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Research Summary:

A subset of an abelian group is said to be sum-free if the sum of any pair of elements
of this subset lies in the complement of this subset. In the study of sum-free subsets
of finite abelian groups, it turns out to be convenient to classify the groups according
to the residue classes of the primes dividing their orders modulo 3. A finite abelian
group is called type III when all the divisors of the order of G are congruent to 1
modulo 3. In earlier work with R. Balasubramanian we had obtained a classification
theorem for largest sum-free subsets of type III. Using this in a work with D.S.
Ramana we had obtained a formula for the number of orbits of L, the set of all
largest sum-free subsets of G, when G is of type III.

In a joint work in preparation with R. Balasubramanian and D.S. Ramana titled
Sum-free Subsets of Finite Abelian groups of Type III we describe the work mentioned
above and give a further application of the classification theorem. More precisely, for
a finite abelian group H let S(k, l, H) denote the set {B ⊂ H : |B| = k, |B + B| =
l}, where B + B is the set of sums {x + y|(x, y) ∈ B × B}. The aforementioned
classification theorem enables us to obtain a relation between the cardinality of the
set SF (G), where SF (G) is the set of all sum-free subsets ofG, and that of S(k, l, H),
where H is a supplement of a copy of Z/mZ in G with m being the exponent of
G. These results are obtained by refining the methods developed by Ben Green and
Imre Ruzsa (Israel J. Math., Vol. 147, 2005) for the study of sum-free subsets in
finite abelian groups.

When G is the additive group of a finite dimensional vector space over a finite
field, we improve the estimate for S(k, l, G) provided by Ben Green (Combinatorica,
Vol. 25, 2005). This, together with the results mentioned above, then allows us to
obtain a substantial improvement for the upper bound of the cardinality of SF (G),
when G = (Z/pZ)r with p being a prime congruent to 1 modulo 3. The work in
preparation mentioned above ends with an account of this improvement.

A finite subset of an abelian group is said to be incomplete if there is an element in
G which can not be written as a sum of distinct elements from G and is zero-free
if the identity element of G is such an element. In a preprint authored together
with Jean-Marc Deshouillers titled Large zero-free and incomplete subsets of Z/pZ,
we study the structure of zero-free and incomplete subsets of Z/pZ the cardinality
of which is close to largest possible, when p is sufficiently large a prime. In an
earlier work, recorded in the same preprint, we had determined the cardinality of
the largest zero-free subset of Z/pZ, when p is sufficiently large a prime.

An important requirement in the context of inequalities of the large sieve type is to
obtain estimates for the sum
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real numbers, I is a finite set, {ui}i∈I are complex numbers and {yi}i∈I is a sparse
subsequence of the integers.

Basic examples of sparse sequences of integers are provided the sequence of values of
polynomials of degree ≥ 2 with integer coefficients. In a recent note, Liangyi Zhao
(Monatschefte fur Mathematik, to appear in 2007) obtained, by an application of
the double large sieve inequality of Bombieri and Iwaniec, a non-trivial inequality
of the large sieve type when {yi}i∈I is the sequence of values of polynomials of
degree 2 with integer coefficients. Zhao also shows that his estimate is essentially
the best possible, except for the dependence of this estimate on the coefficients of
the polynomial and the initial point of the interval I.

In a preprint authored together with D.S. Ramana titled The Large Sieve Inequality
for Quadratic Polynomial Amplitudes, we combine Zhao’s method with an interpo-
lation argument due to Heath-Brown, to show that a modest improvement of Zhao’s
inequality is still possible in respect of its dependence on the coefficients of the poly-
nomial and the initial point of I. In a work in preparation titled Baier’s variant
of the Large Sieve Inequality for Quadratic Amplitudes we show that a variant of
Zhao’s inequality due to S. Baier may also be refined.
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Conference/Workshops Attended:

1. The First Indo-U.K. conference in Number Theory, India, September 2006.

2. International Conference on Number Theory, India, December 2006.
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3. International Conference in Number Theory and Cryptography, India, Febru-
ary 2007.
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Visits to other Institutes:

1. Institute of Mathematical Sciences, Chennai, India, September, 2006.

2. Institute of Mathematical Sciences, Chennai, India, March, 2007.

Invited Lectures/Seminars:

1. Large zero-free subsets of Z/pZ , First Indo-U.K. conference, Institute of Math-
ematical Sciences, Chennai, September, 2006.

Other Activities:

1. I have been a referee for a paper submitted to the journal Proceedings- Math-
ematical Sciences published by Indian Academy of Sciences.
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