
PhysicsLettersA 159 (1991) 105—1 12 PHYSICSLETTERS A
North-Holland

Relationbetween“phases”and“distance” in quantumevolution

Arun Kumar Pati
TheoreticalPhysicsDivision, 5thFloor, CentralComplex,B,A.R.C.,400085Bombay,India

Received5 February1991;revisedmanuscriptreceived8 August 1991;acceptedfor publication8 August 1991
Communicatedby J.P.Vigier

We discussthedynamicalphaseandthegeometricphasein relation to thegeometricdistancefunction for cyclic evolutionof
quantumstates.Forall cyclic evolutionofquantumstates,wehaveshownthatthenon-adiabaticgeometricphaseis theintegral
ofthecontractedlengthof thecurvewhichthesystemtraverses.

1. Introduction alsosupportedBerry’sprofounddiscoveryin thelast
half decade.

Turning to the secondgeometricquantity, it is
In studyingthe geometricaspectsofquantumevo- AnandanandAharonovwho haveconcretisedthe

lution, two things are relevantin recentyears.One formulation of the distancefunction in the projec-
is thegeometricalphasediscoveredby Berry [1] and tive Hilbert spaceandgiven a geometricmeaningto
second is the geometric distance formulated by it (althoughvariousauthors[8—11]in thepasthave
AnandanandAharonov [2]. Berry madea rather definedsimilarquantitiesin the literature).It is the
striking andperceptiveobservationin the quantal distancebetweenquantumstatesalonga givencurve
adiabatictheorem[3]. He found that for circuital C in projectiveHubertspace~ asmeasuredby the
adiabatic excursionsof the systemin parametric Fubini—Studymetricdefinedfromtheinnerproduct
spacethe wave function acquiresa non-integrable of the representativestatesin the Hilbert spacek”.
phasewhich dependson the geometryof the circuit It is equalto the time integralof the uncertaintyof
and on the eigenstatesunderconsiderationin ad- theenergy,andis geometricin the sensethatthisdis-
dition totheusualdynamicalphase.In thesameyear, tance is independentof the particularHamiltonian
Simon [41explainedthatthisgeometricphasecould usedto movethequantumsystemalonga givencurve
be viewed asa consequenceof paralleltransportof in iY; it dependsonly on the points in ~ to which
vectorsin a curvedspaceappropriateto the quan- they project.
tumsystem.It appearsnaturallyasdueto holonomy In thisLetterour purposeis to discussthedynam-
in a line bundleoverthe parameterspace.Lateron, ical phaseandthegeometricphasein relationtothe
AharonovandAnandan (AA) [5] generalisedthe distancefunction. We presenta new expressionfor
Berryphaseby defining it for anycyclicevolutionof thegeometricphasein thecaseof non-adiabaticand
the quantumsystem.Theimportanceof theAA for- arbitrarycyclic evolutionof quantumstates.An ex-
mulation is that it is applicableirrespectiveof the ampleis studiedto realiseour newexpression.
cyclicandadiabaticconditionthat is imposedonthe
Hamiltonianofthesystem.Furthermore,Samueland
Bhandari [61 formulatedBerry’sphasefor the case 2. Dynamicalphaseanddistancefunction
of non-unitaryandnon-cyclicevolutionof statesby
employingPancharatnam’s[7] idea of comparing Let {w(2) } be a set of normalisedvectorsbelong-
thephasesoftwo arbitrarypolarisedlight raysbased ing to a Hilbert space.~ of dimensionN+ 1. The2’s
on their interference.Numerousexperimentshave form an n-dimensionalparameterspace1= (2k, 22,
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A~)nip” on which { ~(A) } dependssmoothly.Then given a stateapriori, it defineshow closewecanthen
we can define a projective Hubert space with di- determinethestateaposteriori.In particularthedis-
mensionone less, i.e. N. It consistsof a set of rays tancebetweentwo vectorswhich areinfinitesimally
of the Hilbert space.~, wherethe raysare defined closeinducesa Riemannianmetric. Taking I Wi > =

asthe equivalenceclassesof statesdifferingonly in W(2)> and I w~>= I ~ti(2+d2)>andTaylorexpand-
phase.Theequivalencerelationis I w(2)> I w’ (2)> ing ~(2+d2)> up to secondorder, we havethe
if I i,u’ (2)> =cI w(2)> where 0�ceC* and C*= metric tensorassociatedwith the infinitesimal dis-
C — {0} is a multiplicative groupof non-zerocorn- tancefunction. It is given by [11]
plex numbers. The projective Hilbert space is ~2((2) w(A+d2))=g,~d2, d2

