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We discuss the dynamical phase and the geometric phase in relation to the geometric distance function for cyclic evolution of
quantum states. For all cyclic evolution of quantum states, we have shown that the non-adiabatic geometric phase is the integral

of the contracted length of the curve which the system traverses.

1. Introduction

In studying the geometric aspects of quantum evo-
lution, two things are relevant in recent years. One
is the geometrical phase discovered by Berry [1] and
second is the geometric distance formulated by
Anandan and Aharonov [2]. Berry made a rather
striking and perceptive observation in the quantal
adiabatic theorem [3]. He found that for circuital
adiabatic excursions of the system in parametric
space the wave function acquires a non-integrable
phase which depends on the geometry of the circuit
and on the eigenstates under consideration in ad-
dition to the usual dynamical phase. In the same year,
Simon [4] explained that this geometric phase could
be viewed as a consequence of parallel transport of
vectors in a curved space appropriate to the quan-
tum system. It appears naturally as due to holonomy
in a line bundle over the parameter space. Later on,
Aharonov and Anandan (AA) [5] generalised the
Berry phase by defining it for any cyclic evolution of
the quantum system. The importance of the AA for-
mulation is that it is applicable irrespective of the
cyclic and adiabatic condition that is imposed on the
Hamiltonian of the system. Furthermore, Samuel and
Bhandari [6] formulated Berry’s phase for the case
of non-unitary and non-cyclic evolution of states by
employing Pancharatnam’s [7] idea of comparing
the phases of two arbitrary polarised light rays based
on their interference. Numerous experiments have

also supported Berry’s profound discovery in the last
half decade.

Turning to the second geometric quantity, it is
Anandan and Aharonov who have concretised the
formulation of the distance function in the projec-
tive Hilbert space and given a geometric meaning to
it (although various authors [8—11] in the past have
defined similar quantities in the literature). It is the
distance between quantum states along a given curve
C in projective Hilbert space # as measured by the
Fubini-Study metric defined from the inner product
of the representative states in the Hilbert space #.
It is equal to the time integral of the uncertainty of
the energy, and is geometric in the sense that this dis-
tance is independent of the particular Hamiltonian
used to move the quantum system along a given curve
in #; it depends only on the points in & to which
they project.

In this Letter our purpose is to discuss the dynam-
ical phase and the geometric phase in relation to the
distance function. We present a new expression for
the geometric phase in the case of non-adiabatic and
arbitrary cyclic evolution of quantum states. An ex-
ample is studied to realise our new expression.

2. Dynamical phase and distance function
Let {(4)} be a set of normalised vectors belong-

ing to a Hilbert space 5 of dimension N+ 1. The A’s
form an n-dimensional parameter space A= (4,, 4,,
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., A,)€R”on which {(4)} depends smoothly. Then

we can define a projective Hilbert space with di-
mension one less, i.e. N. It consists of a set of rays
of the Hilbert space s, where the rays are defined
as the equivalence classes of states differing only in
phase. The equivalence relation is |w(1) > ~ |y’ (1) >
if |y (A)>=clw(d)) where 0#ceC* and C*=
C—{0} is a multiplicative group of non-zero com-
plex numbers. The projective Hilbert space is
P=P(C)={#—{0}}/C* which is the quantum
state space; vectors in J# are projected onto #,(C).
Physical states are elements of 2 and represented as
points in £,

Given any two vectors |y >=|w(d,)),
|y,> = |w(A,) > e # we can define a distance func-
tion from the inner product of vectors in # as a
“physically natural” topology [81 in the set of quan-
tum states and this topology is specified by a nu-
merical-valued, non-negative function D(y,, ¥,)
which measures the distance between states |y, > and
|w,>. In a mathematical sense it is a metric. It sat-
isfies the identity, symmetry, and triangle axioms. A
useful way of defining it is

Dy, vo) =y —e %y, , (1)

and if it is minimised by equating its first derivative
with respect to ¢ to zero then we call it the mini-
mum-normed distance function. The value of the ar-
bitrary phase for which the distance function is min-
imised is called the “minimum phase” and is given
by

(e lws)
— . (2)
[yl |
Thus the minimum-normed distance function which

is an appropriate measure of the distance between
two quantum states reads as

eXp ( i¢min ) =

D(y1, )= min ly, —e~%ys ] .

