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The no-hiding theorem says that if any physical process leads to bleaching of quantum information

from the original system, then it must reside in the rest of the Universe with no information being hidden

in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding

theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a

qubit as one example of the bleaching process and show that the missing information can be fully

recovered up to local unitary transformations in the ancilla qubits.
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Linearity and unitarity are two fundamental tenets of
quantum theory. Any consequence that follows from these
must be respected in the quantum world. The no-cloning [1]
and the no-deleting theorems [2] are the consequences of
the linearity and the unitarity. Together with the stronger
no-cloning theorem they provide permanence to quantum
information [3], thus suggesting that in the quantum world
information can be neither created nor destroyed. This is also
connected to conservation of quantum information [4]. In
this sense quantum information is robust, but at the same
time it is also fragile because any interaction with the envi-
ronment may lead to loss of information. The no-hiding
theorem [5] addresses precisely the issue of information loss.

There are many physical processes in nature where one
can apply the no-hiding theorem. The examples can be
cited starting from quantum teleportation [6], state ran-
domization and thermalization [7], private quantum chan-
nels [8], to black hole evaporation [9]. If the original
information about the system has disappeared, then one
may wonder where it has gone. The no-hiding theorem
proves that if the information is missing from one system
then it simply goes and remains in the rest of the Universe.
The missing information cannot be hidden in the correla-
tions between the system and the environment [5].

Consider a physical process which transforms an arbi-
trary pure state � ¼ jc ihc j to a fixed mixed state � that
has no dependence on the input state. Let � ¼ P

kpkjkihkj,
where the pk are the nonzero eigenvalues with

P
kpk ¼ 1

and jki are the eigenvectors. This process can be thought
of as a generalization of the Landauer erasure [10]. Now,
the bleaching process can be expressed in terms of the
Schmidt decomposition of the final state as jc i ! j�i ¼
P

K
k¼1

ffiffiffiffiffiffi
pk

p jki � jAkðc Þi, where TrAðj�ih�jÞ ¼ � and

fjAkig are the orthonormal states of the ancilla. Using the
linearity and the unitarity of quantum mechanics one can
show that the final state must be of the following form [5],

j�i ¼ XK

k¼1

ffiffiffiffiffiffi
pk

p jki � ðjqki � jc i � 0Þ; (1)

where fjqkig is an orthonormal set of K states and �0
denotes the fact that we substitute any unused dimensions
of the ancilla space by zero vectors. This shows that the
missing information about jc i can be found entirely within
the ancilla and no information is hidden in the bipartite
correlations of the system and the ancilla.
The simplest example of a bleaching process is the

quantum state randomization where an arbitrary pure state
in a d-dimensional Hilbert space transforms to a com-
pletely mixed state, i.e., jc ihc j ! I

d . For any arbitrary

qubit the state randomization is a completely positive
map as given by jc ihc j ! 1

4

P
3
k¼0 �kjc ihc j�k ¼ I

2 ,

where �0 ¼ I and �k (k ¼ 1; 2; 3) are the Pauli matrices.
The above map can be thought of as a unitary map by
attaching two qubits as the ancilla which is given by

jc ijAi ! j�i ¼ 1

2

X3

k¼0

�kjc ijAki; (2)

where jAki are orthonormal and the initial state of the
ancilla is jAi¼ 1

2

P3
k¼0 jAki¼ 1

2ðj00iþj01iþj10iþj11iÞ.
The unitary operator that realizes the above randomization
operation is a conditional unitary operator given by U ¼
P3

k¼0 �k � jAkihAkj. We can see that if we trace out the

ancilla qubits from the final state given in (2), we do get a
completely mixed state. Now, the important question is,
where has the missing information gone that has bleached
out from the original qubit? The no-hiding theorem pro-
vides an answer to this question.
In the above example, we will see that the missing

information is simply residing in the two qubit ancilla
state. This is the essence of the no-hiding theorem. To
reconstruct the original state jc i from the ancilla qubits,
we need to apply the ancilla local unitary U23 ¼
CNOT23ðH2 � I3ÞCNOT23 (Fig. 1). Thus, we have
1

2

X3

k¼0

�kjc ijAki!1

2

X3

k¼0

�kjc iU23jAki¼j�þijc i¼j�outi:

(3)
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From (3) we can see that the first and the second qubits are
in the Bell state and the third qubit contains the original
information. Thus, the missing information can be fully
recovered from the ancilla in intact form.

Liquid state nuclear magnetic resonance (NMR) has
been successfully used as a test bed for a large number
of quantum information protocols including Grover’s
algorithm [11], Shor’s algorithm [12], quantum teleporta-
tion [13], adiabatic quantum computation [14,15],
estimation of the ground state of hydrogen atom up to
45 bits [16], and more recently experimental verification
of the nondestructive discrimination of Bell states [17].
Here, we report an experimental verification of the quan-
tum no-hiding theorem using NMR. Experiments have
been performed in a three qubit heteronuclear spin system
formed by the 1H, 19F, and 13C nuclei of 13C-enriched
dibromo fluoro methane (13CHFBr2) [18]. Figure 2(a)
shows the equilibrium spectrum for the three nuclei at
300 K recorded in a Bruker AV500 spectrometer, where
the resonance frequencies of 1H, 19F, and 13C are 500, 470,
and 125MHz, respectively. We have taken 1H, 19F, and 13C
as the first, the second, and the third qubit, respectively.

