Feshbach Resonances I

A tale of two potentials

D. Angom

Physical Research Laboratory,
Ahmedabad–380 009

School on Physics of Cold Atoms
13 February, 2014
Plan of the lecture

Pseudopotential

Model interaction

Feshbach Resonance

Toy model

References
Pseudopotential

Model interaction

Feshbach Resonance

Toy model

References
Interatomic potential

Effects of atom-atom elastic collisions depend on the interatomic potential. Interaction potentials having bound states consist of

- repulsive inner core,
- potential well,
- long range van der Waals.

Lennard-Jones potential is a good model

\[V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right], \]

\(\epsilon \) and \(\sigma \) are depth of the well and distance at which potential is zero.
Identical particles

In identical particle scattering, dominant partial waves

- bosons: s-wave,
- fermions: p-wave.

At low energies ($k \rightarrow 0$), effective form of interaction for bosons is

$$V(r) = \frac{4\pi \hbar^2 a_s}{m} \delta(r).$$

$a_s \mapsto$ s-wave scattering length. Contributes to the self-coupling in the condensate order parameter

$$\int dr_1 \int dr_2 \psi^*(r_1) \psi^*(r_2) V(r_{12}) \psi(r_1) \psi(r_2) = \frac{4\pi \hbar^2 a_s}{m} \int dr_1 |\psi(r_1)|^4.$$
Atom-atom scattering

Wavefunction in **steady-state** scattering configuration

\[\psi(r) = e^{ikz} + f(k', k) \frac{e^{ik'r}}{r}. \]

- \(f(k', k) \) \(\leadsto \) scattering amplitude.
- Elastic scattering \(\leadsto k = k' \), so \(f(k', k) = f(k, \theta) \).
- Differential scattering Cross section \(\leadsto d\sigma = |f(k, \theta)|^2 d\Omega \).

\(\psi(r) \) should match with the **asymptotic** solution of the Schrödinger equation

\[\left[-\frac{\hbar^2}{m} \nabla^2 + V(r) \right] \psi(r) = E \psi(r), \]

where \(V(r) \) is the inter-atomic potential.
Phase shift

Radial Schrödinger equation for two interacting atoms

\[
-\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - \frac{mV(r)}{\hbar^2} + k^2 \right] u_l(k, r) = 0.
\]

Asymptotic \((r \to \infty)\) solution is

\[
u_l(k, r) = \frac{1}{k} \sin \left(kr - \frac{l\pi}{2} \right) \to \frac{1}{k} \sin \left(kr - \frac{l\pi}{2} + \delta_l \right).
\]

Phase shift \(\delta_l\) carries all the information about the scattering potential \(V(r)\). Can we get the correct \(\delta_l\) with a simple substitution?

\[V(r) \to a\delta(r)\]

\(a\) is related to the scattering length.
Scattering length

For elastic scattering, the scattering amplitude is

\[f(k, \theta) = \sum_l f_l(k) P_l(\cos \theta). \]

After matching the solutions in the asymptotic region

\[f_l(k) = \frac{2l + 1}{2ik} \left[e^{2i\delta_l(k)} - 1 \right]. \]

s-wave \((l = 0)\) scattering length is

\[a_s = -\lim_{k \to 0} \frac{\delta_0(k)}{k}. \]

Fermi pseudopotential for \(k \to 0\) bosonic atom interactions is

\[V(r) = \frac{2\pi\hbar^2}{m} a_s \delta(r). \]

E. Fermi, Ricerca Scientifica 7, 13 (1936)
Pseudopotential

Model interaction

Feshbach Resonance

Toy model

References
Attractive or repulsive

Depending on the form of interatomic potential, $V(r)$, scattering length a_s can be

- Always repulsive \Rightarrow repulsive $V(r)$.
- Repulsive or attractive \Rightarrow when $v(r)$ has an attractive part.

