
VOLUME 83, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 4 OCTOBER1999

output
te and
. We

arly
argue
Quantum Superposition of Multiple Clones and the Novel Cloning Machine

Arun Kumar Pati*
Quantum OPHCS and Information Group, SEECS, University of Wales, Dean Street,

Bangor LL 57 1UT, United Kingdom
(Received 10 March 1999)

We envisage a novel quantum cloning machine, which takes an input state and produces an
state whose success branch can exist in a linear superposition of multiple copies of the input sta
the failure branch can exist in a superposition of composite states independent of the input state
prove that unknown nonorthogonal states chosen from a setS can evolve into a linear superposition
of multiple clones and failure branches by a unitary process if and only if the states are line
independent. We derive a bound on the success probability of the novel cloning machine. We
that the deterministic and probabilistic clonings are special cases of our novel cloning machine.

PACS numbers: 03.67.Hk, 03.65.Bz, 03.67.Lx, 89.70.+c
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In recent years the quantum mechanical principles su
as linearity, unitarity, and inseparability have been u
lized to realize quantum computers [1], quantum telepo
tation [2], quantum cryptography [3], and so on. On on
hand, these principles enhance the possibility of inform
tion processing, but, on the other, they put on some limi
tions. That an unknown quantum state cannot be perfec
copied is a consequence of linearity of quantum theo
[4,5]. Similarly, the unitarity of the quantum theory doe
not allow one to clone two nonorthogonal states [6,7
This has been generalized to mixed states [8]. Thou
perfect copies cannot be produced, there are important
sults on the possibility of producing approximate copies
an unknown quantum state [9–13]. If one allows unita
and measurement processes, then a set of linearly in
pendent nonorthogonal states can be cloned perfectly w
a nonzero probability [14,15]. We [16] have propose
a protocol for producing exact copies and compleme
copies of an unknown qubit using minimal communica
tion from a state preparer. As some applications of t
“no-cloning” theorem one finds the possibility of decom
pressing quantum entanglement [17] and explaining t
information loss inside a black hole [18].

In the past various authors have asked the followi
question: If we have an unknown statejc�, is there a
device which will producejc� ! jc�≠2, jc� ! jc�≠3,
jc� ! jc�≠M , or, in general,jc�≠N ! jc�≠M copies of
an unknown state in a deterministic or probabilist
fashion? This is a “classicalized” way of thinking about
quantum cloning machine. If we pause for a second, a
think of the working style of a classical Xerox machine
then we know that it does exactly the same thing. Wh
we feed a paper with some amount of information in
a Xerox machine containingM blank papers, we can
get either 1 ! 2, or 1 ! 3, . . . or 1 ! M copies by
just pressing the number of copies we want. Howeve
the quantum world is different where one can hav
linear superposition of all possibilities with appropriat
probabilities. If a real quantum cloning machine existed
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would exploit this basic feature of the quantum world an
produce simultaneouslyjc� ! jc�≠2, jc� ! jc�≠3, and
jc� ! jc�≠M copies. We ask if it is possible by som
physical process to produce an output state of an unkno
quantum state which will bein a linear superposition of
all possible multiple copies each in the same original
state. A device that can perform this task we call th
“novel quantum cloning machine.”

In this Letter we show that the nonorthogonal stat
secretly chosen from a setS � �jc1�, jc2�, . . . , jck�� can
evolve into a linear superposition of multiple copy stat
together with a failure term described by a compos
state (independent of the input state) by a unitary proc
if and only if the states are linearly independent. W
prove a bound on the success probability of the nov
cloning machine for nonorthogonal states. We point o
that the recently proposed probabilistic cloning machi
of Duan and Guo [15] can be thought of as a special c
of a more general “novel cloning machine.” We hop
that the existence of such a machine would greatly
cilitate the quantum information processing in a quantu
computer.

Consider an unknown input statejci� from a setS
which belongs to a Hilbert spaceHA � CNA . Let jS�B be
the state of the ancillary systemB (analogous to a bunch
of blank papers) which belongs to a Hilbert spaceHB

of dimensionNB � NM
A , where M is the total number

of blank states each having dimensionNA. In fact, we
can takejS�B � j0�≠M . Let there be a probe state of th
cloning device which can measure the number of cop
that have been produced andjP� be the initial state of the
probing device. Let�jPn�� �n � 1, 2, . . . , NC� [ HC �
CNC be orthonormal basis states of the probing devi
with NC . M. If a novel cloning machine exists, then
it should be represented by a linear, unitary operator t
acts on the combined states of the composite system.
question is as follows: Is it possible to have a quantu
superposition of the multiple clones of the input sta
given by
© 1999 The American Physical Society 2849
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jci� jS� jP� ! U�jci� jS� jP�� �

q
p

�i�
1 jci� jci� j0� . . . j0� jP1�

1

q
p

�i�
2 jci� jci� jci� . . . j0� jP2� 1 · · · 1

q
p

�i�
M jci� jci� . . . jci� jPM� , (1)
where p�i�
n

�n � 1, 2, . . . , M� is the probability with which
n copies of the original input quantum state can be
produced? However, we [19] have recently shown that
such an ideal novel cloning machine based on unitarity
of quantum theory cannot exist. Nevertheless, a novel
cloning machine which can create linear superposition of
multicopies with nonunit total success probability does
exist. The existence of such a machine is proved by the
following theorem.