3, (4)

~=~N(C)={)~’—{O}}/C, which is the quantum
state space; vectors in .*~are projected onto ~~

1N(C). where
Physical states are elements of ~ and represented as

g,~=Re (<ô
1w1a1w>)

points in ~
Given any two vectors w~>=lw(A~)>, —(i<wla~,w>)(i<~t’la1w>). (5)

1w2> = IW(
22)>~)~we can define a distance func- This metric is gauge invariant and preservesiso-

tion from the inner product of vectors in ~‘ as a
metry; hence it is an important quantity in studying

“physically natural” topology [81 in the set of quan-
the natural geometric structure of the underlyingtum states and this topology is specified by a nu-
manifold of quantum states.

merical-valued, non-negative function D( ~ W2) If we consider a quantum state smoothly depen-
which measures the distance between states ~ and

dent on one parameter and let I ~‘(2)> be obtainable
I w~>.In a mathematical sense it is a metric. It sat- from I ~v(0)> by a one-parameter family of unitaryisfies the identity, symmetry, and triangle axioms. A transformation, then

useful way of defining it is

D(~
1,~t/2)=IIWI —e’~’2lI , (1)

lw(2)>=PexP(iJA(2’)d2’)lw(0)>. (6a)
andif it is minimisedby equatingits first derivative 0

with respect to 0 to zero then we call it the mini- In eq. (6a) P denotes path ordering and A(A) is
mum-normed distance function. The value of the ar- a Hermitian operator which is the generator of the
bitraryphasefor which thedistancefunctionis mm- correspondingparameter.An infinitesimalparame-
imisedis calledthe “minimum phase”andis given tric evolutionequationcanbe written (from (6a))
by

as
exp(iOmjn)= <WIIW2> (2) i~Iw(2)>=A(2)Iw(A)>. (6b)

I<WIIW2>I
Thustheminimum-normeddistancefunctionwhich Eq. (4) yields
is an appropriatemeasureof the distancebetween
two quantumstatesreadsas dD

2 i~A2(A)d22, (7)

D(Wi, W2) = mm i// — e 0W2 whereAA (A) is the uncertainty in A. Therefore,the
0 distancealonga line in .~1,asmeasuredby themetric

With the help of eq. (2) we can write D(çu
1, W2) as ~4) is

[9—11] D=JAA(2)dA. (8)

D(~1,W2)=(
2—21 <Wi 1W2> )1~~2. (3)

This distanceis thesamefor an infinite numberof
Eq. (3) gives the minimum realisation for all prop- A(2)’swhich generatethe motion in ~//.

ositions of the absolute values of the difference be- If a quantum evolution is considered where the
tween probabilities predicted in the state I ~p’,>and state vector at every instant of time belongs to a Hil-
I wa>. The meaning of the distance function is that bert space .~ and the evolution of the state I w( t)>
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is governedby the Schrodingerequation ThephaseØ=Ø(t) is a sufficiently smoothfunction
of timeand it keepstrackof thepassageof timedur-

i/I I W(t)> =H(t) Iw(t)> , (9) ingtheevolutionofthe statevector.Expandingboth
dt sidesof (11) up to first order,and noting that the

whereH( t) is a generaltime dependentHamilto- denominatoron the right hand side is 1 +0 (dt2),
nian, after an infinitesimal time dt, the state is we have

I ~(t+dt)> such that the infinitesimal minimum-
normeddistancedDbetweenIw(t)> and Iw(t+dl)> dOmin= <W(1)Ih1(t)IW(1)> dt.
is givenby

During the evolutionfrom an initial stateat t= 0 to
dD [2—21<w(t)Iw(t+dlt)> I]~’2. a final stateat t=Tone can integratebothsidesto
Thiscanbeeasilyevaluatedeitherby directlyTaylor get
expandingI ~(1+dl)> up to secondorderandnot- Omtn( T) =Odyn

ing that r

I <W(t) Iw(1+dt)> I = — ~J <w(t) IH(t) Iw(t)> dt, (12)

=l—~AE2(t)d12/h2+O(dt3)
which isjust thedynamicalphase.Thus,the dynam-

and ical phasecanbe interpretedas the valueof thear-

= <w(t) IH2(1) I w)t)> bitraryphasein thefinal statefor which thenormed
distance function is minimised.

