EUROPHYSICS LETTERS 21 February bis 1992
Europhys. Lett., 18 (4), pp. 285-289 (1992)

A Note on Maximal Acceleration.

A. K. PaTI

Theoretical Physics Division, 5th Floor, C.C. Bhabha Atomic Research Center
Bombay, India 400085

(received 9 December 1991; accepted 31 January 1992)

PACS. 03.30 - Special relativity.
PACS. 03.65 - Quantum theory; quantum mechanics.

Abstract. - It is found that the maximal acceleration of a quantum particle is directly related to
the speed of transportation in the projective Hilbert space. The minimum space-time uncertainty
is inversely proportional to the maximal acceleration of the particle. It is argued that the most ac-
curate clocks are those which can be maximally accelerated.

It is said [1] that a geometric reformulation of quantum mechanies may lead to a new phys-
ical theory for proper description of gravity, consistent with quantum phenomena. As
Minkowski viewed the special theory of relativity (STR) in a geometric way by relating it to
the Riemannian geometry with zero curvature, so Einstein was enabled to view the general
relativity as a Riemannian space-time geometry with nonzero curvature. A similar reformu-
lation of quantum theory may relate to some quantum geometry of space-time which will de-
scribe the quantum theory of gravity. At this juncture we recall that the central theme of the
STR is the existence of a unique velocity equal to both the propagation of light in the vacuum,
and the limiting velocity for the nonzero mass particles. The fundamental assumption of STR
is that light propagates rectilinearly in the vacuum with a constant speed c irrespective of
inertial frames and with the help of the principle of causality it prohibits the possibility of
travelling elementary particles with a velocity greater than that of light. The limiting speed ¢
is very important in fixing the geometry of Minkowski space-time. In a similar way what
would fix the geometric structure of the quantum space-time? A possible candidate for this
may be the acceleration of the particle. But for this to be so, the next question naturally aris-
es: is there an upper limit for the acceleration of the particle? Classically neither in STR nor
in the general theory of relativity there exists any such limit.

Caianiello [2] has reported a few years ago that quantum-mechanical rules give rise to an
upper bound for the acceleration of the particle. Assuming that the particles are «extended
objects» with A being the linear dimension of the particle, he found that the maximal accelera-
tion goes as ¢2 /4. In a more general scheme the author [3] has shown that, if the state of the
quantum system is Gaussian in nature and consequently minimum position-momentum un-
certainty relation is satisfied, then the acceleration of the particle is equal to ¢2 /Az, where Ax
is the uncertainty in the position coordinate of the particle. Various consequences of the
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above result have been discussed in ref. [3]. Also it has been shown that when a charged
(either electrically or gravitationally) particle undergoes acceleration, the energy loss goes as
the square of the maximal acceleration.

This note brings an interesting fact, where we show that the maximal acceleration of the
particle is related to the magnitude of the velocity of transportation in projective Hilbert
space 2. These at first glance seem to be two unrelated things. The speed of transportation
gives the rate at which the state of the system moves in the projective Hilbert space & at a
given time. N A

Let S be the quantum system characterised by the normalised vectors ¥ e H. If A and B
are any two physical observables corresponding to the system S, it is well known [4]
that

AAAB = %[(wl[A,B]lz//)] o)

for [y), A|y) and B|w)e D(4) N D(B).
A
For B to be the Hamiltonian of the system, we have

A AH = 10y )14, 51y ©)] @)

It A is an observable of the system that does not depend on time explicitly, then (2) can be
written as

AAAH = % %(w(ﬂlA! v (®) ‘ . @®)

Next taking A to be the velocity operator of the particle defined through the equation
A R
v = (1/ih)[zx, H], we have

AvAH;% I ;%(wlvlw) . @

The quantity on the right-hand side of the above equation is of importance here, because it is
the acceleration of the particle if we make use of the Ehrenfest theorem. Therefore

AvAHBga, or as< =AvAH, (5)

b0

where a = |(@d/dt)y |v|w)]|.

From the special theory of relativity the limiting speed of any particle ensures that the un-
certainty in the velocity of the particle cannot exceed its maximum attainable velocity [5],
i.e.