With the help of eq. (2) we can write D(y,, ;) as
[9-11]

D(y1, ¥2)=(2-2|<yn Ly > )2, (3)

Eq. (3) gives the minimum realisation for all prop-
ositions of the absolute values of the difference be-
tween probabilities predicted in the state |y, ) and
|w,>. The meaning of the distance function is that
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given a state a priori, it defines how close we can then
determine the state a posteriori. In particular the dis-
tance between two vectors which are infinitesimally
close induces a Riemannian metric. Taking |y, > =
lw(A)) and |y,) = |w(A+dA) > and Taylor expand-
ing |w(A+dA)> up to second order, we have the
metric tensor associated with the infinitesimal dis-
tance function. It is given by [11]

dD?(w(4), w(A+dA))=g; dA; di;, (4)
where
g;=Re ({aw|d,w>)

—(iKw|d;, ¥))(iyld,p)) . (5

This metric is gauge invariant and preserves iso-
metry; hence it is an important quantity in studying
the natural geometric structure of the underlymg
manifold of quantum states.

If we consider a quantum state smoothly depen-
dent on one parameter and let | (1) > be obtainable
from |w(0)) by a one-parameter family of unitary
transformation, then

W(3)> =P exp (ijAw) dA') W(0)>.  (6a)

[¢]

In eq. (6a) P denotes path ordering and A(1) is
a Hermitian operator which is the generator of the
corresponding parameter. An infinitesimal parame-
tric evolution equation can be written (from (6a))
as

d
g7 W =AD) p @) . (60)

Eq. (4) yields
dD?2=AA%(1) dA?, (7)

where A4 (A) is the uncertainty in A. Therefore, the
distance along a line in 2, as measured by the metric
(4) is

=jAA(i)d/1. (8)

This distance is the same for an infinite number of
A(A)’s which generate the motion in £.

If a quantum evolution is considered where the
state vector at every instant of time belongs to a Hil-
bert space # and the evolution of the state |y (¢))
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is governed by the Schrddinger equation
., d

lhaly/(t)>=H(t)|c//(t)>, (9)

where H(t) is a general time dependent Hamilto-
nian, after an infinitesimal time df, the state is
|w(t+dt)> such that the infinitesimal minimum-
normed distance dD between |y (t) > and |y (r+dt) )
is given by

dD=[2-2|<w(t) |w(t+dt) y[1'/2.

This can be easily evaluated either by directly Taylor
expanding |y (z+d?) > up to second order and not-
ing that

[<y() [y (1+dr) |
=1—1AE?(t) dt?*/h*+0(dr?) ,

and

AE* (D)= w (D) |HA (1) [w)t) >
—[KyOIHO) WD) ],

or by using (8) and choosing A=tand A(1)=H(t)/
#i. Thus

dD=AE(t) dt/h, D= J.AE(t) d/h (10)

which differs from the distance between I7([w(¢)))
and I7(|w(t+dt) > ) along the curve Cin 2 as mea-
sured by the Fubini-study metric only by a numer-
ical factor of two [2]. This distance function is in-
dependent of the particular Hamiltonian used to
transport the state along a given curve C in #. That
is to say, on the manifold of quantum states, once
the fluctuation in the energy is specified, we can fix
the metric even though the specification to the fluc-
tuation in the energy comes from an infinite number
of possible Hamiltonians.