Theorem.—There exists a unitary operator U such that
for any unknown state chosen from a set S � �jci�� �i �
1, 2, . . . , k� the machine can create a linear superposition
of multiple clones together with failure copies given by

U�jci� jS� jP�� �
MX

n�1

q
p

�i�
n jci�≠�n11�j0�≠�M2n�jPn�

1

NCX
l�M11

p
fl

�i� jCl�ABjPl� , (2)

if and only if the states jc1�, jc2�, . . . , jck� are linearly in-
dependent. In the above equation p

�i�
n and f

�i�
l are success
and failure probabilities for the ith input state to produce
n exact copies and to remain in the lth failure component,
respectively. The states jCl�AB’s are normalized states
of the composite system AB, and they are not necessarily
orthogonal.

We prove the existence of such a unitary operator
in two stages. First, we prove that if an unknown
quantum state chosen from a set S exists in a linear
superposition of multiple copy states, then the set S is
linearly independent. Consider an arbitrary state jc� �P

i cijci�. If we feed this state, then the unitary evolution
yields

U�jc� jS� jP�� �
MX

n�1

p
pn jc�≠�n11�j0�≠�M2n�jPn�

1

NCX
l�M11

p
fl jCl�ABjPl� . (3)

However, by linearity of quantum theory each of jci�
would undergo transformation under (2) and we have
U

√X
i

cijci� jS� jP�

!
�

X
i

ci

MX
n�1

p
pn

�i�jci�≠�n11�j0�≠�M2n�jPn� 1
X

i

ci

NCX
l�M11

p
fl

�i�jCl�ABjPl� . (4)
Since the final states in (3) and (4) are different, a
quantum state represented by jc� cannot exist in a linear
superposition of all possible copy states. We know that
if a set contains distinct vectors �jc�, jc1�, jc2�, . . . , jck��
such that jc� is a linear combination of other jci�’s, then
the set is linearly dependent. Thus linearity prohibits us
from creating linear superposition of multiple copy states
chosen from a linearly dependent set. Therefore, Eq. (2)
exists for any state secretly chosen from S only if its
elements are linearly independent. This proves the first
part of the theorem.

Now we prove the converse of the statement; i.e.,
we show that if the set S is linearly independent then
there exists a unitary evolution, which can create linear
superposition of multiple copy states with some success
and failure. If the unitary evolution (2) holds, then the
overlap of two distinct output states jci� and jcj� secretly
chosen from S after they have passed through the device
would be given by

�cijcj� �
MX

n�1

q
p

�i�
n �cijcj�n11

q
p

� j�
n 1

NCX
l�M11

q
f

�i�
l f

� j�
l .

(5)

Conversely, if (5) holds, there exists a unitary operator to
satisfy (2). In the sequel we will prove that if the set S is
linearly independent then (5) holds. The above equation
can be generically expressed as a k 3 k matrix equation,

G�1� �
MX

n�1

AnG�n11�Ay
n 1

X
l

Fl , (6)

where the matrices G�1� � ��cijcj�	 is the Gram
matrix, G�n11� � ��ci jcj��n11�	, An � Ay

n �

diag�
q

p
�1�
n ,

q
p

�2�
n , . . . ,

q
p

�k�
n �, and Fl � �

q
f

�i�
l f

� j�
l 	.

