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Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen
matter with an external system we show that the black-hole information paradox becomes more severe,
even for cosmologically sized black holes. We rule out the possibility that the information about the in-
fallen matter might hide in correlations between the Hawking radiation and the internal states of the black
hole. As a consequence, either unitarity or Hawking’s semiclassical predictions must break down. Any
resolution of the black-hole information crisis must elucidate one of these possibilities.
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In 1917 Vernam invented his one-time pad cipher. In its
simplest form, the cipher encodes a message using a ran-
dom key to determine whether or not to flip each message
bit. The original message may be retrieved from the en-
coded form by anyone who has access to the encoded
message as well as the (secret) key. Because the encoded
message still contains unflipped bits one might worry
whether portions of the original message can be extracted
from it. This concern was put to rest by Shannon when he
proved that the encoded bit string contained no information
of the original message [1]: It was indistinguishable from a
random bit string. Where then does the information reside?
It is neither in the encoded message nor is it in the key.
Instead, all the information has been transformed into pure
correlations between these two strings. How does this
result apply to the black-hole information paradox? In
fact, this classical result has fueled the conjecture that
while black-hole information cannot strictly be found
within the Hawking radiation [2], it can nonetheless be
hidden within correlations between that radiation and
something else [3,4].

A direct quantum analogue to the one-time pad would
encode an arbitrary quantum state into the correlations
between two subsystems, with none of the information
about that state accessible from either subsystem alone.
Interestingly, such a quantum analogue is impossible for
any pure-state encoding into two subsystems [5]. For ex-
ample, for the mapping

 �j0i � �j1i ! ��j00i � j11i� � i��j01i � j10i�; (1)

at least some information about � and � can be gleaned by
looking at either of the two final subsystems alone. That
this holds generally is particularly surprising since the one-
time pad is often cited as the classical analogue of quantum
teleportation [6]. In quantum teleportation, Alice is given
an arbitrary quantum state whose details are unknown to
her. In addition, she shares one-half of an entangled state
with Bob. Alice is allowed to send any classical message to

Bob after which he is to reconstruct the original state. Like
the one-time pad, the shared entangled state (analogous to
the secret key) contains no information about the original
state. Similarly, the message Alice sends Bob (analogous to
the one-time pad encoded message) contains no informa-
tion about the original state. Notwithstanding this close
analogy, its impossibility indicates that something must be
missing from the above description. In fact, we shall see
that a full description of quantum teleportation contains a
third subsystem (an ‘‘environment‘‘) that allows Alice to
decohere her measurements thus yielding a classical
message.

Consider now an arbitrary quantum state (mixed or
potentially entangled to some external reference state)
which is encoded into a larger Hilbert space through
some unitary process. We prove the ‘‘no-hiding theorem’’
in two steps: First, suppose this encoding process com-
pletely hides the information about that state from a par-
ticular subsystem of that Hilbert space (i.e., the state of that
subsystem shows no dependence on the state being hid-
den). We prove that the hidden information is wholly
encoded in the remainder of Hilbert space with no infor-
mation stored in the correlations between the two subsys-
tems [5]. Put differently, we prove that, unlike classical
information, quantum mechanics allows only one way to
completely hide an arbitrary quantum state from one of its
subsystems: by moving it to its other subsystems. Second,
and more importantly, we prove that this result is robust to
imperfections in the hiding process. As more of the origi-
nal state becomes hidden, it smoothly becomes more ac-
cessible in the remainder of Hilbert space in a dimension-
independent manner.

The no-hiding theorem sheds new light on the black-
hole information paradox and accentuates the crisis for
quantum physics. In particular, it has been speculated
that at least some of the information that falls into a
black hole (encoded by matter and radiation) may be found
in the correlations between the Hawking radiation leaving
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the black hole and the black hole’s internal state or late-
epoch radiation [3,4,7–12]. So long as Hawking’s semi-
classical characterization of the black-hole radiation [2] is
accurate, we prove that the quantum information about the
in-fallen matter cannot be hidden in these correlations.

