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Axioms of Quantum Dynamics
(1) Unitary evolution (Schrödinger):

i ddt |ψ〉 = H|ψ〉 , i ddtρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.
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Axioms of Quantum Dynamics
(1) Unitary evolution (Schrödinger):

i ddt |ψ〉 = H|ψ〉 , i ddtρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):
|ψ〉 −→ Pi|ψ〉/|Pi|ψ〉|, Pi = P †

i , PiPj = Piδij ,
∑

i Pi = I.

Discontinuous, Irreversible, Probabilistic choice of “i".
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates.
But there is no prediction for which “i" will occur in a
particular experimental run. “The measurement problem"
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Continuous, Reversible, Deterministic.
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(2) Projective measurement (von Neumann):
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i , PiPj = Piδij ,
∑

i Pi = I.

Discontinuous, Irreversible, Probabilistic choice of “i".
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates.
But there is no prediction for which “i" will occur in a
particular experimental run. “The measurement problem"

Instead, with Born rule and ensemble interpretation,
prob(i) = 〈ψ|Pi|ψ〉 = Tr(Piρ) , ρ −→

∑

i PiρPi .
Pure state evolves to mixed state. Predicted expectation
values are averages over many experimental runs.
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Quantum Measurement Terminology

ρi =

(

a c
c∗ b

)

Decoherence ρr =

(

a 0
0 b

)

Quantum
jump

ρf =

(

1 0
0 0

)

or
(

0 0
0 1

)

Collapse

The evolution steps involved in the quantum measurement process for a qubit
(ρi and ρf are pure states, while ρr is obtained from an entangled state):
(a) Decoherence deterministically entangles the system with its environment,
and drives the off-diagonal reduced density matrix components to zero.
(b) Quantum jump removes the system-apparatus entanglement, and probabilistically
converts the diagonal reduced density matrix into a measurement eigenstate.
(c) Collapse is the overall process that yields measurement eigenstates probabilistically,
and it may or may not go through decoherence.
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Terminology (contd.)
Decoherence entangles the observed system degrees of
freedom with the unobserved environmental degrees of
freedom. Sum over the unobserved degrees of freedom
yields a reduced mixed state, with the same structure as
the ensemble of statistical mechanics. It quantitatively
explains how the off-diagonal elements of ρ decay.
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Terminology (contd.)
Decoherence entangles the observed system degrees of
freedom with the unobserved environmental degrees of
freedom. Sum over the unobserved degrees of freedom
yields a reduced mixed state, with the same structure as
the ensemble of statistical mechanics. It quantitatively
explains how the off-diagonal elements of ρ decay.

von Neumann interaction is a particular instance of the
decoherence paradigm. It creates perfect entanglement
between the measured eigenstates of the system and the
pointer basis states of the apparatus.

HvN = g xS ⊗ pA : |x〉S |0〉A −→ |x〉S |x〉A
For a qubit, this is the C-not operation.

Weak Measurements and Born Rule – p. 4



Terminology (contd.)
Decoherence entangles the observed system degrees of
freedom with the unobserved environmental degrees of
freedom. Sum over the unobserved degrees of freedom
yields a reduced mixed state, with the same structure as
the ensemble of statistical mechanics. It quantitatively
explains how the off-diagonal elements of ρ decay.

von Neumann interaction is a particular instance of the
decoherence paradigm. It creates perfect entanglement
between the measured eigenstates of the system and the
pointer basis states of the apparatus.

HvN = g xS ⊗ pA : |x〉S |0〉A −→ |x〉S |x〉A
For a qubit, this is the C-not operation.

Quantum jump is probabilistic. It defines which interactions
of a system with its surroundings are measurements.
A measurement interaction is the one where the apparatus
cannot remain in a superposition of pointer states.
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Weak Measurements
Information about the measured observable is extracted
from the system at a slow rate (e.g. by weak coupling).
Stretching out of the time scale can allow one to monitor
how the system collapses to a measurement eigenstate.
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Weak Measurements
Information about the measured observable is extracted
from the system at a slow rate (e.g. by weak coupling).
Stretching out of the time scale can allow one to monitor
how the system collapses to a measurement eigenstate.