—[<w(t)IJI(t)Iw(t)>12
orby using (8) andchoosing2=tandA(A)=H(t)/
fi. Thus 3. Geometric phaseand distancefunction

dDz~.E(t)dt/h, D Ji~E(t)dt/h, (10) This section is motivated bya remark byAnandan

and Aharonov [2]: “we expect it (the distance func-
which differs from the distance between 17( Iw(t)>) lion) to have a geometric meaning analogous to the
and 17(1 ~(t+dt)>) along the curve C in .9 as mea- geometric phase for closed curve in .9.” Wewant to
sured by the Fubini-study metric only by a numer- see the extent to which this analogy can be carried
ical factor of two [2]. This distance function is in- further.
dependent of the particular Hamiltonian used to Before drawing the analogy, we remark on the ba-
transport the state along a given curve C in .9. That sis for it. The dynamics of the system governed by
is to say, on the manifold of quantum states, once the Hamiltonian H( 1) cannot change the geometry
the fluctuation in the energy is specified, we can fix of the projective Hilbert space .9, as the geometry of
the metric even though the specification to the fluc- the state space is signatured by the metric defined on
tuation in the energy comes from an infinite number it. Since the metric is fixed by the dispersion in the
of possible Hamiltonians. generator of the motion AE( t), it is possible in prim-

To see how the dynamical phase arises in the con- ciple to have the same i.S.E(I) by a variety of Ham-
text of the distance function we go back to (2). From iltonians that generate the motion. On the other hand,
(2) we can argue that the infinitesimal phase asso- the time dependent physical states in i~°are the ele-
ciated with the state in transporting a quantum sys- ments of.9, and trace out a closed curve (in .9 dur-
tem along a one-parameter family of curves in .)(‘ ing evolution. In a given metric on a manifold of
generated by the Hamiltonian, and minimising the quantum states, for all cyclic evolutions, there de-
distance function, is given by velops a geometric object called the geometric phase

/ ‘t’~ ‘t+dt)> (AA phase) in projective Hilbert space. It depends
exp(idOmjn)= ~ / W~ (11) only on the path traced by the rays in .9 and does

I <W(t) I w( > I not depend on the rate of traversal of the path. This
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phaseis also independentof H( 1) fora givenclosed phase1, thenonegets the so-called“non-adiabatic
curve (in 9. As we know in many physicalprob- Berry phase” (AA phase),
lems the observables of importance are those which T

remain invariant under a gauge transformation. In . I -

this context, the geometric phase and distance are, in ‘~ iJ <W(t) I w( t)> dt. (13)
fact, gauge invariant. In addition to this, they are in- 0

variant under unitary transformations. From all these The geometric quantity /3 is independent of the phase
facts, it appears natural to ask whether some possible that relates the initial state and the final state and of
link can be established between them. The result of the Hamiltonian for a given projection of the evo-
our query is that we are able to show that the non- lution in 9. In deriving the expression for /3, AA have
adiabatic Berry phase for all cyclic evolution (i.e. the neither used the adiabatic theorem nor the cyclicity
AA phase) is the integral of the contracted length of condition of the Hamiltonian. However the cyclic
the curve that is traced out by I W(t)> in 9. evolution of the state is necessary for its derivation.

Consider a quantum state that evolves according Here, we seek to derive the mon-adiabatic Berry
to (9) and for all time, I W(t)> n .$‘~with <WI w> = 1. phase from metric considerations. Weemphasize that
Then, we can define a cyclic vector for the evolution the distance function (in fact, any quadratic, posi-
equation if there is a cyclic time Tsuch that an initial tive definite function) is of pivotal importance in
state and a final state differ by a phase factor C!’, i.e. discussing the geometry of quantum evolution.

