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The geometric phase for a pure quantal state undergoing an arbitrary evolution is a ‘‘memory’’ of the
geometry of the path in the projective Hilbert space of the system. We find that Uhlmann’s geometric
phase for a mixed quantal state undergoing unitary evolution depends not only on the geometry of the
path of the system alone but also on a constrained bilocal unitary evolution of the purified entangled
state. We analyze this in general, illustrate it for the qubit case, and propose an experiment to test
this effect. We also show that the mixed state geometric phase proposed recently in the context
of interferometry requires unilocal transformations and is therefore essentially a property of the
system alone.
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does not. In particular, we propose an experiment to test The Uhlmann phase�g is independent of the purification
Pancharatnam [1] was first to introduce the concept of
geometric phase in his study of the interference of light
in distinct states of polarization. Its quantal counterpart
was discovered by Berry [2], who proved the existence of
geometric phases in cyclic adiabatic evolutions. This was
generalized to the case of nonadiabatic [3] and noncyclic
[4] evolutions. The geometric phase was also derived on
the basis of purely kinematic considerations [5]. In a
general context, the geometric phase was defined for
nonunitary and non-Schrödinger [6] evolutions. Since
the geometric phase for a pure state is a nonintegrable
quantity and depends only on the geometry of the path
traced in the projective Hilbert space, it acts as a memory
of a quantum system.

Another important development in this field was ini-
tiated by Uhlmann [7] (see also [8]), who introduced a
notion of geometric phase for mixed quantal states. More
recently, using ideas of interferometry, another definition
of mixed state phase was introduced in [9] (see also [10])
and experimentally verified in [11]. A renewed interest in
geometric phases for mixed states is due to its potential
relevance to geometric quantum computation [12].

Mixed states naturally arise when we ignore the ancilla
subsystem of a composite object (system � ancilla) that is
described by a pure entangled state. In this Letter we
consider the mixed state geometric phases in [7,9] in
terms of such purifications and investigate whether they
should be regarded as properties of the system alone or
not. More precisely, we address the following question: do
mixed state geometric phases depend only on the evolu-
tion of the system of interest or do they also depend on the
evolution of the ancilla part with which the system is
entangled? By examining, in detail, the case of mixed
states undergoing local unitary evolutions, we find that
the Uhlmann phase [7] indeed contains a memory of the
ancilla part, while the mixed state phase proposed in [9]
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the Uhlmann phase using a Franson setup [13] with po-
larization entangled photons [14,15] that would verify
this new memory effect. More importantly, we show
that the phase holonomies given in [7,9] are generically
different.

Consider first the unitary path �:t 2 �0; �� � j tih tj
of normalized pure state projectors with h 0j �i � 0. The
geometric phase associated with � is defined as

� � arg lim
N!1

�h 0j �ih �j ��N�1
�=N�i � . . .

� h ��=N�j 0i
: (1)

� is a property only of the path � as it is independent of
the lift �! ~��:t 2 �0; �� � j ti. A parallel lift is defined
by requiring that each h ��j�1
�=N�j �j�=N�i be real and
positive (i.e., h j _  i � 0 when N ! 1), so that � takes
the form

� � argh 0j �i: (2)

One may measure � in interferometry as a relative phase
shift in the interference pattern characterized by �ei� �
h 0j �i, where � � jh 0j �ij is the visibility [16].

To generalize the above to mixed states, consider the
path � :t 2 �0; �� ! �t of density operators �t. A standard
purification (lift) of � is a path ~�� :t 2 �0; �� ! wt in the
Hilbert space of Hilbert-Schmidt operators with scalar
product hwt; wt0 i � Tr�wy

t wt0 
 such that wtw
y
t � �t. Note

that wt � �1=2
t xt is a purification of �t for any unitary xt.

For a purification where each jhwt; wt0 ij is constrained to
its maximum d��t; �t0 �Bures � Tr�

���������������������������
�t

p
�t0

�����
�t

pp
� [17],

Uhlmann [7] defines the geometric phase associated
with � as

�g � arg lim
N!1

�hw0; w�ihw�; w��N�1
�=N�i � . . .