New questions:
• How is the projection replaced by a continuous evolution?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How is the ensemble to be interpreted?
• How should multipartite measurements be described?
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Weak Measurements
Information about the measured observable is extracted
from the system at a slow rate (e.g. by weak coupling).
Stretching out of the time scale can allow one to monitor
how the system collapses to a measurement eigenstate.

New questions:
• How is the projection replaced by a continuous evolution?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How is the ensemble to be interpreted?
• How should multipartite measurements be described?

The answers are important for increasing accuracy of
quantum control and feedback. Knowledge of what
happens in a particular experimental run (and not the
ensemble average) can improve efficiency and stability.

The projective measurement axiom needs to be replaced
by a different continuous stochastic dynamics. Weak Measurements and Born Rule – p. 5



Continuous Stochastic Measurement
Quantum jump can be realised as addition of noise to a
deterministic process. Such a conversion into a Langevin
equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.
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Continuous Stochastic Measurement
Quantum jump can be realised as addition of noise to a
deterministic process. Such a conversion into a Langevin
equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the
measurement eigenstates need to be fixed points of the
evolution. The noise has to vanish at the fixed points.
⇒ The determinstic part of evolution must be nonlinear.
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deterministic process. Such a conversion into a Langevin
equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the
measurement eigenstates need to be fixed points of the
evolution. The noise has to vanish at the fixed points.
⇒ The determinstic part of evolution must be nonlinear.

• Probabilities of measurement outcomes need to be
maintained during evolution. Lack of simultaneity in special
relativity must not conflict with multipartite measurements.
⇒ The Born rule has to be a constant of evolution during
measurement, when averaged over the stochastic noise.
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Continuous Stochastic Measurement
Quantum jump can be realised as addition of noise to a
deterministic process. Such a conversion into a Langevin
equation retains ensemble interpretation. But properties of
quantum measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the
measurement eigenstates need to be fixed points of the
evolution. The noise has to vanish at the fixed points.
⇒ The determinstic part of evolution must be nonlinear.

• Probabilities of measurement outcomes need to be
maintained during evolution. Lack of simultaneity in special
relativity must not conflict with multipartite measurements.
⇒ The Born rule has to be a constant of evolution during
measurement, when averaged over the stochastic noise.

Such a dynamical process exists! Gisin (1984)
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Salient Features
A precise ratio of evolution towards the measurement
eigenstates and unbiased white noise is needed to
reproduce the Born rule as a constant of evolution.

This is reminiscent of the “fluctuation-dissipation theorem" that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.
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Salient Features
A precise ratio of evolution towards the measurement
eigenstates and unbiased white noise is needed to
reproduce the Born rule as a constant of evolution.

This is reminiscent of the “fluctuation-dissipation theorem" that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between
the system and the apparatus, independent of any other
environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions
to the evolution arise from the same underlying dynamics.
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Salient Features
A precise ratio of evolution towards the measurement
eigenstates and unbiased white noise is needed to
reproduce the Born rule as a constant of evolution.

This is reminiscent of the “fluctuation-dissipation theorem" that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between
the system and the apparatus, independent of any other
environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions
to the evolution arise from the same underlying dynamics.

Technological advances allow us to monitor the quantum
evolution during weak measurements. That would help us
test the validity of the stochastic measurement process,
and then figure out what may lie beyond.
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Beyond Quantum Mechanics
Physical:
(1) Hidden variables with novel dynamics may produce
quantum mechanics as an effective theory, with extra rules
supplementing Schrödinger’s equation.
(2) Gravity can produce effects that modify quantum
dynamics at macroscopic scales.
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Beyond Quantum Mechanics
Physical:
(1) Hidden variables with novel dynamics may produce
quantum mechanics as an effective theory, with extra rules
supplementing Schrödinger’s equation.
(2) Gravity can produce effects that modify quantum
dynamics at macroscopic scales.

Philosophical:
(1) What is real (ontology) may not be the same as what is
observable (epistemology).
(2) Human beings have only limited capacity and cannot
comprehend everything in the universe.