Perfect hiding processes.—Consider a process which
takes an arbitrary input state �I from subspace I and
encodes it into a larger Hilbert space. This will be a hiding
process if there exists some subspaceO (the output) whose
state �O has no dependence on the input state. In other
words, our hiding process maps �I ! �O with � fixed for
all �. The remainder of the encoded Hilbert space may be
regarded as an ancilla A. Thus, the entire system may be
represented in terms of two subsystems O and A. Now for
this process to be physical, it must be linear and unitary. By
linearity, it is sufficient to study the action on an arbitrary
pure state �I � j iIIh j. Unitarity allows us to suitably
enlarge the ancilla so that the hiding process can be repre-
sented as a mapping from pure states to pure states. The
hiding process can now be expressed in terms of the
Schmidt decomposition of the final state

 j iI !
XK

k�1

������
pk
p
jkiO � jAk� �iA: (2)

Here pk are the K nonzero eigenvalues of �, fjkig are its
eigenvectors, and both fjkig and the ancilla states fjAkig are
orthonormal sets.

In Eq. (2) we have explicitly allowed for a possible
dependence of the ancilla states on j i. However, the
physical nature of this hiding process places a restric-
tion on this dependence. By linearity the ancilla will con-
sist of an orthonormal set of states even for a superposition
of inputs jAk��j i � �j ?i�i � �jAk� �i � �jAk� ?�i,
where j ?i denotes any state orthogonal to j i. Taking
the inner product between two such ancilla states yields

 ���hAl� �jAk� ?�i � �
��hAl� ?�jAk� �i � 0: (3)

Thus, for arbitrary complex values of � and �, all cross-
terms above must vanish. Given any orthonormal basis
fj ji; j � 1; . . . ; dg spanning the input states we may now
define an orthonormal set of states, jAkji � jAk� j�i, span-
ning a Kd-dimensional Hilbert space that completely de-
scribes the reduced state of the ancilla. Unitarity allows us
to map any orthonormal set into any other. Thus, we are
free to write these as jAkji � jqki � j ji 	 0 where fjqkig
is an orthonormal set of K states and 	0 means we pad any
unused dimensions of the ancilla space by zero vectors.
Under this mapping we see that the arbitrary input states
j i are completely encoded within the ancilla and Eq. (2)
becomes

 j iI !
X
k

������
pk
p
jkiO � �jqki � j i 	 0�A: (4)

Since we may swap j i with any other state in the ancilla
using purely ancilla-local operations, we conclude that any
information about j i that is encoded globally is in fact

encoded entirely within the ancilla. No information about
j i is encoded in system-ancilla correlations (nor, in fact,
in system-system correlations).

Imperfect hiding processes.—Unlike perfect hiding pro-
cesses, for which we found it sufficient to consider pure
input states, imperfect hiding must allow for some impre-
cision in the encoding. To fully specify the mapping, we
now need to describe its action on entangled states; this
further guarantees that the mapping is completely positive
and therefore physical.

If the input subsystem I is initially entangled with an
(external) reference subsystem I0 in state j iI0I �P
j
�����
�j

p
jj0; jiI0I then linearity and Eq. (4) imply that a

perfect hiding process on an entangled state has the form
 

j iI0I ! j�
perfectiI0OA �

X
jk

����������
�jpk

q
jj0iI0 � jkiO

� �jqki � jji 	 0�A; (5)

i.e., the specification we sought takes the form �I0I �
j iI0II0Ih j ! �I0 � �O, where �I0 is the reduced state of
the reference subsystem. An imperfect process can be
described more generally by �I0I ! �I0O where the output
only imprecisely hides the input with

 Tr j�I0O � �I0 � �Oj< �; (6)

for some �. The choice of trace norm is most appropriate
since it places a bound on the probability for any observ-
able to distinguish these states [13]. We can now use the
fidelity to quantify the overlap between the global descrip-
tion of imperfectly hidden states and the perfect form given
in Eq. (4). Since the fidelity satisfies F��;�� 

1� 1

2 Trj�� �j, we have

 F��I0O; �I0 � �O� 
 1� �=2: (7)