Using the quantum circuit of Fig. 1, an equivalent NMR
pulse sequence has been developed here (Fig. 3). This
includes (i) the preparation of the pseudopure state (PPS)
[18], (ii) the process of initialization, (iii) the randomization
operation using its unitary extension, (iv) extraction of the
original quantum information from the ancilla by applying
local unitary transformations, and (v) finally, the measure-
ment (reconstruction of density matrices via tomography).
These sequence of steps can be represented by schematic
use of several Uij blocks (shown in light gray). During the

application of Uij the system evolves under the scalar

coupling Jij between the spins i and j for a time period of

1=2Jij. They create two spin order modes from a single spin

transverse mode and vice versa. The � pulses in the center
of Uij are used to refocus all the chemical shifts and all the

scalar couplings except between the spins i and j [18].
The experiment consists of implementing the above

five steps on the three qubit system. The initial part of
Fig. 3 contains preparation of j000i PPS by the spatial
averaging method [19]. The initial state jc i1jAi23 [see (2)]
is prepared from j000i PPS by applying a ð�Þ� pulse on

the first spin and ½�=2��y pulses (Hadamard gates) on the

second and the third spins, respectively. The Hadamard

gate ½�=2��y on the second and third qubits transforms j00i
to jAi. Then, we need to perform the randomization opera-
tion U. Here, we have converted this into NMR pulse
sequence by the use of a novel algorithmic technique for
efficient decomposition of the unitary operators developed
in our laboratory [20]. This method uses graphs of a
complete set of base operators and develops an algorithmic
technique for finding the decomposition of a given unitary
operator into basis operators and their equivalent pulse
sequences. Thus,U can be expressed asU ¼ expð�i �

4 1Þ
expði �

2 I3zÞ expð�i�I1yI2zÞ expð�i�I1zI3zÞ expði �
2 I1xÞ

expði �
2 I1zÞ. The first term yields only an overall phase

and can be neglected. The second and last terms are �=2
rotations of the third and the first qubits, respectively, about
the z axis. The z rotation is achieved by the composite pulse
½�=2�i�z ¼ ½�=2�ix½�=2�i�y½�=2�i�x, where i ði ¼ 1; 2; 3Þ

FIG. 1 (color online). Circuit diagram for testing the no-hiding
theorem using the state randomization. U is the unitary operator
for randomization andH represents the Hadamard gate. Dots and
circles represent the CNOT gates. After randomization, the state
jc i on the first qubit has been transferred to the ancilla qubit.

FIG. 2. (a) The equilibrium spectra of 13CHFBr2 dissolved in
acetone-d6 at 300 K on a AV500 NMR spectrometer. Labeling of
the transition is given on top of each spectral line. The scalar
couplings between different spins are measured as JHC ¼ 224:5,
JFC ¼ �310:9, JHF ¼ 49:7. For � ¼ �=2 and � ¼ 0, (b) and
(c) are, respectively, the experimental spectra for the input
(jc i1j00i23) and output (j�þi12jc i3) state for the 3 spins. The
receiver phase is set using a separate experiment so that y
magnetization appears as positive absorption mode. For � ¼
� ¼ �=2, (d) and (e) are the experimental spectra showing,
respectively, the input and output states for the 3 spins.
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refers to various qubits. The fourth term isU13 and the third
term can be converted to U12 by converting I1y to I1z using

the pulse ½�=2��x½�=2�y½�=2�x. The final pulse sequence

is obtained as ½�=2�3�z½�=2�1�xU12½�=2�1xU13½�=2�1�x �
½�=2�1�z. Here, pulses are always applied from right to left.

The next step is extraction of quantum information jc i
from the ancilla qubits. As we have seen, this can be
achieved by applying two CNOT gates and one Hadamard
gate (Figs. 1 and 3). The CNOT23 gate in NMR is realized by

the following pulse sequence [21]: ½�=2�2�y½�=2�2x �
½�=2�2y½�=2�3�yU23½�=2�3y½�=2�3x. Finally, we need to do

measurements to confirm our result. All the qubits are
directly observed at the end of the computation and no
measuring pulse is required. The missing information
about jc i is actually found in the state of the third qubit.
This requires taking the trace over the first and the second
qubits. One of the ways of taking this trace is to decouple
the first and the second qubits while observing the third
qubit [22]. However, this leads to excessive sample heating
[22]. We have therefore performed the trace numerically
by measuring all the three qubits and appropriately adding
the signal intensities [23].
If we write the full density matrix of the output state

j�outi (with the states ordered as 000, 001, 010, 011, 100,
101, 110, 111), then we will see that this contains two
single quantum terms of amplitude ��� on the third qubit
[�12, �78, and complex conjugate (CC)] which are directly
observable. Since both the single quantum coherences of
the third spin are represented by ���, they are in phase
with each other. We note that no single quantum coherence
of spins 1 and 2 are present as they are in the Bell state.
There are two double quantum terms of amplitude �2

and �2 (�17 and �28 and CC) and one triple quantum
term of amplitude��� (�18 and CC) which are not directly
observable. They have been observed (for tomography)
by converting them to observable single quantum
term [24].
The results are summarized in Figs. 2 and 4. We have

measured a total of 325 input states arranged on a 13� 25
rectangular grid of �ð0 ! �Þ and�ð0 ! 2�Þ values with a