Weak Measurements and Born Rule – p. 8



Beyond Quantum Mechanics
Physical:
(1) Hidden variables with novel dynamics may produce
quantum mechanics as an effective theory, with extra rules
supplementing Schrödinger’s equation.
(2) Gravity can produce effects that modify quantum
dynamics at macroscopic scales.

Philosophical:
(1) What is real (ontology) may not be the same as what is
observable (epistemology).
(2) Human beings have only limited capacity and cannot
comprehend everything in the universe.

Bypass:
Many worlds interpretation—each evolutionary branch is
a different world, and we only observe the measurement
outcome corresponding to the world we live in.

Uncountable proliferation of evolutionary branches is highly ungainly.
Weak Measurements and Born Rule – p. 8
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Quantum Collapse Equation
Let the projective measurement arise from a continuous
geodesic evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi(s)|ψ〉/|Qi(s)|ψ〉| , Qi(s) = (1− s)I + sPi .

Then an individual quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, T r(ρ) = 1 .
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Quantum Collapse Equation
Let the projective measurement arise from a continuous
geodesic evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi(s)|ψ〉/|Qi(s)|ψ〉| , Qi(s) = (1− s)I + sPi .

Then an individual quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, T r(ρ) = 1 .

Expansion around s = 0 gives the collapse equation:
d
dtρ = g[ρPi + Piρ− 2ρ Tr(Piρ)] .

s→ gt in terms of the system-apparatus coupling g, and the “measurement time" t.
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Quantum Collapse Equation
Let the projective measurement arise from a continuous
geodesic evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi(s)|ψ〉/|Qi(s)|ψ〉| , Qi(s) = (1− s)I + sPi .

Then an individual quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, T r(ρ) = 1 .

Expansion around s = 0 gives the collapse equation:
d
dtρ = g[ρPi + Piρ− 2ρ Tr(Piρ)] .

s→ gt in terms of the system-apparatus coupling g, and the “measurement time" t.

• This nonlinear evolution preserves pure states,
ρ2 = ρ =⇒ d

dt(ρ
2 − ρ) = ρ d

dtρ+ ( d
dtρ)ρ− d

dtρ = 0 ,
in addition to maintaining Tr(ρ) = 1.
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Quantum Collapse Equation
Let the projective measurement arise from a continuous
geodesic evolution, with parameter s ∈ [0, 1]:

|ψ〉 −→ Qi(s)|ψ〉/|Qi(s)|ψ〉| , Qi(s) = (1− s)I + sPi .

Then an individual quantum trajectory evolves as

ρ −→ (1−s)2ρ+s(1−s)(ρPi+Piρ)+s2PiρPi

(1−s)2+(2s−s2)Tr(Piρ)
, T r(ρ) = 1 .

Expansion around s = 0 gives the collapse equation:
d
dtρ = g[ρPi + Piρ− 2ρ Tr(Piρ)] .

s→ gt in terms of the system-apparatus coupling g, and the “measurement time" t.

• This nonlinear evolution preserves pure states,
ρ2 = ρ =⇒ d

dt(ρ
2 − ρ) = ρ d

dtρ+ ( d
dtρ)ρ− d

dtρ = 0 ,
in addition to maintaining Tr(ρ) = 1.

• Projective measurement is the fixed point of this equation:
d
dtρ = 0 at ρ∗ = PiρPi/Tr(Piρ) .

Convergence to fixed point makes the measurement consistent on repetition.Weak Measurements and Born Rule – p. 10



d
dtρ = g[ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi|ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.
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d
dtρ = g[ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi|ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is
linear in the projection operators, and

∑

i Pi = I. So partial
trace over the unobserved environment gives the same
equation for the reduced density matrix for the system.

Purification is a consequence of the unchanged fixed point.
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dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is
linear in the projection operators, and

∑

i Pi = I. So partial
trace over the unobserved environment gives the same
equation for the reduced density matrix for the system.

Purification is a consequence of the unchanged fixed point.