By definition, the fidelity is the maximum overlap over all
purifications of the pair of states. Equivalently, we may fix
one purification and maximize the overlap based on vary-
ing the other purification [14]. Let us choose the obvious
purification of �I0O, namely, the actual global output which
we denote j�imperfecti. Further, the tensor product �I0 � �O
is highly restrictive and it is easy to see that any purifica-
tion thereof must take the form of j�perfecti (up to some
unitary operation on the ancilla). As a consequence, the
global state of the imperfect output will strongly overlap
with some global state whose form perfectly satisfies the
no-hiding theorem

 h�imperfectj�perfecti 
 1� �=2; (8)

or, stated differently,

 j�imperfecti �
������������
1� ~�
p

j�perfecti �
���
~�
p
j�perfect
? i; (9)

for some perturbation 0 � ~� < �. The demonstration of
robustness to imperfections completes our proof of the
no-hiding theorem. �
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This result comes as a surprise if we consider another,
extensively studied, example of a hiding process—
state randomization [15]. There it has been shown that
inexact randomization of an arbitrary pure state of dimen-
sion d can be performed with an ancilla of dimension
O�d logd� whereas exact randomization requires an ancilla
of dimension at least d2. The inexact state randomization
therefore cannot be expressed in general as a mere pertur-
bation from the perfect case. By enriching the class of
states to be hidden to include states which may be en-
tangled to some reference system, we have demonstrated
robustness, with a dimension-independent perturbative
degradation. Indeed, this is crucial for any application
where the dimensions of the various subspaces involved
may be unknown and possibly infinite.

Teleportation revisited.—By the no-hiding theorem, the
direct quantum analogue of the one-time pad is impossible
for arbitrary input states. Notwithstanding this, quantum
states can still be transformed into pure correlations be-
tween three or more subsystems [5] (not counting the
external reference subsystem). This underscores the anal-
ogy between quantum teleportation and the one-time pad.
To apply the no-hiding theorem to teleportation, we require
a globally quantum description which we obtain by enlarg-
ing the ancilla to include the ‘‘environment‘‘ (or measure-
ment system) [16] used to decohere Alice’s Bell state. For a
single qubit in an arbitrary pure state j i, the teleportation
protocol reduces to

 j i !
1

2

X1

j;k�0

j2j� kiAlice � j2j� kimessage � �
j
z�kxj iBob:

(10)

To complete the protocol, Bob need only use the value of
the message to undo the randomizing operations to retrieve
j i. It is easy to check that each of the three subsystems in
Eq. (10) is in the maximally mixed state for that space.
Thus, the information appears only as intersubsystem cor-
relations. [Relabeling the subsystems of Eq. (10) yields an
alternative tripartite analogue to the one-time pad [17] ].
However, the above observation does not contradict the no-
hiding theorem.

In fact, our key result can be recovered by rewriting the
teleportation process in terms of a bipartite system. For
instance, since the reduced density matrix of Bob’s sub-
system contains no information about the hidden state j i,
it must lie entirely in the remainder of Hilbert space.
Indeed, it is easy to check that the state j i is completely
encoded within the union of the Alice and message sub-
systems. (The same argument holds for Alice’s subsystem
or for the message subsystem.) Hence from a purely quan-
tum mechanical perspective, teleportation is consistent
with our result. Indeed, this unitary variation of the tele-
portation protocol could serve as an experimental verifica-
tion of the no-hiding theorem, where the bipartite systems
could be reconstructed separately via quantum-state to-

mography to identify in which subsystem the original qubit
was encoded.

Thermodynamics.—The no-hiding theorem offers deep
new insights into the nature of quantum information. In
particular, it generalizes Landauer’s erasure principle [18],
according to which any process that erases a bit of infor-
mation must dump one bit’s worth of entropy into the
environment. Landauer’s principle applies universally to
classical or quantum information [18]. However, the no-
hiding theorem applies to any process hiding a quan-
tum state, whether by erasure, randomization, thermaliza-
tion or any other procedure. In this sense, quantum
information hiding is equivalent to its erasure, whereas
classical information hiding is fundamentally distinct
from erasure.

Landauer’s principle provides fundamental insight into
thermodynamic reasoning, such as in the resolution of
Maxwell’s demon. In contrast, data hiding provides more
insight into the nature of thermalization processes. The
terminology used above—input, output and ancilla—
now takes on thermodynamic interpretations (e.g., initial
system, final system, environment, or input system, out-
put radiation, environment, etc.) In the simplest case of a
single system and environment, as the state of the system
thermalizes, it contracts to a thermal distribution indepen-
dent of its initial description. Perfect hiding implies com-
plete thermalization, whereas imperfect hiding may shed
some light on the approach to an equilibrium state.
Either way, as the state vanishes from one subspace, it
must appear in the remainder of Hilbert space (i.e., the
environment). To apply the no-hiding theorem, we must
consider an enlarged purified environment, or superenvir-
onment. As in teleportation, we again find ourselves with
the following three subsystems: system, environment, and
the remaining supra-environment. We can conclude that
the quantum information that vanished is appearing some-
where in the complete environment (including correlations
between the two subsystems therein).