To see how the dynamical phase arises in the con-
text of the distance function we go back to (2). From
(2) we can argue that the infinitesimal phase asso-
ciated with the state in transporting a quantum sys-
tem along a one-parameter family of curves in #
generated by the Hamiltonian, and minimising the
distance function, is given by

() ly(e+de))
| €wttrtp(e+de) |

exp(i dfmin) = (11)
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The phase ¢=¢(¢) is a sufficiently smooth function
of time and it keeps track of the passage of time dur-
ing the evolution of the state vector. Expanding both
sides of (11) up to first order, and noting that the
denominator on the right hand side is 1+0(d¢?),
we have

1
dmin = — 2 WD) H(D) 1y (1)) dt.

During the evolution from an initial state at =0 to
a final state at =T one can integrate both sides to
get

¢min( T) = ¢dyn
T

=2 [ oo @, (12)
0

which is just the dynamical phase. Thus, the dynam-
ical phase can be interpreted as the value of the ar-
bitrary phase in the final state for which the normed
distance function is minimised.

3. Geometric phase and distance function

This section is motivated by a remark by Anandan
and Aharonov [2]: “we expect it (the distance func-
tion) to have a geometric meaning analogous to the
geometric phase for closed curve in 2.” We want to
see the extent to which this analogy can be carried
further.

Before drawing the analogy, we remark on the ba-
sis for it. The dynamics of the system governed by
the Hamiltonian H(¢) cannot change the geometry
of the projective Hilbert space £, as the geometry of
the state space is signatured by the metric defined on
it. Since the metric is fixed by the dispersion in the
generator of the motion AE(¢), it is possible in prin-
ciple to have the same AE(¢) by a variety of Ham-
iltonians that generate the motion. On the other hand,
the time dependent physical states in 3# are the ele-
ments of 2, and trace out a closed curve Cin 2 dur-
ing evolution. In a given metric on a manifold of
quantum states, for all cyclic evolutions, there de-
velops a geometric object called the geometric phase
(AA phase) in projective Hilbert space. It depends
only on the path traced by the rays in £ and does
not depend on the rate of traversal of the path. This
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phase is also independent of H(t) for a given closed
curve C in 2. As we know in many physical prob-
lems the observables of importance are those which
remain invariant under a gauge transformation. In
this context, the geometric phase and distance are, in
fact, gauge invariant. In addition to this, they are in-
variant under unitary transformations. From all these
facts, it appears natural to ask whether some possible
link can be established between them. The result of
our query is that we are able to show that the non-
adiabatic Berry phase for all cyclic evolution (i.e. the
AA phase) is the integral of the contracted length of
the curve that is traced out by |y (¢)) in 2.
Consider a quantum state that evolves according
to (9) and for all time, |y (¢)) e # with (y|y) =1.
Then, we can define a cyclic vector for the evolution
equation if there is a cyclic time 7 such that an initial
state and a final state differ by a phase factor @, i.e.

lw(T) > =e®|y(0)) .

The existence of a cyclic state is assured by the very
fact that it is an eigenvector of the unitary evolution
operator U(T) and the corresponding eigenvalue is
¢'®. Following Anandan and Aharonov [5], let there
be a natural projection map in 2, IT: # —» & defined
by II(|y>)={l¥'>: |y’ ) =c|y), for any complex
number c}. Then the cyclic evolution of the state de-
scribes a curve C, t—»w(?) in # that begins and ends
on the same ray. That is to say C: [0, T) - #, with
C=1II(C) being a closed curve in 2. Also, C is the
image of the curve C under the projection map /7.
Now a modified state is defined by choosing from
the curve |w(t)), so that the cyclic vector is easily
converted into a periodic form (i.e. a vector which
returns to itself after a time 7'):

[@(1)>=e " Ny(t)),

with (| %> =1 and f(¢) is any smooth function sat-
isfying f(T) —f(0)=0. Then it trivially follows

@ (T)>=19(0)) .