• Asymptotic convergence to the fixed point is exponential,
with ||ρ− Pi|| ∼ e−2gt, similar to the charging of a capacitor.
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d
dtρ = g[ρPi + Piρ− 2ρTr(Piρ)]

For pure states: d
dt
|ψ〉 = g(Pi − 〈ψ|Pi|ψ〉)|ψ〉, 〈ψ| d

dt
|ψ〉 = 0.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2}. The evolution is
linear in the projection operators, and

∑

i Pi = I. So partial
trace over the unobserved environment gives the same
equation for the reduced density matrix for the system.

Purification is a consequence of the unchanged fixed point.

• Asymptotic convergence to the fixed point is exponential,
with ||ρ− Pi|| ∼ e−2gt, similar to the charging of a capacitor.

• For pure states, the collapse equation is:
d
dtρ = −2gL[ρ]Pi

This structure (involving Lindblad operator) hints at an
action-reaction relation between processes of decoherence
and collapse, possibly following from a conservation law.

Interpretation: When L[ρ]Pi decoheres the apparatus pointer state Pi

(it cannot remain in superposition by definition), there is an equal and
opposite effect −L[ρ]Pi on the system state ρ leading to its collapse.
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Ensemble of Quantum Trajectories
The prefered basis {Pi} is fixed by the system-apparatus
interaction, but a separate criterion is needed to determine
which Pi will occur in a particular experimental run.

Quantum jump: The evolution trajectory is chosen at the
start of the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.
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interaction, but a separate criterion is needed to determine
which Pi will occur in a particular experimental run.

Quantum jump: The evolution trajectory is chosen at the
start of the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.

Such a choice may be justified for a "sudden impulsive
measurement", but not for a "gradual weak measurement".

For describing evolution during weak measurements, we
need a local dynamical rule governing quantum trajectories.
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Ensemble of Quantum Trajectories
The prefered basis {Pi} is fixed by the system-apparatus
interaction, but a separate criterion is needed to determine
which Pi will occur in a particular experimental run.

Quantum jump: The evolution trajectory is chosen at the
start of the measurement and remains unaltered thereafter.

The Born rule fixes the probabilities of various quantum jumps.

Such a choice may be justified for a "sudden impulsive
measurement", but not for a "gradual weak measurement".

For describing evolution during weak measurements, we
need a local dynamical rule governing quantum trajectories.

Assign time-dependent real weights wi(t) to the evolution
trajectories for Pi, with

∑

iwi = 1:
d
dtρ =

∑

iwi g[ρPi + Piρ− 2ρTr(Piρ)] .

Weak Measurements and Born Rule – p. 12



Ensemble Evolution
The trajectory averaged evolution is:

d
dt(PjρPk) = PjρPk g[wj + wk − 2

∑

iwiTr(Piρ)] .
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Ensemble Evolution
The trajectory averaged evolution is:

d
dt(PjρPk) = PjρPk g[wj + wk − 2

∑

iwiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt(PjρPk) =

1
PjρPj

d
dt(PjρPj) +

1
PkρPk

d
dt(PkρPk)

For one-dimensional projections, Pjρ(t)Pj = dj(t)Pj,

dj ≥ 0 , Pjρ(t)Pk = Pjρ(0)Pk

[

dj(t)dk(t)
dj(0)dk(0)

]1/2
.

Phases of the off-diagonal projections PjρPk do not change.
Also, off-diagonal PjρPk may not vanish asymptotically.
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Ensemble Evolution
The trajectory averaged evolution is:

d
dt(PjρPk) = PjρPk g[wj + wk − 2

∑

iwiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt(PjρPk) =

1
PjρPj

d
dt(PjρPj) +

1
PkρPk

d
dt(PkρPk)

For one-dimensional projections, Pjρ(t)Pj = dj(t)Pj,

dj ≥ 0 , Pjρ(t)Pk = Pjρ(0)Pk

[

dj(t)dk(t)
dj(0)dk(0)

]1/2
.

Phases of the off-diagonal projections PjρPk do not change.
Also, off-diagonal PjρPk may not vanish asymptotically.

The diagonal projections evolve according to:
d
dtdj = 2g dj(wj − wav) , wav ≡

∑

iwidi .

Evolution is restricted to the subspace spanned by all the
Pjρ(t = 0)Pj 6= 0. Diagonal elements with wj > wav grow;
those with wj < wav decay. Every ρ = Pi is a fixed point.