Black-hole evaporation.—Having proved the no-hiding
theorem in an abstract quantum-information theoretic set-
ting, let us now consider its implications for information
flow in and out of black holes.

Hawking’s seminal work on black-hole evaporation
some 30 years ago [2] precipitated a crisis in quantum
physics. Hawking’s calculations showed that whatever
matter falls into it, a black hole evaporates in a steady
stream of ideal featureless radiation. In Hawking’s semi-
classical analysis this radiation is completely independent
of the in-falling matter, at least until the black hole has
shrunk to near the Planck mass. For massive black holes
(many times a Planck mass) Hawking’s analysis should
presumably be arbitrarily good. Nothing in Hawking’s
semiclassical approach changes if the black hole were
created, or continued to be fed, with matter whose quantum
states are entangled with external (reference) degrees of
freedom. However, in such a scenario, we can immediately
apply the no-hiding theorem. The in-falling matter would
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correspond to subsystem I and the outgoing Hawking
radiation would be subsystem O in our formulation.
Thus, within the framework of Hawking’s semiclassical
analysis, the no-hiding theorem implies that no informa-
tion is carried either within the outgoing radiation or in
correlations between the outgoing radiation and anything
else. This strong rejection of the correlations option is
based on two assumptions alone: unitarity and Hawking’s
semiclassical analysis of the radiation.

We stress that the exact nature of the Hawking radiation
(e.g., whether it is black body or gray body [19]) is irrele-
vant to our argument—in particular, it need not be ther-
mal—so long as the reduced state of the outgoing radiation
field is independent of the detailed state of the in-fallen
matter. Furthermore, we note that the state of the in-fallen
matter may be subject to a number of superselection rules
disallowing certain superpositions. In that sense, the in-
fallen matter is not truly in an arbitrary quantum state.
Nonetheless, up to that nuance, any subspaces correspond-
ing to the allowed superpositions must obey the no-hiding
theorem.

We now expose the severity of the black-hole informa-
tion crisis in one specific formulation of the paradox [20].
Suppose one feeds a black hole (with externally entangled
states) at the Hawking-emission rate for an arbitrarily long
time. Then, Hawking’s semiclassical analysis would pre-
dict that such a black hole, of a fixed size, could contain an
unbounded amount of entropy, associated with the states of
the in-fallen matter. This unbounded information density is
itself tantamount to a loss of unitarity (at least in our
Universe) [21]. This formulation of the black-hole infor-
mation paradox is particularly instructive as it applies to
black holes of arbitrary size.

Naturally, one would always expect some deviations
from Hawking’s analysis. For instance, although a tiny
effect, there should at least be some small scattering of
in-falling matter off outgoing Hawking radiation. This is
where robustness is key. If various perturbations lead to
deviations of size � from perfect featureless radiation, then
Eq. (9) quantifies the deviation away from the ideal no-
hiding theorem. Whether this deviation is carrying away
information directly or via correlations or through inter-
ference with the main contribution is immaterial; the net
amount of information that may be carried away in this
manner would be O�

���
�
p
� or more likely O���. Since these

deviations are believed to be vanishingly small for truly
cosmologically sized black holes this route to even a partial
resolution to the black-hole information paradox now ap-
pears untenable.

The no-hiding theorem provides new insight into the
different laws governing classical and quantum informa-
tion. Unlike classical bits, arbitrary quantum states cannot
completely hide in correlations between a pair of subsys-
tems. A robust statement of this result leads to a severe
formulation of the black-hole information paradox: Either
unitarity fails or Hawking’s semiclassical predictions must

break down. The no-hiding theorem rigorously rules out
any ‘‘third possibility’’ that the information escapes from
the black hole but is nevertheless inaccessible as it is
hidden in correlations between semiclassical Hawking ra-
diation and the black hole’s internal state. This provides a
criterion to test any proposed resolution of the paradox:
Any resolution that preserves unitarity must predict a
breakdown in Hawking’s analysis [2] even for cosmolog-
ically sized black holes.
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