The latter is required for Feshbach resonance.
Model potential: attractive

Consider the scattering of a beam of particles from the attractive potential

\[V(r) = \begin{cases} -V_0 & \text{for } r \leq a, \\ 0 & \text{for } r > a, \end{cases} \]

For s-partial wave, the Schrödinger equation in the two regions are

\[\frac{d^2 u_1}{dr^2} + k_1 u_1 = 0, \quad \text{with} \quad k_1 = \frac{2m}{\hbar^2} \sqrt{E + V_0}, \]
\[\frac{d^2 u_2}{dr^2} + ku_2 = 0, \quad \text{with} \quad k = \frac{2m}{\hbar^2} \sqrt{E}. \]

Solutions are \(u_1 = A \sin(k_1 r) \) and \(u_2 = B \sin(kr + \delta_0) \). From the boundary conditions \(u_1(a) = u_2(a) \) and \(u_1'(a) = u_2'(a) \), we get

\[k_1 \cot(k_1 a) = k \cot(ka + \delta_0). \]
Model potential: Phase shift

The phase shift δ_0 embodies the effect of the potential. Rewrite

$$\cot(ka + \delta_0) = \frac{k_1 \cot(k_1 a)}{k}.$$

In the low energy limit $k \to 0$, we have

- RHS $\implies k_1 \cot(k_1 a)/k \to \infty$
- LHS $\implies \sin(ka + \delta_0) \to 0$, so $\sin(ka + \delta_0) \approx ka + \delta_0$.

Since $ka \ll 1$, this implies that $\delta_0 \ll 1$ and

$$k_1 \cot(k_1 a) \approx \frac{k}{ka + \delta_0}.$$

This can be rewritten as

$$\delta_0 = ka \left[\frac{\tan(k_1 a)}{k_1 a} - 1 \right].$$
Model potential: Scattering length

From the definition of s-wave scattering length

$$a_s = \lim_{k \to 0} \frac{-\delta_0}{k} \rightarrow a_s = a \left[1 - \frac{\tan(k_1 a)}{k_1 a} \right].$$

From definition when $k \to 0$, we have $k_1 = 2m \sqrt{V_0/\hbar^2}$, so

$$a_s = a \left[1 - \frac{\hbar^2 \tan(2ma \sqrt{V_0/\hbar^2})}{2ma \sqrt{V_0}} \right].$$

There are s-wave resonances, and these happen when V_0 is such that $2ma \sqrt{V_0/\hbar^2} = (2n + 1)\pi/2$. Each correspond to a bound state appearance: shape resonance.
Model potential: repulsive

Consider the scattering of a beam of particles from the attractive potential

\[V(r) = \begin{cases} V_0 & \text{for } r \leq a, \\ 0 & \text{for } r > a, \end{cases} \]

For \(s \)-partial wave, the solution in the two regions are

- \(V_0 < 0 \) case
 - \(u_1 = A \sin(k_1 r) \)
 - \(u_2 = B \sin(kr + \delta_0) \)

- \(V_0 > 0 \) case
 - \(u_1 = A \sinh(k'_1 r) \)
 - \(u_2 = B \sin(kr + \delta_0) \)

Here, \(k_1 = 2m\sqrt{E + V_0/\hbar^2} \) and \(ik'_1 = 2m\sqrt{E - V_0/\hbar^2} \) with \(E < V_0 \). Boundary conditions \(u_1(a) = u_2(a) \) and \(u'_1(a) = u'_2(a) \) imply

\[k'_1 \coth(k'_1 a) = k \cot(ka + \delta_0). \]
Model potential: scattering length

In the limit $k \to 0$, the phase shift is

$$\delta_0 = ka \left[\frac{\tanh(k'_1 a)}{k'_1 a} - 1 \right],$$

this implies scattering length

$$a_s = \lim_{k \to 0} \frac{-\delta_0}{k} \to a_s = a \left[1 - \frac{\tanh(k'_1 a)}{k'_1 a} \right] \leq a.$$

From definition when $k \to 0$, we have $ik'_1 = 2m\sqrt{-V_0/\hbar^2}$, so

$$a_s = a \left[1 - \frac{\hbar^2 \tanh(2ma\sqrt{V_0}/\hbar^2)}{2ma\sqrt{V_0}} \right].$$
Model potential: cross section

Recall that scattering amplitude is

\[f(k, \theta) = \sum_{l} \frac{2l + 1}{2ik} \left[e^{2i\delta_l(k)} - 1 \right] P_l(\cos \theta). \]

When \(T \to 0, k \to 0 \) and for bosons only \(l = 0 \) contributes

\[f(k, \theta) \equiv f(\theta) = \frac{1}{k} e^{i\delta_0} \sin(\delta_0) \approx \frac{1}{k} e^{i\delta_0} \delta_0. \]

Cross section is

\[\sigma = 2\pi \int_{0}^{2\pi} |f(\theta)|^2 \sin \theta d\theta = 4\pi a^2 \left[\frac{\tanh(k'_1 a)}{k'_1 a} - 1 \right]^2. \]

As \(ik'_1 = 2m\sqrt{E - V_0/\hbar^2}, V_0 \to \infty \) implies \(k'_1 \to \infty \). Scattering potential is equivalent to hard sphere

\[\sigma = 4\pi a^2. \]
Key point

Question: Is it possible to tune or control interatomic interaction?