All these features are stable under small perturbations of ρ. Weak Measurements and Born Rule – p. 13



Ensemble Evolution (contd.)
Instantaneous Born rule: wj = wIB

j ≡ Tr(ρ(t)Pj)

This is a local and appealing choice for the trajectory
weights throughout the measurement process. Then

d
dt(PjρPk) = PjρPk g[w

IB
j + wIB

k − 2
∑

i(w
IB
i )2] .

Weak Measurements and Born Rule – p. 14



Ensemble Evolution (contd.)
Instantaneous Born rule: wj = wIB

j ≡ Tr(ρ(t)Pj)

This is a local and appealing choice for the trajectory
weights throughout the measurement process. Then

d
dt(PjρPk) = PjρPk g[w

IB
j + wIB

k − 2
∑

i(w
IB
i )2] .

The evolution converges towards the subspace specified
by the dominant diagonal projections of ρ(t = 0).
This deterministic behaviour disagrees with observations,
although the results are consistent under repetition.
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Ensemble Evolution (contd.)
Instantaneous Born rule: wj = wIB

j ≡ Tr(ρ(t)Pj)

This is a local and appealing choice for the trajectory
weights throughout the measurement process. Then

d
dt(PjρPk) = PjρPk g[w

IB
j + wIB

k − 2
∑

i(w
IB
i )2] .

The evolution converges towards the subspace specified
by the dominant diagonal projections of ρ(t = 0).
This deterministic behaviour disagrees with observations,
although the results are consistent under repetition.

Instead of heading towards the nearest fixed point, the
trajectories can be made to wander around and explore
other possibilities by adding noise to their dynamics.

Stochastic noise can be added to the quantum trajectory
weights wi, in a structure similar to the Langevin equation.

Size of noise has to be found, while retaining
∑

iwi = 1.
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Single Qubit Measurement
The evolution equations simplify considerably for a qubit
with |0〉 and |1〉 as the measurement eigenstates:

d
dtρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one
independent variable describes evolution of the system.
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Single Qubit Measurement
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with |0〉 and |1〉 as the measurement eigenstates:

d
dtρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one
independent variable describes evolution of the system.

Adding unbiased white noise with spectral density Sξ to the
instantaneous Born rule, the trajectory weights become:

w0 − w1 = ρ00 − ρ11 +
√

Sξ ξ .

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = δ(t− t′) .
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Single Qubit Measurement
The evolution equations simplify considerably for a qubit
with |0〉 and |1〉 as the measurement eigenstates:

d
dtρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one
independent variable describes evolution of the system.

Adding unbiased white noise with spectral density Sξ to the
instantaneous Born rule, the trajectory weights become:

w0 − w1 = ρ00 − ρ11 +
√

Sξ ξ .

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = δ(t− t′) .

This is a stochastic differential process on [0, 1]. The fixed
points at ρ00 = 0, 1 are perfectly absorbing boundaries.
A quantum trajectory would zig-zag through the interval
before ending at one of the two boundary points.
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Individual quantum evolution trajectories for the initial state ρ00 = 0.5, with measurement
eigenstates ρ00 = 0, 1, and in presence of measurement noise satisfying gSξ = 1.
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Single Qubit Measurement (contd.)
Let P (x) be the probability that the initial state with ρ00 = x
evolves to the fixed point at ρ00 = 1. Then by symmetry,

P (0) = 0, P (0.5) = 0.5, P (1) = 1 .
No noise : Sξ = 0 =⇒ P (x) = θ(x− 0.5) .

Only noise : Sξ → ∞ =⇒ P (x) = 0.5 .
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Single Qubit Measurement (contd.)
Let P (x) be the probability that the initial state with ρ00 = x
evolves to the fixed point at ρ00 = 1. Then by symmetry,

P (0) = 0, P (0.5) = 0.5, P (1) = 1 .
No noise : Sξ = 0 =⇒ P (x) = θ(x− 0.5) .

Only noise : Sξ → ∞ =⇒ P (x) = 0.5 .

