product of individual states. A simplest 
example of entangled state is Einstein-Podolsky-
Rosen state )1001(2/1 −  for two qubits 
which is familiar spin-singlet for two spin-half 
particles. In this state there is equal probability of 
finding the spins (ups and downs) for two qubits. 
Further, if spin of one particle is found up then the 
other is in down state. If two particles are in an 
entangled states then measuring one will affect the 
other instantaneously even though they are far 
separated in space. Spatial distance is immaterial 
because there is correlation in internal degrees of 
freedom. One can imagine that `somehow' two 
particles love so much that even if they are far apart, 
still they are in contact! Physicists are still trying to 
understand the mechanism of this `somehow'.  
 
Quantum Parallelism and Quantum Algorithm 
 
Like in a classical computer, to run a program in a 
quantum computer (QC) algorithms have to be 
devised. Algorithms on a quantum computer can be 
implemented by sequential application of quantum 
logic gates, which are nothing, but a set of unitary 
operations on n quits. An important result in this 
area is that any arbitrary operation ( nn 22 × matrix) 
on n-qubits can be designed from single-qubit 
operator (2 x 2 matrix) and two-qubit operators         
(4 x 4 matrix).  
 
 
The striking feature of QC is its computational 
potential − called “quantum parallelism". Suppose 
there is a black box that computes a function from 
an input bit x; (x = 0; 1; …. 2n ), i.e., it takes a single 
bit x to a single bit f(x). Classically one has to do     
N=2n function evaluations. But quantum 
mechanically all the N function evaluation can be 
done in one go because a QC can remain in a 
superposition of all N possible logical states (see   



  

fig 1). However, to know the answer we have to do a 
measurement on the output register and that will 
destroy the coherence. The result will be obtained 
according to certain probabilities. Thus it is a highly 
non-trivial task to design a quantum computer and 
get an answer for a desired problem.  

 
Fig.1 Parallelism in quantum computing: if a unitary operator U 

takes ,)(0 xfxx → with x=0,1,…..N, then a single 
action of U on equal superposition of logic states evaluates the 
function for all possible inputs of x. 
 

But why is it so interesting? It is not that a QC can 
solve some problem which cannot be solved in a 
classical computer (though this question is still an 
open). A quantum computer can solve all those 
problems that can be done on a classical computer. 
In addition, it can solve computationally hard 
problems with ease. 'Computationally hard' is 
measured through computational complexity − 
which says how the number of steps s required in a 
computation scales with the size of the input. If we 
feed an input number N, the information or length of 
the input is L = log2N. If s is a polynomial function of 
L (such as say s ≈ aL + bL2 ), then the problem is 
tractable and if s grows exponentially with L (such 
as say s ≈  exp[f(L)], where f(L) is some non-
exponential function of L), then the problem is 
`hard'.  
 
In recent years there have been three important 
algorithms discovered. One is the Deutsch-Josza 
(DJ) algorithm where one aims to know some 
`global' information about a binary function f(x), i.e., 
to know whether the function is balanced or 
constant. A balanced function is one which is 0 for 
half of the case and 1 for other half or vice versa. A 

constant function is one which is either 0 or 1 for all 
values of x. Since x takes N possible values a 
classical computer will take O(N) steps to decide it. 
But Deutsch and Jozsa found an algorithm on a 
quantum computer which can decide it in one step! 
So there is an exponential speed-up in a quantum 
computer [D. Deutsch and R. Jozsa, Proc. R. 
Society (London), Ser. A 439 (1992) 553]. The 
second is the Shor algorithm where one aims to 
factorise a composite (a non-prime) number x. In 
general it is an intractable problem. In a classical 
computer the best known algorithm takes an 
exponentially large number of steps. Shor 
discovered that a QC can do the job in a polynomial 
number of steps. For example,  to factor a number 
of size L ~ 600, the number of steps it takes is         
s ~ 1025. It will take million years in a classical 
superfast computer but a quantum computer can do 
the factorisation in s ~108 steps, i.e., in few seconds! 
Shor's algorithm is one of the land-mark papers in 
quantum computation that generated a widespread 
interest among physicists, computer scientists, 
mathematicians and others alike [P. Shor, Proc. 
35th Annual Symp. on Found. of Comp. Sci. IEEE 
Computer Society Press, 1994]. The third is the 
Grover algorithm, where one aims to find one 
particular item from a large unsorted data base 
containing N items. Classically, one needs to search 
O(N) times to find a particular item but quantum 
mechanically one can search in O( N ) steps [L. K. 
Grover, Phys. Rev. Lett. 79 (1997) 325]. There is a 
square-root improvement (i.e., the speed-up is 
polynomial) which can be a great advantage for 
large data base searches. For example, to find a 
person's name in a directory containing 108 entries, 
a classical computer will take so many steps 
whereas a quantum computer can do only in 104 
steps.  
 