It has been shown by Anandan and Aharonov that

if one identifies
T

_%j WD H() 1wty di

0

as the dynamical phase and removes it from the total
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phase @, then one gets the so-called “non-adiabatic
Berry phase™ (AA phase),

p=i | o190 dr. (13)
0

The geometric quantity f is independent of the phase
that relates the initial state and the final state and of
the Hamiltonian for a given projection of the evo-
lution in #. In deriving the expression for §, AA have
neither used the adiabatic theorem nor the cyclicity
condition of the Hamiltonian. However the cyclic
evolution of the state is necessary for its derivation.

Here, we seek to derive the non-adiabatic Berry
phase from metric considerations. We emphasize that
the distance function (in fact, any quadratic, posi-
tive definite function) is of pivotal importance in
discussing the geometry of quantum evolution.

Define a quadratic, positive definite function in £
as

Q) =i |P() Y - B 1w() 12, (14)

where B(t) is an arbitrary, real frequency. It is easy
to see that if we minimise £2(¢) with respect to an
arbitrary frequency /3 (1), then the minimum value of
B for which £ is minimised is given by

Benin (1) =1 () 19(1) > (15)
and it may be called the Berry frequency. Hence

T

p= [ hun(0) dt=i [ 01900 (16)
0 0

is the geometric phase as given by (13).

To assign a meaning to the quantity Q(¢), we can
take (see eq. (20)) Bmm to be of the form f(z)+
CH(1)) /A, i.e., Bmin is a real frequepcy with the dy-
namical frequency removed from f(t). Then, Q is
equal to AE(¢)/#. It has a physical meaning which
is paraphrased as the magnitude of the velocity of
transportation (speed of transportation) in 2 (apart
from a factor of two in our convention ) by Anandan
and Aharonov. Therefore, the geometric phase ap-
pears as a result of the principle of minimisation of
speed of transportation in 2. The quantity g is the
time integral of the Berry frequency of which the
speed of transportation is minimised during the evo-
lution from time ¢=0 to ¢= T, whereas the geometric
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distance is just the time integral of £2(¢) during the
evolution. In this sense the geometric phase and dis-
tance seem to be interrelated.

In the sequel we recognise yet another geometric
quantity, which is referred as the “length of the
curve” along which the quantum system is trans-
ported. Given a closed curve € in 2, we define the
length of the curve in & which is traced out by the
normalised vector |¥(z) ). Such a projective Hilbert
space on which one has singled out a specific metric,
it is easy (though not trivial) to relate the length and
distance during a quantum evolution via the geo-
metric phase. Below we define the length of the curve.

Definition. Let w(t) be a curve C: [t, T] - 5. Then
choose a section of the curve as  which is differ-
entiable along C such that the length of the curve
w(t) along which the system evolves from point
¥(0) to a point ¥(7T) (or from a parameter value
t=0to t=T) is a number defined as

j S0 ()Y 2 dr. (17)
0

| i) is the velocity vector in projective Hilbert space
2 of the curve ¥ at point ¢ along the path of evo-
lution of the state vector. It is the tangent vector to
the curve ¥(t).

The integral (17) exists, since the integrand is
continuous. The length of a broken C curve is de-
fined as the (finite) sum of the length of its C pieces.
The number /()| is independent of the parame-
trisation of its image set, i.e. for a smooth transfor-
mation from parameter ¢ to T where d¢/dt>0, the
length of the curve remains unaltered. Therefore, the
length of the curve is a property of the whole curve
and is t-invariant. Hence for an arbitrary parametric
evolution of the state, we can define the infinitesimal
length of the curve during the infinitesimal time, d¢,
as

di=<y(e) 1g(2)>'/2 dt . (18)

Proposition. For an arbitrary cyclic evolution of a
quantum system any representative physical state
traces a closed curve in 2 (generally an open curve
in o) such that (i) at each instant of time, d/? is
greater than dD? and (ii) 8, the geometric phase, is
manifested as the integral of the contracted length of
the curve Cin 2.
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Proof. This can be easily seen by directly evalu-
ating d/?, the square of the infinitesimal length of the
curve. Differentiating |#(z))> with respect to time
(from |#(2)> =e~ " |w(t))) we have

dP= P19y AP =]+ Yl Py dr?

f<w|le> de?. (19)

On using

)= =3 WO IHO WD) +BO 190 ,
(20)

we can write d/? as
1
A= 2 [KYIH? ) — (KylHIw))?] de?