Now proving the existence of a unitary evolution given
in (2) is equivalent to showing that (6) holds for a
positive definite matrix An. It can be shown that if
the states �jci�� are linearly independent, then the
Gram matrix G�1� is a positive definite and its rank is
equal to the dimension of the space spanned by the
vectors jci�. Similarly, we can show that the matrix
G�n11� is also positive definite. Because for an ar-
bitrary column vector a � col�c1, c2, . . . , ck�, we can
write ayG�n11�a �

Pk
i,j�1 c�

i cjG
�n11�
ij � �bjb�, where

jb� �
P

i cijci�≠�n11�. Since the square of the length
of a vector is positive and cannot go to zero (if the
set is linearly independent), this shows that G�n11� is a
positive definite matrix. Also, the matrix An is positive
definite which suggests AnG�n11�Ay

n is also a positive
definite matrix. Further, we know that the sum of two
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positive definite matrices is also a positive definite one.
From the continuity argument for a small enough An

the matrix G�1� 2
PM

n�1 AnG�n11�Ay
n is also a positive

definite matrix. Therefore, we can diagonalize the Her-
mitian matrix by a suitable unitary operator V . Thus we
have Vy�G�1� 2

P
n AnG�n11�Ay

n �V � diag�a1, a2, . . . , ak�,
where the eigenvalues �ai� are positive real num-
bers. Now we can choose the matrix Fl to be
Fl � V diag�g�l�1, g�l�2, . . . , g�l�k�Vy such that

P
l g�l�i � ai

�i � 1, 2, . . . , k�. Thus the matrix equation (6) is satis-
fied with a positive definite matrix An if the states are
linearly independent. Once (2) holds, we see that the
success and failure probabilities are summed to unity, i.e.,P

n p
�i�
n 1

P
l f

�i�
l � 1 as expected. This completes the

proof of our main result.
Here we discuss the generality of our novel cloning ma-

chine. For example, if j0� and j1� are the computational
basis, then a qubit secretly chosen from a set �j0�, aj0� 1

bj1�� or from a set �j1�, aj0� 1 bj1�� can exist in a linear
superposition of multiple clones. But a state chosen from
a set �j0�, j1�, aj0� 1 bj1�� cannot exist in such a super-
position of multiple clones as the set is not linearly inde-
pendent. It may be noted that the “no-cloning” theorem
is a special case of our result because the linear super-
position of multiple clones fails if the machine does not
fail with some probability. When all the failure probabili-
ties are zero, we have a “no-superposition of multiclone”
theorem [19]. Then if we take one of the success
probabilities as one, we get the Wootters-Zurek-Diek’s
no-cloning theorem [4,5].

Our result is consistent with the known results on
cloning. In the unitary evolution if one of the posi-
tive numbers in the success branch is one (i.e., p

�i�
n � 1

for some n and all i) and all others (including fail-
ure branches) are zero, then we have U�jci� jS� jP�� �
jci�≠�n11�j0�≠�M2n�jPn�. This tells us that the matrix equa-
tion would be G�1� � G�n11� since An � I . This will be
possible only when the states chosen from a set are orthog-
onal to each other. Thus a single quanta in an orthogonal
state can be perfectly cloned [6]. Here we discuss the con-
dition under which all f�i�’s are zero. The orthogonality
relation �cijcj� � dij is a necessary and sufficient condi-
tion on the set S for all f �i�’s to be zero. The converse
can also be proved. When all f �i�’s are zero, from (5) we

can obtain j�cijcj�j #
PM

n�1

q
p

�i�
n p

� j�
n j�cijcj�jn11. Us-

ing two inequalities �p
�i�
n p

� j�
n �1�2 #

1
2 �p

�i�
n 1 p

� j�
n � and

j�ci jcj�jn # j�ci jcj�j (the latter is valid for any two
states) we find j�cijcj�j�1 2 j�cijcj�j� # 0. Since the
quantity inside the bracket is positive and j�cijcj�j cannot
be negative, it must be zero. Therefore, the states have
to be orthogonal when all f �i�’s are zero. Note that an-
other interesting result follows from our proposed cloning
machine. If the states are orthogonal and all p

�i�
n ’s are

nonzero, then unitarity allows us to have a linear superpo-
sition of multiple copies of orthogonal states as the matrix
equation is always satisfied. We mention that it would be
interesting to investigate the extension of U beyond the
elements of S in the future.

After the input state chosen from the set S undergoes
unitary evolution in order to know how many copies are
produced by the novel cloning machine, one needs to
do a von Neumann measurement onto the probe basis.
This can be thought of as a measurement of a Hermitian
operator. We introduce such an operator, which is called
the “Xerox number” operator NX , defined as

NX �
MX

n�1

njPn� �Pnj . (7)

The probe states jPn� are eigenstates of the Xerox number
operator with eigenvalue n where n is the number of
clones produced with a probability distribution p

�i�
n . The

measurement of the Xerox number operator will give us
information about how many copies have been produced
by the cloning machine. For example, the novel cloning
machine would produce 1 ! 2 copies with probability p1,
1 ! 3 copies with probability p2, . . . , and 1 ! M 1 1
copies with probability pM in accordance with the usual
rules of quantum mechanics.

Here, we derive a bound on the success probability of
producing multiple clones through a unitary machine (2).
Taking the overlap of two distinct states we find

j�cijcj�j #

MX
n�1

q
p

�i�
n p

� j�
n j�cijcj�jn11 1

NCX
l�M11

q
f

�i�
l f

� j�
l .