FIG. 3 (color online). NMR pulse sequence for the implemen-
tation of the no-hiding theorem. The filled and the empty boxes,
respectively, represent �=2 and � pulses while the gray boxes
represent pulses with flip angles on the top. The phase of a pulse
is given on top of the pulse for �=2 and � pulses and are
subscripts of angles for other flip angle pulses. Gz is the
z-gradient pulse used to destroy all unwanted transverse mag-
netization. For each (�;�) pair three identical experiments are
performed to observe each qubit independently.

FIG. 4 (color online). Summarized experimental results for the no-hiding theorem using the state randomization. The integrals of the
real part of the NMR signal from spins 1H, 19F, and 13C are shown as mesh and contour plots as a function of � and �. The plots show
the expected sine and cosine behavior. (a) Input state jc i1j00i23. The information about � and� is encoded in the first spin, and second
and third spins are in j00i state. (b) Quantum information has been transferred from the first qubit to the third qubit.
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spacing of 150. The experimental spectra of the input and
output states for � ¼ �=2, � ¼ 0 are, respectively, given
in Figs. 2(b) and 2(c). Similarly, for � ¼ � ¼ �=2 these
are, respectively, given in Figs. 2(d) and 2(e). The receiver
phase is set such that we get positive absorption lines for
the input state � ¼ � ¼ �=2. For each input state we have
separately measured the total NMR signal (integration of
the entire multiplet) observed from all the spins 1, 2, and 3,
and their real components are plotted in Fig. 4. Figure 4(a)
shows the input state jc i1j00i23 and Fig. 4(b) shows the
output state j�þi12jc i3. The experimental results (Fig. 4)
clearly show the modulation of the expected lines, thus
showing the coherent quantum oscillations of the original
qubit. This ensures that quantum information which has
disappeared from the first qubit actually resides in the third
qubit in accordance with the no-hiding theorem.

Additionally, we have reconstructed the density matrices
of the output state for several values of � and� by quantum
state tomography [24]. The density matrix of the output
state for � ¼ � ¼ �=2 has been plotted (figure not
shown). The experimental state tomography confirms the
theoretical output state as desired. The fidelity of the
measurement has been evaluated for several values of �
and � using the parameters ‘‘average absolute deviation
h�Xi’’ and the ‘‘maximum absolute deviation �Xmax’’ as
defined by h�Xi ¼ 1

N2

P
N
i;j¼1 jxTi;j � xEi;jj, and �Xmax ¼

maxjxTi;j � xEi;jj 8 i; j 2 f1; Ng, where xTi;j, xEi;j are the

theoretical and the experimental elements [18]. The aver-
age absolute deviation (for three � and� values) h�Xi was
found to be �2% and the maximum absolute deviation
�Xmax was found to be �5%.

In our experiment the reduced density matrices of the
first two qubits of the output states (j�þi of Fig. 1) have
also been tomographed to observe the fidelity of the Bell
states in the first two qubits at the end of the measurement.
Figure 5 contains the Bell state j�þi12 for the input state
with parameters (a) � ¼ � ¼ �=2 and (b) � ¼ �=2,
� ¼ 0. Figure 5 confirms that the first two qubits remain
in the Bell state irrespective of the changes in (�;�), and
the original information about (�;�) has been transferred
to the third qubit. The average absolute deviation h�Xiwas

found to be �5% and the maximum absolute deviation
�Xmax was found to be �7%. The experimental errors can
originate from rf inhomogeneities, imperfect calibration of
rf pulses, and decoherence. However, in the present experi-
ment the decoherence errors are likely to be small, since
the total experimental time (Fig. 3) is�30 msec while the
shortest T2 (of

19F) of the sample is 700 msec.
To conclude, we have performed a proof-of-principle

demonstration of the no-hiding theorem and addressed the
question of missing information on a 3-qubit NMR quan-
tum information processor. Using the state randomization
as a prime example of the bleaching process, we have
found that the original quantum information which is
missing from the first qubit indeed can be recovered from
the ancilla qubits. No information is found to be hidden in
the bipartite correlations between the original qubit and
the ancilla qubits. To the best of our knowledge, this is the
first experimental verification of a fundamental theorem
of quantum mechanics.
We thank P. Rungta and S. L. Braunstein for useful

discussions.
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