+ (i@l dr)?.
Making use of the definition of dD? we finally arrive
at

di?—dD*=[i(@ () [y(1)) dt)*. (21)

Because of the normalisation of |{(z)) for all
time, the quantity (|} is purely imaginary and
hence i{#|¥) is real. In view of the above fact,
d/>~dD?>0; proving thereby the first part of the
proposition. To prove (ii), we simply note that dur-
ing a cyclic evolution of the state vector, the geo-
metric phase factor acquired by the system is

T
p=i [ o1y a J A
0
dez,
0

B= IdL, (22)

0

where dL=./1 —v%/u? dl and we call it the infin-
itesimal contracted length of the curve. Thus the non-
adiabatic Berry phase is the integral of the con-
tracted length of the curve. The quantity v, =dD/d¢
has been defined earlier and u, =d//dL is referred
to as the magnitude of rate of change of length along

109



Volume 159, number 3

the curve C. The expression (22) is the main result
of this paper. It gives a new insight into the Berry
phase. Since the Berry phase depends on two objects
in #, namely the length of the curve (a t-invariant
quantity) and the distance function (a H(¢)-invar-
iant quantity ), we expect it to naturally depend on
the structure of the curve Cin 2. We believe that the
expression (22) is more geometric than any other
one previously known. It provides an explicit rela-
tion between geometric phase and the topology of
the curve. During the cyclic evolution, we may re-
gard the excess length of the curve at each instant of
time over the distance as accumulating, so that it fi-
nally appears as the geometric phase. It is important
to note that our interpretation of the non-adiabatic
Berry phase in terms of the integral of the contracted
length of the curve is independent of the cyclicity of
the Hamiltonian and only depends on the cyclicity
of the quantum states.

To add a little, we remark that the proof of our
proposition also stems from the observation of (14),
(15) and (20). After minimising the quantity £?
with respect to £ and using B=£(¢t)+ (H(t) )/ is
nothing but AE?(¢) /%7, and this in turn again equals
C@1W> — (i<@|¥>)* on using f= (i{#|¥> ). Hence
we get (21) and the proof follows.

To validate our interpretation, we supplement it
by one more special case where we choose the Ham-
iltonian to be periodic and the state to be cyclic and
obtain an expression similar to that of (22). Also,
we use explicitly (22) to calculate the geometric
phase for a spin-} particle precessing in a magnetic
field.

We work in a finite dimensional Hilbert space.
Then once the basis is chosen, the quantum state will
evolve according to eq. (9) which will be a matrix
equation, where H is an nXn square matrix and
fw(t)> is a column vector of n X 1. Since the system
evolves unitarily, the evolution operator will satisfy
the equation

in Y9 _ gy . (23)
dt

Let us consider a periodic Hamiltonian H(¢) with

some period =T, i.e. H(t+ T)=H(t); then via Flo-

quet’s [12,13] theorem, any fundamental matrix of

a linear system of the ordinary differential equation

(23) can be put in a form
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U(t)=V(t) exp(iMt) ,

where U(t) is the matrix representation of the time
evolution operator and | (¢) ) =U(¢) |w(0) ). Also
U, V and M are nXn square matrices and V is un-
itary since U is unitary with M being a real constant.
V has the property that V(0)=V(T) =1, i.e., peri-
odic in 7. One can extract the final state by

lW(T)>=U(T)|w(0)>=e¢®|y(0))
=e""|y(0)) , (24)

1e., |w(0)> is an eigenvector of U(¢) with eigen-
value @®=mT and @ is real. This shows that the ini-
tial state returns to itself after a time ¢t=7 modulo a
phase factor of @, a property which depends only on
the unitarity of U(¢) and not on the finite dimen-
sionality of s and the cyclic properties of the
Hamiltonian.