It is instructive to convert the stochastic evolution equations
from the differential Stratonovich form to the Itô form that
specifies forward evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt+ 2g

√

Sξ ρ00ρ11 dW ,

〈dW (t)〉 = 0 , 〈(dW (t))2〉 = dt .
The Wiener increment can be modeled as a random walk.
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Single Qubit Measurement (contd.)
Let P (x) be the probability that the initial state with ρ00 = x
evolves to the fixed point at ρ00 = 1. Then by symmetry,

P (0) = 0, P (0.5) = 0.5, P (1) = 1 .
No noise : Sξ = 0 =⇒ P (x) = θ(x− 0.5) .

Only noise : Sξ → ∞ =⇒ P (x) = 0.5 .

It is instructive to convert the stochastic evolution equations
from the differential Stratonovich form to the Itô form that
specifies forward evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt+ 2g

√

Sξ ρ00ρ11 dW ,

〈dW (t)〉 = 0 , 〈(dW (t))2〉 = dt .
The Wiener increment can be modeled as a random walk.

The first term produces drift in the evolution, while the
second gives rise to diffusion. The evolution with no drift,
i.e. the pure Wiener process with gSξ = 1, is rather special:

〈dρ00〉 = 0 ⇔ Born rule is a constant of evolution.
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Single Qubit Measurement (contd.)
Starting at x, one moves to x+ ǫ with some probability,
moves to x− ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P (x) = α(P (x+ ǫ) + P (x− ǫ)) + (1− 2α)P (x) .
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Single Qubit Measurement (contd.)
Starting at x, one moves to x+ ǫ with some probability,
moves to x− ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P (x) = α(P (x+ ǫ) + P (x− ǫ)) + (1− 2α)P (x) .

The general solution, independent of the choice of ǫ, is that
P (x) is a linear function of x, which is the Born rule:

gSξ = 1, P (0) = 0, P (1) = 1 =⇒ P (x) = x

Specific choices of g, α, ǫ only alter the rate of evolution, and not the asymptotic outcome.
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Single Qubit Measurement (contd.)
Starting at x, one moves to x+ ǫ with some probability,
moves to x− ǫ with the same probability, and stays put
otherwise. Balancing the probabilities,

P (x) = α(P (x+ ǫ) + P (x− ǫ)) + (1− 2α)P (x) .

The general solution, independent of the choice of ǫ, is that
P (x) is a linear function of x, which is the Born rule:

gSξ = 1, P (0) = 0, P (1) = 1 =⇒ P (x) = x

Specific choices of g, α, ǫ only alter the rate of evolution, and not the asymptotic outcome.

Numerical tests were performed for different values of gSξ.
ρ00(t+τ)
ρ11(t+τ) =

ρ00(t)
ρ11(t)

e2gτw , w = 1
τ

∫ t+τ
t (w0 − w1)dt .

With gτ ≪ 1, w was generated as a Gaussian random
number with mean ρ00(t)− ρ11(t) and variance Sξ/τ .
The data clearly show the special status of gSξ = 1.
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Probability that the initial qubit state ρ00 = x evolves to the measurement eigenstate
ρ00 = 1, for different values of the measurement noise. The gSξ values label the curves.
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Evolution Dynamics
During measurement, the probability distribution p(ρ00, t)
of the quantum trajectories evolves according to the
Fokker-Planck equation (with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.
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During measurement, the probability distribution p(ρ00, t)
of the quantum trajectories evolves according to the
Fokker-Planck equation (with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.

Its exact solution corresponding to p(ρ00, 0) = δ(x) has two
non-interfering peaks with areas x and 1− x, monotonically
travelling to the boundaries ρ00 = 1 and 0 respectively.
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Evolution Dynamics
During measurement, the probability distribution p(ρ00, t)
of the quantum trajectories evolves according to the
Fokker-Planck equation (with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.

Its exact solution corresponding to p(ρ00, 0) = δ(x) has two
non-interfering peaks with areas x and 1− x, monotonically
travelling to the boundaries ρ00 = 1 and 0 respectively.

Let tanh(z) = 2ρ00 − 1 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞).
Then the two peaks are diffusing Gaussians, with their
centres at tanh−1(2x− 1)± gt and variance gt.