� hw��=N�; w0i
: (3)
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� ! ~�� as long as it obeys the maximality constraint;
thus �g is a property of the path � . For pure states
�t � j tih tj the constrained purification is character-
ized by hwt; wt0 i � h tj t0 i up to an arbitrary phase fac-
tor so that�g reduces to the pure state geometric phase�.
A parallel purification is introduced by requiring that
each wy

��j�1
�=N�w�j�=N� be Hermitian and positive for all
j � 0; . . . ; N. Infinitesimally, this entails that

wy
t _wwt � _wwy

t wt: (4)

For such a parallel purification, the geometric phase
becomes

�g � arghw0; w�i; (5)

which reduces to� for pure states.We show below that�g
could be verified in interferometry as a relative phase
shift in the interference pattern characterized by the
visibility jhw0; w�ij.

To elucidate the above purification approach, consider
the unitary case �0 ! �t � ut�0u

y
t . We introduce a set of

eigenvectors fjkig, k � 1; . . . ; N withN the (finite) dimen-
sion of Hilbert space, with eigenvalues f�kg of �0 so that

w0 � �1=2
0 �

X
k

������
�k

p
jkihkj ! wt � ut�

1=2
0 vt

�
X
k

������
�k

p
utjkihkjvt (6)

with the unitarity vt � uyt xt. With ut and vt related via
the parallel transport condition Eq. (4), we obtain the
geometric phase from Eq. (5) as

�g � arg
X
k;l

����������
�k�l

p
hlju�jkihkjv�jli: (7)

The standard purification used by Uhlmann is equivalent
to considering a pure state of the system � ancilla, w0 $
j�0i 2 H s �H a evolving under a bilocal operator
ut � yt, in Schmidt form,

wt $ j�ti �
X
k

������
�k

p
�utjki
 � �ytjki
; (8)

where the ancilla unitary yt � vTt (transpose with respect
to the instantaneous eigenbasis of �t) obeys the same
parallel condition as before. In this view the geometric
phase is given by

�g � argh�0j��i: (9)

Let us now consider the case where the composite
system undergoes unilocal unitary transformations so
that only the ‘‘system’’ part is affected, i.e., unitarities
of the form ut � 1. The purified state now evolves to

j�ti �
X
k

������
�k

p
�u�jki
 � jki; (10)

and the phase difference between the initial and final
090405-2
state reads

argh�0j��i � arg
X
k

�khkju�jki � argTr��0u��: (11)

If we require ut to transport each pure state component jki
of the density matrix in a parallel manner, then

�g � arg
X
k

�k�ke
i�k ; (12)

where hkju�jki � �ke
i�k and �k is the pure state (non-

cyclic) geometric phase for jki. �g is the mixed state
geometric phase proposed in [9].

It is natural to ask when the two mixed state geometric
phases match. To see this, let us write ut � exp��itH
 and
vt � exp�it ~HH
,H and ~HH being the Hamiltonian of system
and ancilla, respectively (we set �h � 1). The Hamilton-
iansH and ~HH are both assumed to be time independent. To
determine ~HH from the parallel transport condition Eq. (4),
we write �0 in its diagonal basis yielding [18]

~HH �
X
k;l

2
����������
�k�l

p

�k � �l
jkihljhkjHjli: (13)

Now, vt � 1 if and only if ~HH � 0, which implies that
H � 0 when all �k are nonvanishing. That is, when all
�k � 0 the two geometric phases can match only in the
trivial case where neither the system nor ancilla evolve.
Thus, in generic cases the two phases are distinct and one
cannot obtain one from the other. However, if � is not of
full rank, ~HH � 0 does not imply H � 0 in order to match
the two geometric phases. Only in the extreme case of �
being pure, the two geometric phases are identical and
equal to the standard geometric phase of the system.

It can be seen that Uhlmann’s geometric phase is in
general a property of a composite system in a pure en-
tangled state that undergoes a certain bilocal unitary
transformation. Hence, this geometric phase depends on
the history of the system as well as on the history of its
entangled counterpart. On the other hand, the geometric
phase proposed in [9] requires that the entangled com-
posite system undergoes a unilocal unitary transforma-
tion; i.e., the evolution of the ancilla is independent of the
evolution of the system. Thus, this geometric phase is
essentially a property of the system alone; the role of
the ancilla is just to make the reduced state of the system
mixed.