Answer
Considering the Fermi pseudopotential form of a potential

\[V(r) = \frac{2\pi \hbar^2}{m} a_s \delta(r), \]

Near a resonance, it is possible to tune \(V(r) \) by adjusting the appearance of a bound state by varying \(V_0 \).

How to reallyyy to do it?
Basic requirement

It is should be possible to manipulate position of a bound state.

In atoms it is not trivial to manipulate the position of the last bound state.

Prescription:

- Consider two manifolds corresponding to two different hyperfine states.
- Control the resonance condition through an open-close channels.
- Use external field to select the scattering length.
Molecular Hamiltonian

Electronic Hamiltonian of H₂, only electrostatic interactions

\[
H_M = -\left(\nabla^2 + \frac{1}{r_{A1}}\right) - \left(\nabla^2 + \frac{1}{r_{B2}}\right) - \frac{1}{r_{A2}} - \frac{1}{r_{B1}} + \frac{1}{r_{12}} + \frac{1}{R},
\]

\[
= H_{H}(1) + H_{H}(2) - \frac{1}{r_{A2}} - \frac{1}{r_{B1}} + \frac{1}{r_{12}} + \frac{1}{R}.
\]

Large distances \(R \rightarrow \infty \)

\[
H_M \simeq H_{H}(1) + H_{H}(2) = \sum_i H_{H}(i).
\]

Molecular state and interatomic potential \(V(R) \) are functions of atomic states.
Molecular state

Hund-Mulliken or molecular orbital method, solve

\[H_{H}(i)\Phi_{a} = E_{A}\Phi_{a}. \]

Eigenstates of \(H_{M} \) \(\rightarrow \) antisymmetrized direct products of \(\Phi_{a} \) and spin components,

\[\Phi_{A}(1, 2) = \Phi_{g}(1)\Phi_{g}(2)\chi_{0,0}(1, 2) \]
\[\Phi_{B}(1, 2) = \Phi_{u}(1)\Phi_{u}(2)\chi_{0,0}(1, 2). \]

Molecular states \(\rightarrow \) linear combinations

\[\Phi_{T} = \Phi_{A}(1, 2) + \lambda\Phi_{B}(1, 2). \]

\(\lambda \) Rayleigh-Ritz variational parameter. Interatomic potential depend on the molecular states and can be either attractive or repulsive.
Hyperfine interaction and external field

Other interaction Hamiltonians which may contribute are:

- **Hyperfine interaction** \(H_{hf} = \frac{a_{hf}}{\hbar^2} \mathbf{l} \cdot \mathbf{S} \)

- **External magnetic field** \(\mathbf{B} \) \(\mu_e \cdot \mathbf{B} - \mu_p \cdot \mathbf{B} \)

\(\mu_e \) and \(\mu_p \) are the magnetic moment of electron and proton, respectively.

Total atomic Hamiltonian is

\[
H_T = - \left(\nabla^2 + \frac{1}{r} \right) + \frac{a_{hf}}{\hbar^2} \mathbf{l} \cdot \mathbf{S} + \mu_e \cdot \mathbf{B} - \mu_p \cdot \mathbf{B}.
\]
Molecular Hamiltonian

Molecular Hamiltonian, without the hyperfine interaction, in presence of \mathbf{B} is

$$H_M = \sum_i \left[- \left(\nabla_i^2 + \frac{1}{r_i} \right) + \left(\mu_{ei} - \mu_{pi} \right) \cdot \mathbf{B} \right] + V_M(r).$$

Here, $V_M(r)$ is the interatomic potential, which depends on the electronic states of the atoms. For the alkali atoms, it is either

- **singlet** ($S = 0$) \leftrightarrow electronic spins of the two atoms are opposite.
- **triplet** ($S = 1$) \leftrightarrow electronic spins of the two atoms are parallel.