I W(T)> =e”1’I W(O)> . as Define a quadratic, positive definite function in .9

The existence ofa cyclic state is assured by the very Q2(t)IIiI~(t)>—fl(t) I~(t)>II2, (14)
fact that it is an eigenvector of the unitary evolution
operator U(T) and the corresponding eigenvalue is where /3(t) is an arbitrary, real frequency. It is easy
e”1’. Following Anandan and Aharonov [5], let there to see that if we minimise Q( t) with respect to an
be a natural projection map in 9, H: i~—~9defined arbitrary frequency /3(t), them the minimum value of
by H(Iw>)={Iw’>: 1w’> =clw>, for any complex /3 for which Q is minimised is given by
number c}. Then the cyclic evolution ofthe state de- ~ (~)=~<~(1)I ~(t)> (15)
scribes a curve (, t—~w( 1) in ~ that begins and ends
on the same ray. That is to say C: [0, T] -~ .~, with and it may be called the Berry frequency. Hence
(=17(C) being a closed curve in 9. Also, (is the T T

image of the curve C under the projection map H. /3= J/lmin(t) dt=i J <~i’(t)Icf/(t)dt (16)
Now a modified state is defined by choosing from 0 0

the curve Iw(t)>, so that the cyclic vector is easily
converted into a periodic form (i.e. a vector which is the geometric phase as given by (13).
returns to itself after a time T): To assign a meaning to the quantity Q( 1), we can

- —if(s) take (see eq. (20)) /3mm to be of the form f(t) +
I w(t)> =e I W(t)> <H(t) > /fi, i.e., /3mm is a real frequency with the dy-
with <~I ~>= 1 andf( t) is any smooth function sat- namical frequency removed from f( t). Then, Q is
isfying f( T)—f(0) = 0. Then it trivially follows equal to ~&E(t) /h. It has a physical meaning which

is paraphrased as the magnitude of the velocity of
I w( T)> = I w( 0)> . transportation (speed of transportation) in.9 (apart

It has been shown by Anandan and Aharonov that from a factor of two in our convention) by Anandan
if one identifies and Aharonov. Therefore, the geometric phase ap-

T pears as a result of the principle of minimisation of

—! f <w(t)IH(t)Iw(t)> dt speed of transportation in 9. The quantity /3 is the11 J~ time integral of the Berry frequency of which the
speed of transportation is minimised during the evo-

as the dynamical phase and removes it from the total lution from time t =0 to t = T, whereas the geometric
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distanceis just the time integralof Q(1) during the Proof This canbe easily seenby directly evalu-
evolution. In this sense the geometric phase and dis- ating d12, the square of the infinitesimal length of the
tance seem to be interrelated, curve. Differentiating I cl(t)> with respect to time

In the sequel we recognise yet another geometric (from I cl(t)> =e11~’~Iw(t)>) we have
quantity, which is referred as the “length of the .

curve” along which the quantum system is trans- dl2=<~I~>dt2=f2dt2+~ <wIH2Iw>dt2
ported. Given a closed curve (in 9, we define the
length of the curve in.9 which is traced out by the 3’
normalised vector I W(t)>. Such a projective Hilbert +2 <witfl w> dt2. (19)
space on which one has singled out a specific metric,
it is easy (though not trivial) to relate the length and On using
distance during a quantum evolution via the geo- .

metric phase. Below we define the length of the curve. .t’(t) = —~ <W(t) IH(t) I W(t)> +i<~(t) I
Definition. Let W(t) be a curve C: [t, T]—~”.Then (20)

choose a section of the curve as ~ which is differ- 2

entiable along C such that the length of the curve we can wnte dl as
ç~(t)along which the system evolves from point
~(0) to a point ~(T) (or from a parameter value d12= ~ [<wIH2Iw>(<WIHIW>)21dt2
1=0 to t=T) is a number defined as

+(i<~I~>dt)2.