It should be noted that the above memory effects are
not equivalent to that of the standard geometric phase
acquired by the purified state, as computed in Ref. [19].
In fact, the parallelity condition h�tj _��ti � 0 on the pu-
rified state is a much weaker constraint on the bilocal
transformation than Eq. (4). Indeed, by writing j�ti �
ut � ytj�0i the parallel transport constitutes a single
condition

h�0ju
y
t _uut � 1j�0i � h�0j1 � y

y
t _yytj�0i � 0; (14)
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and there are infinitely many yt that fulfill Eq. (14)
but not Eq. (4). For unilocal transformations Eq. (14)
reduces to

h�0ju
y
t _uut � 1j�0i � 0; (15)

which is also a weaker condition than that for �g. In fact,
�g requires that each hkjuyt _uutjki associated with nonvan-
ishing �k does vanish, while in Eq. (15) only their sum
vanishes. Only for j�i being a product state, correspond-
ing to a pure state of the system, the new memory effects
match with the standard geometric phase.
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Let us now compute Uhlmann’s geometric phase in the
noncyclic case for a qubit (two-level system) undergoing
unitary precession. We assume that the qubit’s Bloch
vector initially points in the z direction and has length
r so that �0 has eigenvalues 1

2 �1� r
. Furthermore, as-
sume that the Hamiltonian of the system is H �
1
2n � � � 1

2 �nx#x � nz#z
, jnj2 � n2x � n2z � 1. This de-
termines the Hamiltonian ~HH of the ancilla via Eq. (13) as
~HH� 1

2�
�������������
1�r2

p
nx#x�nz#z
. By introducing the unit vec-

tor ~nn � �~nnx; 0; ~nnz
 with the components ~nnx �
��������������
1� r2

p
nx=�������������������

1� r2n2x
p

; ~nnz � nz=
�������������������
1� r2n2x

p
, and the parameter ~�� �

�
�������������������
1� r2n2x

p
, we obtain the noncyclic Uhlmann phase as
�g � � arctan

��
rnz tan

�
2
� r~nnz tan

~��
2

���
1� �nz~nnz �

��������������
1� r2

p
nx~nnx
 tan

�
2
tan

~��
2

��
: (16)
FIG. 1. Two-photon interferometry setup to test the Uhlmann
phase.
Let us consider some important special cases. First, the
cyclic Uhlmann phase is obtained by inserting � � 2$
and using � tanx � tan�$� x
 yielding

�g � arctan

�
rnz�������������������

1� r2n2x
p tan�$

�������������������
1� r2n2x

q



�
: (17)

Second, in the noncyclic pure state case (r � 1), we have
~nn � �0; 0; 1
 and

��������������
1� n2x

p
� jnzj, which yields

�g � � arctan�nz tan��=2
� �
�
2
nzmod2$: (18)

This equals minus one-half of the geodesically closed
solid angle of the open path on the Bloch sphere and is
consistent with the known expression for the geometric
phase in the case of a pure qubit undergoing noncyclic
precession (see, e.g., Ref. [20]). Finally, in the case of the
maximally mixed state (r � 0), ~nn � n and �1=2

0 � 1=
���
2

p
,

which yields w0w
y
� � �0 so that the geometric phase

vanishes; i.e., �g � argTr�0 � 0.
Let us now compare the above results with the mixed

state geometric phase in [9]. In the diagonal basis fj0i; j1ig
of �0 we have �0 � �1 and �0 � ��1 � � 1

2�, where
� is the geodesically closed solid angle on the Bloch
sphere. For r�0, we obtain �g��arctan�rtan��=2
�.
These expressions become identical to those of the
Uhlmann approach only for pure states and in the trivial
case n � �0; 0; 1
, where neither system nor ancilla
evolve. In the maximally mixed case �g is even indeter-
minate as the parallel transport conditions h0juyt _uutj0i �
h1juyt _uutj1i � 0 do not specify a unique ut for a degen-
erate density operator, making �g � argTr��0u�� �
argTr�12u�� undefined.