Corresponding potential are denoted by V_S and V_T, respectively.
<table>
<thead>
<tr>
<th>Pseudopotential</th>
<th>Model interaction</th>
<th>Feshbach Resonance</th>
<th>Toy model</th>
<th>References</th>
</tr>
</thead>
</table>

Pseudopotential

Model interaction

Feshbach Resonance

Toy model

References
Toy potential

Consider the interatomic toy potential for the two internal states as

\[V_{T,S}(r) = \begin{cases}
-V_{T,S} & \text{if } r < R, \\
0 & \text{if } r \geq R,
\end{cases} \]

where

- Potential depth \(V_{T,S} > 0 \) and singlet states are lower in energy so \(V_S > V_T \).
- Bound state \(\Rightarrow \) assume \(V_S \) is deep enough to accommodate exactly one bound state.

Schrödinger equation of the two states are

\[
\begin{align*}
\left[-\nabla^2 + V_T(r) + \mu_T \cdot B\right] \psi_T(r) &= E_T \psi_T(r), \\
\left[-\nabla^2 + V_S(r) + \mu_S \cdot B\right] \psi_S(r) &= E_T \psi_S(r),
\end{align*}
\]
Toy interaction

With energy shift of $\mu_T \cdot B$, the Schrödinger equation is

$$\begin{pmatrix} -\nabla^2 + V_T(r) - E & 0 \\ 0 & -\nabla^2 + V_S(r) + \Delta \mu \cdot B \end{pmatrix} \begin{pmatrix} \psi_T(r) \\ \psi_S(r) \end{pmatrix} = 0.$$

Toy interaction from the electron-nucleus magnetic interaction

$$H_{\text{int}} = \begin{pmatrix} 0 & \nu_{hf} \\ \nu_{hf} & 0 \end{pmatrix},$$

such that, $0 < \nu_{hf} \ll V_T, V_S, \Delta \mu \cdot B$. The states, $\psi_T(r)$ and $\psi_S(r)$ are not the eigenstates of total Hamiltonian

$$\begin{pmatrix} -\nabla^2 + V_T(r) - E & \nu_{hf} \\ \nu_{hf} & -\nabla^2 + V_S(r) + \Delta \mu \cdot B \end{pmatrix}.$$
Toy scattering states: \(r > R \)

When \(r > R \), interatomic potential, \(V_T \) and \(V_S \), are zero. Scattering states are eigenstates of

\[
H^> = \begin{pmatrix} 0 & \nu_{hf} \\ \nu_{hf} & \Delta \mu \cdot B \end{pmatrix},
\]

defined in the basis \(\{ \psi_T, \psi_S \} \). Diagonalize \(H^> \) with transformation

\[
Q(\theta^>) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \rightarrow QH^>Q^{-1} = \begin{pmatrix} \varepsilon_+ > & 0 \\ 0 & \varepsilon_- > \end{pmatrix},
\]

where \(\tan \theta^> = 2\nu_{hf}/\Delta \mu \cdot B \) and

\[
\varepsilon^\pm_+ = \frac{1}{2} \left[\Delta \mu \cdot B \pm \sqrt{(\Delta \mu \cdot B)^2 + (2\nu_{hf})^2} \right],
\]

Eigenvalue equations are

\[
H^>| \uparrow\uparrow > = \varepsilon^- _+ | \uparrow\uparrow >, \text{ and } H^>| \downarrow\downarrow > = \varepsilon^+_+ | \downarrow\downarrow >.
\]
Toy channels

Since $v_{hf} \ll \Delta \mu \cdot B$, from

$$\varepsilon_{\pm} = \frac{1}{2} \left[\Delta \mu \cdot B \pm \sqrt{(\Delta \mu \cdot B)^2 + (2V_{hf})^2} \right],$$

we get $\varepsilon_+ \approx \Delta \mu \cdot B$ and $\varepsilon_- \approx 0$.

- $r > R \implies V_T$ and V_S, are zero. So $|\uparrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$ are ideal to study atom-atom scattering.
- Channels \implies as $\varepsilon_+ > \varepsilon_-$, atom-atom interactions are predominantly in $|\uparrow\uparrow\rangle$.
- Open channel \implies from energy conservation, atoms in $|\uparrow\uparrow\rangle$ are not connected to $|\downarrow\downarrow\rangle$. These are open and closed channels, respectively.
Toy problem

Transforming the interatomic potential

\[Q \left(\begin{array}{cc} V_T(r) & 0 \\ 0 & V_S(r) \end{array} \right) Q^{-1} = \left(\begin{array}{cc} V_{↑↑}(r) & V_{↑↓}(r) \\ V_{↑↓}(r) & V_{↓↓}(r) \end{array} \right). \]

Schrödinger equation in all radial ranges is

\[\left(-\nabla^2 + V_{↑↑}(r) - E \right) \begin{pmatrix} \psi_{↑↑}(r) \\ \psi_{↓↓}(r) \end{pmatrix} = 0, \]

where, \(\delta \varepsilon = \varepsilon_+ - \varepsilon_+ \).