1(~7i)tc= J <~(t)Iø(t)>~
2dl. (17) MakinguseofthedefinitionofdD2 we finallyarrive

I ~‘> is the velocity vector in projective Hilbert space d12—dD2=[i<~’(t) I ~(t)> dt]2 . (21)
.9 of the curve ç7? at point I along the path of evo- Because of the normalisation of I ~‘(‘)> for all
lution of the state vector. It is the tangent vector to time, the quantity <~‘I~> is purely imaginary and
the curve ~i(t). hence i<~~ç~>is real. In view of the abovefact,

The integral (17) exists, since the integrand is d/2 — dD2>O; proving thereby the first part of the
continuous. The length of a broken C curve is de- proposition. To prove (ii), we simply note that dur-
fined as the (finite) sum of the length of its Cpieces. ing a cyclic evolution of the state vector, the geo-
Thenumberl(~~’) I ~ is independent of the parame- metric phase factor acquired by the system is
trisation of its image set, i.e. for a smooth transfor-
mation from parameter Ito z where dt/dr>0, the —. c - — I ~ 2 2

length of the curve remains unaltered. Therefore, the ~ J <WI w> dt_ ~ v dl — dD
length of the curve is a property of the whole curve 0 0

and is i-invariant. Hence for an arbitrary parametric _________

evolution of the state, we can define the infinitesimal = j ~Jl— v~/u~.dl,
length of the curve during the infinitesimal time, dt, 0

as

dl=<~(t)I~(t)>~2dt. (18) /3=JdL, (22)

Proposition. For an arbitrary cyclic evolution of a _________

quantum system any representative physical state where dL =~.Jl— v~./u ~. dl andwe call it the infin-
traces a closed curve in.9 (generally an open curve itesimal contracted length of the curve. Thus the non-
in .~) such that (i) at each instant of time, d12 is adiabatic Berry phase is the integral of the con-
greaterthan dD2 and (ii) /3, the geometric phase, is tracted length of the curve. The quantity v~,= dD/dt
manifested as the integral of the contracted length of has been definedearlierand u.,r = dl/dL is referred
the curve C in 9. to as themagnitudeof rateof changeof lengthalong
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thecurve C. The expression (22) is the main result
U(t) = V(t) exp(iMt)of this paper. It gives a new insight into the Berry

phase. Since the Berry phase depends on two objects where U( t) is the matrix representation of the time
in 9, namely the length of the curve (a 1-invariant evolution operator and Iw(t)> = U(t) Iw(0)>. Also
quantity) and the distance function (a H(t)-invar- U, Vand Mare nXn square matrices and Vis un-
iant quantity), we expect it to naturally depend on itary since U is unitary with M being a real constant.
the structure of the curve (in 9. Webelieve that the Vhas the property that V(0)= V( T) = 1, i.e., peri-
expression (22) is more geometric than any other odic in T. One can extract the final state by
one previously known. It provides an explicit rela-

Iw(T)>=U(T) Iw(0)>=e~~Iw(0)>
tion between geometric phase and the topology of
the curve. During the cyclic evolution, we may re- =e1mTI w(O)> , (24)
gard the excess length of the curve at each instant of

i.e., Iw(0)> is an eigenvector of U(t) with eigen-
time over the distance as accumulating, so that it f~ value I’= mTand C!’ is real. This shows that the mi-
nally appears as the geometric phase. It is important tial state returns to itself after a time t= Tmodulo a
to note that our interpretation of the non-adiabatic

phase factor of 0, a property which depends only on
Berry phase in terms of the integral of the contracted the unitanty of U( t) and not on the finite dimen-
length of the curve is independent of the cyclicity of

sionality of ~‘ and the cyclic properties of the
the Hamiltonianandonly dependson the cyclicity Hamiltonian.
of the quantumstates. To seehow the expression(22) comesaboutin

To add a little, we remark that the proof of our this framework we evaluate the distance function as
proposition also stems from the observation of (14),

given by (10). Wehave
(15) and (20). After minimising the quantity Q2
with respect to/i and usingJ~=f(t)+<H(t)>/h is dD2= [<W(0)IUtH2UIW(0)>
nothingbut ~.E2(t)/h2,and this in turn again equals

<øi~’>— (i<q’I~’>)2 on using/3= (i<ç~’~çE~>). Hence
_<W(0)IUtHUIW(0)>2] d12.we get (21) and the proof follows.

To validate our interpretation, we supplement it Now
by one more special case where we choose the Ham-
iltonian to be periodic and the state to be cyclic and UtHU=ihUt ~ =e_iMt(ihVtJ~T_hM)emMt, (25)

dtobtain an expression similar to that of (22). Also,
we use explicitly (22) to calculate the geometric and
phase for a spin-i particle precessing in a magnetic

UtH2U= (UtHU)t( UtHU)
field.