These discoveries are important not only for 
physicists but also for computer scientists because 
they provide radical way of thinking about 
computation, information, and programming in 
general. It is worth mentioning that DJ's and 
Grover's algorithms have been implemented on 
`primitive quantum computers'. There have been 



  

various proposals to build a quantum computer but a 
full scale QC is far from scene. The experimental 
proposals include isolating and manipulating qubits 
in ion traps, solid state based devices such as 
SQUIDS, quantum dots, NMR techniques and many 
more [see for latest progress in experimental QC: 
"Scalable Quantum Computers" by H. K. Lo and       
S. L. Braunstein (Eds), Wiley-VCH Publisher, 2000].  
 
Fundamental Limitations on Quantum 
Information  
 
As we have discussed, qantum computation is a 
certain way of processing quantum information to 
achieve startling speed-ups in some class of 
problems. But there are much more amazing tasks 
one can do with quantum information. On the other 
hand there are some limitations on quantum 
information too. Therefore, it is important to know 
what type of operations are allowed in quantum 
world and what are not. These limitations are sign 
posts on the progress road of quantum information. 
In future when we build quantum information 
processing units we would know what type of 
machines we need to design. 
 
 Knowledge of a Quantum state 
        
Quantum information has certain unique properties, 
which distinguish it from their classical counterpart. 
The 'knowledge' of a quantum state is very crucial in 
deciding what operations one can do and what 
cannot. There is a vast difference between the 
information content of a quantum state being 
'known' and `unknown'. But classically the 
information about a state can be known in principle. 
We know that in classical world the state of a 
particle is described by its position and momentum 
and there are no fundamental limitations on the 
precision with which we can measure these 
variables. Therefore, even if we do not know the 
state of a classical particle, we can always design 
an apparatus which can measure its state precisely 
without disturbing the particle. However, in the 
quantum world a state of a particle is not described 
by its position and momentum but by a wavefunction 

(in abstract 4 notion it is a state vector in a complex, 
linear, complete vector space called a Hilbert 
space). An important question is can we `know' the 
state of a particle if we are given just a single 
quantum system? The answer is `no'. To determine 
the state of a system completely one needs infinite 
number of identically prepared particles. For 
example, for a qubit described by a state 

1
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cos φθθ ie+=Ψ , if we say 'we know 

the state' − this means, we know precisely the value 
of  θ  and φ (see fig. 2).  

Fig 2. Geometrical way of representing a qubit on a Bloch 
sphere. All the points on this sphere represent possible states 
of a qubit. The tip of the arrow representing the point is a qubit 
parametrised by polar angle θ and azimuthal angle ϕ. 
 
That is to say we `know' the exact point on the Bloch 
sphere. This is possible only when we have 
prepared the qubit ourselves by a suitable machine. 
But if some one else has prepared the qubit and 
given it to us, then the qubit is `unknown'  to us.  
What it means is that we do not know the value of 
two real parameters θ and φ, and if we do not know 
them, there can be infinite number of possible value 
that they can assume. In other words if we do not 
know the exact point on the Bloch sphere, the point 
can lie any where (which has infinite number of 
possibilities). Therefore, to specify an unknown qubit 
one needs infinite number of bits (which is nothing 
but logarithm of number of possibilities). On the 
other hand we do not need any extra bits to specify 



  

a known qubit, because we have the complete 
knowledge (i.e. we do not lack any information).  
 
One may wonder is it not possible to extract the 
information about the unknown numbers θ  and φ  
by measurement? But if one performs 
measurements on a qubit one will get only two 
possible outcomes, i.e., it will project either to 0  or 

1  with probability cos2
2

θ
 and sin2

2
θ

, respectively. 

Therefore, one can extract only one bit of 
information (log2 2 = 1) by a measurement! 
Moreover, after a measurement the state of the 
qubit is no longer the same. It has irreversibly 
changed to one of the two distinct states. This is a 
riddle of quntum information: even though an 
unknown qubit contains infinite amount of bits one 
can extract only one bit of information. Surprisingly, 
this 'unknowability' of a quantum state has important 
implications in quantum information processing. It is 
precisely this nature of a quantum object that 
prohibits us to copy a quantum state, to delete a 
copy from two copies or to  a state to its orthogonal 
state and many more.  
 