(8)

On simplifying (8) we get the tight bound on the
individual success probability for cloning of two distinct
nonorthogonal states as

1
2

X
n

�p�i�
n 1 p� j�

n � �1 2 j�cijcj�jn11� # �1 2 j�cijcj�j� .

(9)

The above bound is related to the distinguishable
metric of the quantum state space. Since the “minimum-
normed distance” [20] between two nonorthogonal states
jci� and jcj� is D2�jci�, jcj�� � 2�1 2 j�ci jcj�j� and
the minimum-normed distance between n 1 1 clones is
D2�jci�≠n11, jcj�≠n11� � 2�1 2 j�cijcj�jn11�, the tight
bound can be expressed as

X
n

pnD2�jci�≠n11, jcj�≠n11� # D2�jci�, jcj�� , (10)

where we have defined total success probability pn for nth
clones as pn �

1
2 �p

�i�
n 1 p

� j�
n �. The minimum-normed-

distance function is a measure of distinguishability of
two nonorthogonal quantum states. Therefore, the above
bound can be interpreted physically as the sum of the
2851
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weighted distance between two distinct states of n 1 1
clones always bounded by the original distance between
two nonorthogonal states. Also, our bound is consistent
with the known results on cloning. For example, if we
have 1 ! 2 cloning, then in the evolution we have p

�i�
1

and p
� j�
1 as nonzero and all others as zero. In this case

our bound reduces to 1
2 �p

�i�
1 1 p

� j�
1 � #

1
11j�ci jcj�j , which

is nothing but the Duan and Guo bound [15] for producing
two clones in a probabilistic fashion. Similarly, if we
have 1 ! M cloning, then in the evolution we have p�i�

M
and p� j�

M
as nonzero and all others as zero. In this case

our bound reduces to 1
2 �p

�i�
M 1 p

� j�
M � #

12j�ci jcj �j
12j�ci jcj �jM , which

is nothing but the Chefles-Barnett [13] bound, obtained
using the quantum state separation method.

We can imagine a more general novel cloning machine
and then show that the probabilistic cloning machine
discussed by Duan and Guo [15] can be considered as a
special case of the general novel cloning machine. Instead
of the unitary evolution (2) one could describe a general
unitary evolution of the composite system ABC as

U�jci� jS� jP�� �
MX

n�1

q
p

�i�
n jci�≠�n11�j0�≠�M2n�jPn�

1
X

l

ciljCl�ABC . (11)

Here, the first term has the usual meaning and the second
term represents the failure term. The states �jCl�ABC� are
normalized states of the composite system. For simplicity
we assume that they are orthonormal. Further, since the
measurement of the Xerox number operator should yield
perfect copies (say, n) of the input state with probability
p

�i�
n , this entails that jPn� �PnjCl�ABC � 0 for any n and l.

Imposing this physical condition, we find from (11) that
the inner product of two distinct states gives �cijcj� �PM

n�1

q
p

�i�
n �cijcj�n11

q
p

� j�
n 1

P
l c�

ilcjl . This can be ex-

pressed as a matrix equation G�1� �
PM

n�1 AnG�n11�Ay
n 1

CyC, where C � �cij	. From our earlier theorem we can
now prove that with a positive definite matrix An we can
diagonalize G�1� 2

PM
n�1 AnG�n11�Ay

n and with a particu-
lar choice of the matrix C the unitary evolution exists.

If we take one of the p
�i�
n as nonzero and all others as

zero in (11) we get the Duan-Guo machine. This is given
by

U�jci� jS� jP�� �

q
p

�i�
n jci�≠�n11�jPn� 1

X
l

ciljCl�ABC ,

(12)

where we have assumed that there are n blank states. If
one does a measurement of the probe with a postselection
of the measurement results, then this will yield n �n �
1, 2, . . . , M� exact copies of the unknown quantum states.
2852
Since other deterministic cloning machines are special
cases of the Duan-Guo machine, we can say, in fact, that
the deterministic and probabilistic cloning machines are
special cases of our novel cloning machines.

To conclude, we discovered yet another surprising fea-
ture of cloning transformation, which says that the uni-
tarity allows linear superposition of multiple clones of
nonorthogonal states along with a failure term if and
only if the states are linearly independent. We derived
a tight bound on the success probability of passing two
nonorthogonal states through a novel cloning machine.
We hope that the existence of linear superposition of mul-
tiple clones will be very useful in quantum state engineer-
ing, easy preservation of important quantum information,
quantum error correction, and parallel storage of informa-
tion in a quantum computer.
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