As is clear from Eq. (8), Uhlmann’s geometric phase
retains a memory of the evolution of both system and
ancilla due to the parallelity condition Eq. (4). Using the
above purification scheme wt ! j�ti, the memory effect
associated with �g could be tested experimentally in
polarization entangled two-photon interferometry, as we
now demonstrate. A detailed description of the relevant
setup shown in Fig. 1 may be found in Ref. [14]. A photon
pair (system and ancilla photon) is produced in a polar-
ization entangled pure state that takes the Schmidt form
in the horizontal-vertical �H-V
 basis:

j�0i �

������������
1� r
2

r
jHi � jHi �

������������
1� r
2

r
jVi � jVi: (19)

This source is described in Ref. [15] and is used as input
in a Franson interferometer [13]. Note that �0 �
Traj�0ih�0j �

1
2 �1� r#z
 in the H-V basis, and that

j�0i is isomorphic to w0 �
�������
1�r
2

q
jHihHj �

�������
1�r
2

q
jVihVj.

The two unitary operators u� and y� are applied to the
two longer arms. Thus, u� is applied to the system photon,
say, and y� is applied to the ancilla photon. In one of the
shorter arms a U(1) shift & is applied. To observe inter-
ference of j�0i and j��i � u� � v�j�0i we require that
the source produces photon pairs randomly [13], as is the
case with the present type of source. If the photons arrive
in the detector pair simultaneously, they both took either
the shorter path (�0) or the longer path (��). The state
detected in coincidence is the desired superposition
j�i � ei&j�0i � j��i. The measured coincidence inten-
sity is proportional to h�j�i / 1� � cos�&��g
, where
the visibility is � � jh�0j��ij. Thus, by varying & the
Uhlmann phase �g could be tested using this two-photon
setup.

An explicit realization of the operators u� and y�
could be constructed in terms of an appropriate pair of
� plates as follows. The SU(2) part of the effect in the
H-V basis of a � plate making an angle 'with the vertical
(V) axis is given by u�(; '
 � exp��i (2 n' � �� with
n' � �sin�2'�; 0; cos�2'�
. The precession angle ( is
090405-3
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proportional to the thickness of the � plate (e.g., ( � $
2

for a �
4 plate). Now, the Uhlmann phase is obtained by

taking u� � u�(; '
 and y� � uy�~((; ~''
, where the thick-
ness and orientation of the two � plates are related as
~((=( �

������������������������������
1� r2sin2�2'


p
and tan�2~''
 �

��������������
1� r2

p
tan�2'
.

In the cyclic case, ( � 2$ and the visibility of the
interference pattern is reduced by the geometric factor

��
�
cos2�$

������������������������������
1� r2sin2�2'


q
�

�
r2cos2�2'


1� r2sin2�2'

sin2�$

������������������������������
1� r2sin2�2'


q
�

�
1=2
: (20)

Thus, the visibility is reduced by the entanglement of the
purified state. For maximally mixed states, correspond-
ing to maximally entangled �0 [21], ~(( � ( and ~'' � ' so
that y� � uy� �(; '
. Thus one should choose the same
thickness of the two � plates and their half axes being
perpendicular. The scalar product h�0ju��y�j�0i�
h�0ju��u

y
� j�0i becomes real-valued and hence �g�0.

The absence of phase shift could, e.g., be tested by vary-
ing the common angle '. For pure states, ~(( � ( cos2'
and ~'' � 0mod $2 . This yields the pure state geometric
phase �g � � 1

2�, which also could be tested in single-
photon interferometry [16].

The mixed state geometric phase in [9] could be tested
by canceling the accumulation of local phase changes for
each pure state component in each beam of a single-
photon interferometer. Thus, if one of the beams is ex-
posed to the unitarity ut, the other beam should be
exposed to the unitarity ~uut fulfilling h0j~uuyt _~uutj0i �
�h0juyt _uutj0i and h1j~uuyt _~uutj1i � �h1juyt _uutj1i [16].

To conclude, we have shown that the mixed state geo-
metric phases proposed in [7,9] can be interpreted as two
types of generically distinct phase holonomy effects for
entangled systems undergoing certain local unitary
transformations. We have shown that these phase effects
are different from the standard geometric phase of the
purified state. In the unitary case, the Uhlmann phase
depends on the path of the system as well as on the ancilla
undergoing a constrained bilocal unitary operation. This
is a new type of memory effect that is present only for
mixed state phase holonomy.We have proposed an experi-
ment using polarization entangled photons to test this
effect. The geometric phase in [9] depends on a certain
unilocal transformation in which the ancilla part does not
evolve. Thus, this geometric phase is essentially a prop-
erty of the system part alone and is testable in one-
particle interferometry. We hope that the mixed state
phases would have applications in many areas of physics
and future experiments would test these memory effects.
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