No-cloning principle 
 
We know that in classical world all information can 
be copied perfectly. A pedagogical (but crude) 
example is an ordinary xerox machine, where we 
feed a page containing some classical information 
and few blank sheets at input port and at the output 
port we get two or more copies. The xerox machine 
is `universal' in the sense whatever information you 
feed you will get exact copies of an input. Moreover, 
the company which has designed a xerox machine 
does not know what information we will be copying. 
This means the information at users hand is 
apparently unknown to the person who has 
designed a xerox machine. Yet, it works equally well 
for all classical information. This is one example, 
which shows that in the classical world it possible to 
produce exact copies (in fact as many as we want) 
of any information. The other example is in a 
conventional computer we can always copy bits of 
information. This can again be done by designing 

suitable logic gates such as controlled NOT (CNOT) 
gates. A CNOT gate, for example, takes two bits as 
an input and produced two bits at the output such 
that the second bit is flipped if and only if the first bit 
is 1 (i.e.; 00 → 00; 01 → 01; 10 → 11; 11 → 10). 
Take 0 and 1 as inputs and 0 as a blank bit then by 
applying CNOT one can get 00 → 00 and 10 → 11, 
which is a copying operation. Everybody is familiar 
with making copies of some files in an ordinary 
computer.  
 

Fig.3  Quantum xerox machine 
 

But can one design a xerox machine for a quantum 
state that will produce an exact copy of an 
`unknown' state? Surprisingly the answer is no. We 
cannot copy an unknown quantum state! This is a 
consequence of linearity of quantum evolution 
discovered by Wootters, Zurek and Dieks [W. K. 
Wootters and W. H. Zurek, Nature 299 (1982) 802; 
D. Dieks, Phys. Lett. A 92 (1982) 271]. In quantum 
worlds copying process for an `unknown' qubit 
would involve the following action 

ΨΨ→ΣΨ , where Ψ  is the state of the 

qubit, Σ  is the blank state (analogous to blank 
paper in a xerox machine, see fig. 3). 
 
If a qubit is in any one of the orthogonal state 0  or 
1  , then it carries classical information and one 

can design a xerox machine that can copy it 
perfectly. For example, a photon in a horizontal or 
vertical polarization state can be copied perfectly. 
But when a qubit is in an arbitrary linear 
superposition of two distinct bits then the machine 
fails. However, if we `know' a qubit we can copy it 
perfectly. No-cloning principle is in agreement with 
established principles. For example, if we could 
clone an unknown state perfectly then by making 
two sets of identical ensembles one can measure 

 



  

position on one and momentum on the other 
precisely. This will allow us to measure two 
conjugate properties of a system, which, in turn 
violates Heisenberg's uncertainty relation. Moreover, 
if we can clone an arbitrary state then using spin-
singlet entangled state one can send signals faster 
than light. Because Alice at one end can measure 
her particle onto two orthogonal basis (she can get 1 
bit) and Bob at the other end can use a cloning 
machine to produce infinite number of copies of his 
particle and can infer the measurement out come of 
Alice. This will allow a communication of 1 bit faster 
than light. But we know that we cannot send signals 
faster than light and this is another reason why 
cloning of `unknown' states must be an impossible 
operation.  
 
No-deletion principle  
 
Yet, another fundamental limitation on quantum 
information has been discovered recently. In 
classical information theory deleting copies of some 
information is always possible using a CNOT gate. 
However, in quantum theory the perfect deletion of 
an unknown state from a collection of two copies is 
an impossible operation [A. K. Pati and S. L. 
Braunstein, Nature 404 (2000) 164]. To understand 
this question better imagine that there are two 
persons Alice and Bob. Alice prepares two copies of 
a qubit and gives to Bob. Now the information about 
the qubit is known to Alice but unknown to Bob. 
Then Alice asks Bob to design a deletion machine. 
Can Bob design a all purpose deletion machine? 
Not so. The very basic structure of quantum theory 
puts strong limitations on the complete deleting of 
the quantum information of an unknown state.  
 
Here one should distinguish the process of erasure 
from deletion. Classically, erasure refers to getting 
rid of last bit of information from a collection of 
unordered bits whereas deletion refers to resetting 
the last bit to a standard bit from a collection of 
identical ordered bits. Classical deletion takes an 
ordered set of bits to another ordered set of bits and 
this is logically reversible. But erasure is an 
irreversible operation. In classical information theory 
there is Landauer's principle of erasure, which says 

that if you throw away one bit of information it must 
dissipate energy E = kT log 2 at temperature T. 
Thus erasure of a single bit leads to increase of 
entropy of the surrounding by an amount  k log 2.  
 

Fig. 4  Quantum deleting machine 
 
The quantum deletion is fundamentally different than 
erasure [W. H. Zurek, Nature, 404 (2000) 130]. 
Quantum deletion as defined aims to create a blank 
state and original copy states from two copies by a 
linear operation acting jointly on all the copies. For 
example the deletion process would take two copies 
of an unknown neutron or photon and produce a 
blank state together with the original copy. If we 
have two photons with arbitrary polarisation in some 
state Ψ , the action of deleting machine can be 
represented as (see fig.4) ΣΨ→ΨΨ .  
 