Therefore we arrive at the relation

a< %c AH . ®)

We want to give a geometric meaning to the above inequality. From the study of geometric
aspects of quantum evolution [6], we know that if | w(#)) satisfies Schrédinger equation and
evolves according to it, then after an infinitesimal time dt the state is at | w(t + dt)) such that
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the infinitesimal normed distance funetion [7] between these two states in & is

dD(w (t), w(t + dt) = @ = 2|y D] w & + dB)) ). M

This induces a Reimannian metric on the manifold of quantum states. Equation (7) can be
simplified by Taylor expanding |y (¢ + dt)) up to second order and observing that

2
(w®ly@+dn)] =1- Tde? Ag + 0(at?),
®
where AH? = (y |H?|y) — (w | H|w)*. Then it is easy to see that dD is given by
D = AH 4L, (7a)

h

This distance function is a geometric quantity, because it is independent of the particular
Hamiltonian used to transport the system along a given curve in &, but depends only on the
fluctuation in the energy. The useful quantity, the speed of transportation is defined by

dD AH
== = —, 9
HE 4 T Th ®)
The evolution of the system in the projective Hilbert space completely determines AH and
hence vy . Detailed information of the Hamiltonian is not required, which assigns a geometric
meaning to the quantity vy. Therefore from (6) we find

a < 2cvy. (10)

Thus the maximal acceleration that a particle can undergo is limited by the speed of trans-
portation in £ and is given by

Omax = 2CVg . an

This proves what we have promised earlier. Equation (11) is a very important result although
its derivation is an elementary one. The maximal acceleration is a geometric property of the
evolution of the quantum system, Since it is independent of the particular Hamiltonian, this
means that the maximal acceleration is independent of the generator of the time translation.
The Hamiltonian of the system governs the dynamics, so it takes care of the environment in
which the system is embedded. Our result shows that in a changing environment we can ac-
celerate a particle to a particular value by keeping the dispersion in energy at a constant
value. An important theorem follows from eq. (11).

Theorem: if the wave function of the whole system is an eigenfunction of the total Hamilto-
nian, then the system cannot be accelerated.

Since vy is zero if the quantum state is in the eigenstate of the Hamiltonian, the maximal
acceleration is also zero and hence the system cannot be accelerated. This fact is consistent
with the known results of quantum theory. This gives a conceptual understanding of Bohr’s
postulate for hydrogen atoms. The electrons in the hydrogen atom as long as they are in the
eigenstates do not radiate energy. The reason being that their acceleration is zero and hence
they cannot radiate energy.

Finally we wish to give a lower bound to the uncertainty of the space-time geodesic. It will
be shown that the minimum uncertainty in the space-time sheet is inversely proportional to
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the maximal acceleration of the test particle (a quantum-mechanical clock). Towards the end
we answer a very subtle question: which kind of clocks are the most accurate ones?

Consider a net of timelike geodesic which is as tight as possible and uncertainty in space-
time measurements can be performed purely via time measurements on timelike geodesic [8].
The clock which measures time can be realised by considering a set of test particles subject to
quantum-mechanical laws. In what follows we define the uncertainty in the space-time s
as

ds

dx

where Az = \/(x?) — (x)? is the uncertainty spatial coordinate of the particle. On using
A
eq. (3) and A, the position coordinate of the particle, we have

As = Ax, (12)

ho| d)
2 —_— —
Ax AH 5 T (13)
Defining |d{(x)/dt| = v, the velocity of the particle we have
h v
Ax =2 2 AL (14)
Therefore
ds | 2 _w
As = 9= | 2 AF " (12a)

On writing |ds/dx| = (1/v)|ds/d¢|, where ds/dt = [g,, (dx*/dt)(dx"/d8)]"/% and g,,, is the
Reimannian metric tensor, we have

As?-l— ds

2 ] dt

Thus eq. (15) specifies the uncertainty in space-time and the minimum uncertainty in ¢ is
given by

1
e (15)

2 | dt
which is inversely proportional to the speed of transportation in the projective Hilbert space
#. Making use of eq. (11) we can rewrite eq. (15a) as

ds
dt

Hence, if the test particle can be accelerated to a much higher value, then the minimum un-
certainty in space-time can be reduced to a greater extent. To answer the above-raised ques-
tion, we write eq. (15) in the following form:

1
vy’

(15a)

£ (16)

a'max

Asmin =

As 1
Z2— or 71,2 4

= = 17
|ds/dt| 2vy Omax 1

where r, = As/|ds/dt|.
Here r, is the inaccuracy with which the clock will measure the time, while moving along
the geodesic. Thus it is clear that the most accurate clocks are those which can be accelerated
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to a greater extent, because in that case the inaccuracy in time measurement is low-
ered.
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