- Basis \(|↑↑\rangle \) and \(|↓↓\rangle \) eigenstates of Hamiltonian with hyperfine interaction.
- \(|↑↑\rangle \) and \(|↓↓\rangle \) are linear combinations of \(\psi_T(r) \) and \(\psi_S(r) \), e.g.

\[\psi_{↑↑}(r) = C_1 \psi_T(r) + C_2 \psi_S(r), \]
To calculate phase shift, the radial Schrödinger equation is solved in two regions: $r > R$, and $r < R$. Solutions are

$$\begin{pmatrix} u_{>\uparrow\uparrow}(r) \\ u_{>\downarrow\downarrow}(r) \end{pmatrix} = \begin{pmatrix} Ce^{ikr} + De^{-ikr} \\ Fe^{-\kappa r} \end{pmatrix},$$

and

$$\begin{pmatrix} u_{<\uparrow\uparrow}(r) \\ u_{<\downarrow\downarrow}(r) \end{pmatrix} = \begin{pmatrix} A(e^{ik_{\uparrow\uparrow}r} - e^{-ik_{\uparrow\uparrow}r}) \\ B(e^{ik_{\downarrow\downarrow}r} - e^{-ik_{\downarrow\downarrow}r}) \end{pmatrix} \cdot$$

where $\kappa = \sqrt{\varepsilon^<_+ - \varepsilon^>_+ - k^2}$, $k_{\uparrow\uparrow}^<_+ = \sqrt{\varepsilon^>_+ - \varepsilon^>_+ - k^2}$, and $k_{\downarrow\downarrow}^<_+ = \sqrt{\varepsilon^>_+ - \varepsilon^>_+ - k^2}$, with

$$\varepsilon^<_\pm = \frac{\Delta \mu \cdot B - V_T - V_S}{2} \pm \frac{1}{2} \sqrt{(V_S - V_T - \Delta \mu \cdot B)^2 + (2V_{hf})^2}.$$
Toy parameters

Few observations

• ε_\pm^\leq depends on B. Considering $V_{hf} \ll V_T, V_S$, we get $\varepsilon_+^\leq \approx -V_T$ and $\varepsilon_-^\leq \approx \Delta \mu \cdot B - V_S$.

• ε_\pm^\geq from previous discussions, recall

$$\varepsilon_\pm^\geq = \frac{1}{2} \left[\Delta \mu \cdot B \pm \sqrt{(\Delta \mu \cdot B)^2 + (2V_{hf})^2} \right],$$

we can write $\varepsilon_+^\geq \approx \Delta \mu \cdot B$ and $\varepsilon_-^\geq \approx 0$.

• k and κ from the above considerations

$$k_{\uparrow \uparrow}^\leq \approx \sqrt{V_S - \Delta \mu \cdot B - k^2}, \quad k_{\downarrow \downarrow}^\leq \approx \sqrt{V_T - k^2}$$

and

$$\kappa \approx \sqrt{\Delta \mu \cdot B - k^2}.$$

Note the dependence of the wave numbers on B.
Finally: some hand waving

To obtain phase shift, we do the following

- Match the solutions $u^<$ and $u^>$ at $r = R$.
- Transform the expression from the $\{|\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle\}$ basis to $\{\psi_T, \psi_S\}$. The later is independent of r.
- Calculate phase shift δ_0 and use the relation $a_s = \lim_{k \to 0} -\delta_0/k$ to calculate a_s.

The a_s obtained after the calculations is of the form

$$a(B) = a_{bg} \left(1 - \frac{\Delta B}{B - B_0} \right),$$

where, B_0 is the position of the Feshbach resonance.
References

- *Atom-Molecule coherence in Bose gases*,
 R. A. Duine and H. T. C. Stoof,

- *Introductory Quantum Mechanics*,

- *Bose-Einstein condensation in dilute gases*,
 C. J. Pethick and H. Smith, (2nd Ed).

- *Feshbach resonances in ultracold gases*,
 C. Chin, R. Grimm, P. Julienne and E. Tiesinga,