It was proved that though the above machine can 
work for qubits in orthogonal states but for an 
arbitrary qubit the above process does not exist. By 
linearity one can show that the final output states 
are different in ideal case and actual case. 
Therefore linearity does not allow deleting of an 
unknown quantum state against a copy. This 
principle is now called “quantum no-deletion" 
principle. Nevertheless, if one knows a qubit one 
can delete a copy. This is not just reverse of no-
cloning principle, but an independent principle by 
itself. It is worth mentioning that in classically world 
one can erase and delete information (both the 
operations are allowed) but in quantum world one 
cannot delete but can only erase information at 
some energy cost.  
 
The important implication of no-cloning which was 
discovered some twenty years ago is realised in 
recent years. Similarly, the implication of no-deleting 
principle discovered only last year will be realised in 
times to come. It is a hope that this may have some 



  

applications in the quantum computer and in general 
other quantum information processing units.  
 
No-flipping principle 
 
We know that classical information consisting of bits 
such as 0 or 1 can be  i.e., 0 goes 1 and 1 goes to 
0. This can be achieved by a using a NOT gate. 
Similarly, in quantum world a qubit in a prefered 
logical state 0  or 1   can be flipped because they 
again carry classical information. But can one  flip 
an unknown qubit which is in an arbitrary 
superposition of two distinct logical states? 
Operationally, one can represent the flipping action 
as Ψ→Ψ , where Ψ  is orthogonal to Ψ .  
 
The answer to the above question is again 'no'. The 
reason behind such an impossibility is that we do 
not know the exact location of the point on the Bloch 
sphere. The flipping operation is nothing but 
inversion of the Bloch sphere. If we know the qubit, 
then we know the exact location of the point on the 
Bloch sphere and we can apply a rotation operator 
to get the flipped state. When the point on the Bloch 
sphere is unknown we cannot chose the NOT gate 
appropriately. Therefore an unknown qubit cannot 
be  i.e., there is no universal-NOT gate for a qubit 
[V. Buzek, M. Hillery and R. F. Werner, Phys. Rev. A 
60 (1999) R2626]. Surprisingly, if one picks up 
qubits from equatorial or polar great circles on a 
Bloch sphere then it is possible to design a NOT 
gate. This means that any point from these special 
class of states can be flipped exactly. With a priori 
information about qubits, even if they are unknown 
still they can be  flipped exactly [A. K. Pati, Phys. 
Rev. A 63 (2001) 014302].  
 
The physical reason behind such impossible 
operations is traced to our `ignorance' about the 
qubit. This quantum ignorance is not just a practical 
one but of fundamental one which cannot be 
removed at any cost. However, the classical 
ignorance can always be removed in principle by 
suitable measurements. Hence, there are no 
limitations on copying, deleting or  of classical bits.  
 

Applications  
 
The impossibility of `knowing' a quantum state has 
important applications in quantum cryptography. 
Cryptography is an art of sending secret information 
between two parties. Usually, the security of 
classical cryptographic protocol depends on 
unproven assumptions about complexity of the 
retrieving the key. Bennett and Brasard [ C. H. 
Bennett and G. Brasard, Proceedings of the IEEE 
Conf. on Computers, Systems and Signal 
Processing, Bangalore, India: IEEE, 1984, 175] 
were the first to realise that by encoding bits in 
quantum states Alice can send confidential 
information to Bob. A third party Eve, cannot know 
what message is sent from Alice to Bob because 
she cannot know the quantum state completely, nor 
can she make copies of the quantum states. In case 
she tries to read the information by measurement 
there will be unavoidable disturbances in the 
message and Bob will come to know that there was 
a spy! So the security to cryptography is provided by 
no-cloning principle and the laws of quantum 
mechanics. Quantum cryptography may play an 
important role in defence applications such as 
sending secret information across boarder regions 
where absolute security is essential. 
 
Quantum information processing is not only limited 
to quantum computation, quantum cryptography but 
many other protocols which are impossible 
classically. Some of those are quantum teleportation 
(a method to send an object without physically 
sending it but the cost of destroying the original), 
entanglement swapping (a method to create 
quantum entanglement between two particles which 
have never interacted), remote state preparation (a 
method to prepare certain class of qubit at a distant 
laboratory), and so on. In recent years considerable 
progress has been made by leading scientists all 
over the world (though in India it is yet to gain 
momentum). The future challenge lies in discovering 
new quantum algorithms, new limitations, and 
building quantum information processors that will 
ultimately transform the living style of human 
civilisation in twentyfirst century and the society as a 
whole.  