We work in a finite dimensional Hilbert space. =e_1~~1(h2~i/+h2M2+ih2Mi,~tV

Then once the basis is chosen, the quantum state will
ih2MV~T)elMtevolve according to eq. (9) which will be a matrix

equation, where H is an n xn square matrix and Therefore
Iw(t)> is a column vector of nx 1. Since the system

<w(t)IH(t)Iw(t)>evolves unitarily, the evolution operator will satisfy
the equation = ~

ihdl~t) =H(t)U(t) . (23) =th<~(t)I~(1)>—hm, (26)
dl

where we have used the fact that Iw(O)> is an ei-
Let us consider a periodic Hamiltonian H(t) with genstate of M with eigenvalue m, and I ~‘(t)>=

some period 1= T, i.e. H(t+ T)=H(t); then via Ho- V(t)IW(0))s.
quet’s [12,13] theorem, any fundamental matrix of Next we evaluate the term <wI H2 I W>:
a linear system of the ordinary differential equation
(23) can be put in a form
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<WIH2IY/>~=<YJ(0)IU~H2UIy,(0)> dl2=<yi(0)IV~VI~i(0)>dt2

h2<~I~!?>+h2m2+ih2m<~!?I ~>—ih2m<~~>
= <wI2(1—a,)Iw> dt2

and using

<~(I)I~(I)>=l, =2~ (1— cosO) dt2. (30)

Calculation of the geometric phase is trivial:
one can write

T

<w(t)IH2Iw(t)> /3= J~Jd1~_dD2

=h2<~IçE~>+h2m2 —2ih2m<~I~>. (27) 0

T

Substituting eq. (26) and (27) into dD2 we have = J ,,J~~2/~2) (1 — cos 0)— (e2/h 2) sin20dl

dD2=<~Iw>dt2—(i<q’I~> dt)2. (28) 0
T

Eq. (28) is the same as (22). Hence for cyclic evo-
lution and a periodic Hamiltonian the non-adiabatic ~J ~ — cos 0) dl,
Berry phase takes the form

T changing the variable from Ito 0 we have

/3=iJ <~I~>dt= JdL. fl=x(l—cos0). (31)
0 0

This can be evaluated alternatively by using
Finally as an illustration to the above relation we

T T
canconsiderthe elegantexampletakenby Anandan

[4] in his recent work, i.e. a spin-i particleundergo- /3=i J <~I~>dI=i J <w(O) I ~ W(O)> dl
ing precession in a homogeneous magnetic field. Here 0 0

.~‘ is spanned by two-dimensional vectors with corn- = it (1 — cos 0),
ponents (cos ~0,sin ~O)and On [0, it], (with a suit-
able basis choosenfor the Hamiltonian that de- which is halfthe solid anglesubtendedby the orbit
scribesthe system).Due to precession,the wave ofmotion ina sphereof unit radius.Also onecansee
function rotates by 2it radiansaboutsomeaxiswhich that for 0= it the magnitudeof velocity of transpor-
results in a cyclic motion of every vector of .~. With- tation is zero and hence the geometric phase coin-
out loss of generality, at every instant of time one cides with the length of the curve during cyclic ex-
can choose the coordinate axis in such a way that the cursion. Thus the above example provides a firm
Hamiltonian is given by H= —~uBa

3,with ~= ~B ground for our interpretation of the geometric phase
being a positivenumberin unitsof energy,B= IB I by relating it to the geometric distance function
and a3 is the Pauli spin matrix. From the evolution through the length of the curve. In the future we want
equation, dØ=2e dt/h, which gives the infinitesimal to see whether our interpretation of the geometric
angle by which the state is rotated about the instan- phase as the integral of the contracted length of the
taneous direction of the magnetic field in an infin- curve holds good for non-Hermitian and non-adi-
itesirnal time interval, dt. Then, one can calculate abatic cases.
dD

2, which is equal to e2 sin2OdI2/h2. To calculate
d12 we have to choose the V( I) matrix properly.An
appropriate form of V(t) ~ Acknowledgement

V( I) = exp[ — (i/h) e(1— a
3)t] , (29) I thanktherefereeforvaluablesuggestionsandfor

where l is a unit matrix. Then, bringing my notice to refs. [10,111.
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