To see how the expression (22) comes about in
this framework we evaluate the distance function as
given by (10). We have

1
dD?= 25 [<y(0) | UTH?Uly(0) )

—<Y(0)|UTHU|y(0)>*] dr*.

Now
. dU s . M
UTHU=1hUTHT=e MGRVIV —hM)eM . (25)

and
UtH>U= (UTHU)'(UHU)
=e~M(A2VTV+ M2 +ik* MYV
— MV )eM! |
Therefore
Cy(O)H() lw (1))
= (Y(0) [e =M ARV —hM)e ™| y(0) )
=i @(2) | (1) ) —hm, (26)

where we have used the fact that {w(0)) is an ei-
genstate of M with eigenvalue m, and |y(¢) )=
V() lw(0)).

Next we evaluate the term (w|H?|y):
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CyIH ) =(w(0) | UTHUjy(0) )
=h2PIP> +RPm> i m G i’ m P,
and using
w) () =1,
P [P(E) > = = <@ () 1§ () )
one can write

Cw(t) |H? \w(t))

=2 (PP +A2m? = 2P m @) . (27)
Substituting eq. (26) and (27) into dD?, we have
dD?=(yly) di?— (i<y|@) di)?. (28)

Eq. (28) is the same as (22). Hence for cyclic evo-
lution and a periodic Hamiltonian the non-adiabatic
Berry phase takes the form

T T
p=i [ <19y di= [aL.
0 0

Finally as an illustration to the above relation we
can consider the elegant example taken by Anandan
[4] in his recent work, i.e. a spin-§ particle undergo-
ing precession in a homogeneous magnetic field. Here
¥ is spanned by two-dimensional vectors with com-
ponents (cos 16, sin 18) and 6¢ [0, n], (with a suit-
able basis choosen for the Hamiltonian that de-
scribes the system). Due to precession, the wave
function rotates by 2x radians about some axis which
results in a cyclic motion of every vector of #. With-
out loss of generality, at every instant of time one
can choose the coordinate axis in such a way that the
Hamiltonian is given by H= —uBg;, with g=uB
being a positive number in units of energy, B=|B|
and o; is the Pauli spin matrix. From the evolution
equation, dg=2¢ed¢/#, which gives the infinitesimal
angle by which the state is rotated about the instan-
taneous direction of the magnetic field in an infin-
itesimal time interval, dz. Then, one can calculate
dD?, which is equal to &2 sin26dz?/A2. To calculate
d/? we have to choose the V() matrix properly. An
appropriate form of V(¢) is

V(t)y=exp[—(i/h)e(1-a5)t], (29)

where 1 is a unit matrix. Then,
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A= (y(0) | V11w (0)) de?
82
=7 VI2(1-a3) ly) a2’
82
=2-ﬁ~5(1—cos0) de2. (30)

Calculation of the geometric phase is trivial:

b= | Ve

= J‘ \mez/hz) (1 —cos 8) — (£2/h?) sin?0 d¢
0

v ™

T
J.(I—cose)dt,
0

changing the variable from ¢ to ¢ we have
B=n(1—-cosf). (31)

This can be evaluated alternatively by using
T T

p=i [ <19y ar=i [ w(O) 17171900 a1
0 0

=n(l-cos@),

which is half the solid angle subtended by the orbit
of motion in a sphere of unit radius. Also one can see
that for = n the magnitude of velocity of transpor-
tation is zero and hence the geometric phase coin-
cides with the length of the curve during cyclic ex-
cursion. Thus the above example provides a firm
ground for our interpretation of the geometric phase
by relating it to the geometric distance function
through the length of the curve. In the future we want
to see whether our interpretation of the geometric
phase as the integral of the contracted length of the
curve holds good for non-Hermitian and non-adi-
abatic cases.
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