They reach the boundaries only asymptotically.
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Evolution Dynamics
During measurement, the probability distribution p(ρ00, t)
of the quantum trajectories evolves according to the
Fokker-Planck equation (with gSξ = 1):

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

.

Its exact solution corresponding to p(ρ00, 0) = δ(x) has two
non-interfering peaks with areas x and 1− x, monotonically
travelling to the boundaries ρ00 = 1 and 0 respectively.

Let tanh(z) = 2ρ00 − 1 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞).
Then the two peaks are diffusing Gaussians, with their
centres at tanh−1(2x− 1)± gt and variance gt.

They reach the boundaries only asymptotically.

The formal “measurement time" can be made finite by a
(non-unique) change of variables, e.g. s = tanh(gt) ∈ [0, 1].

(1− s2) d
dsρ00 = 2(ρ00 − ρ11 +

√
1− s2ξ)ρ00ρ11 .

The time-dependent coupling g → 1/(1− s2) gives the same equation. Weak Measurements and Born Rule – p. 20



Larger Quantum Systems
Preceding results are valid for binary orthogonal
measurements on any quantum system, with the
replacement ρii → Tr(ρPi).
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Projection operators for nonbinary orthogonal
measurements can be expressed as a product of mutually
commnuting binary projection operators. Then each binary
projection would have its own stochastic noise.
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Larger Quantum Systems
Preceding results are valid for binary orthogonal
measurements on any quantum system, with the
replacement ρii → Tr(ρPi).

Projection operators for nonbinary orthogonal
measurements can be expressed as a product of mutually
commnuting binary projection operators. Then each binary
projection would have its own stochastic noise.

Another option for n-dimensional quantum measurements
is to use the orthonormal set of weights in the convention of
SU(n) Cartan generators (k = 1, . . . , n− 1):

∑k−1
i=0 wi − kwk =

∑k−1
i=0 ρii − kρkk +

√

k(k+1)Sξ

2 ξk ,

where ξk are independent white noise terms.
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Larger Quantum Systems
Preceding results are valid for binary orthogonal
measurements on any quantum system, with the
replacement ρii → Tr(ρPi).

Projection operators for nonbinary orthogonal
measurements can be expressed as a product of mutually
commnuting binary projection operators. Then each binary
projection would have its own stochastic noise.

Another option for n-dimensional quantum measurements
is to use the orthonormal set of weights in the convention of
SU(n) Cartan generators (k = 1, . . . , n− 1):

∑k−1
i=0 wi − kwk =

∑k−1
i=0 ρii − kρkk +

√

k(k+1)Sξ

2 ξk ,

where ξk are independent white noise terms.

The condition for the evolution to be a pure Wiener process,
and hence satisfy the Born rule, remains gSξ = 1.

Weak Measurements and Born Rule – p. 21



Notable Features
• Individual quantum trajectories evolve unitarily, even in
presence of noise. Mixed states arise when multiple
trajectories with different noise histories are combined.
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• The trajectory weights wi are real, but are not restricted to
[0, 1]. They cannot be considered probabilities.
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• Each noise history wi(t) can be associated with an
individual experimental run, and can be also be viewed as
one of the many worlds in the ensemble.
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• Individual quantum trajectories evolve unitarily, even in
presence of noise. Mixed states arise when multiple
trajectories with different noise histories are combined.

• The trajectory weights wi are real, but are not restricted to
[0, 1]. They cannot be considered probabilities.

• Each noise history wi(t) can be associated with an
individual experimental run, and can be also be viewed as
one of the many worlds in the ensemble.

• When the Born rule is satisfied, attraction to measurement
eigenstates scales as g while the noise scales as

√
g. This

relation is local between the system and the apparatus.
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Notable Features
• Individual quantum trajectories evolve unitarily, even in
presence of noise. Mixed states arise when multiple
trajectories with different noise histories are combined.

• The trajectory weights wi are real, but are not restricted to
[0, 1]. They cannot be considered probabilities.

• Each noise history wi(t) can be associated with an
individual experimental run, and can be also be viewed as
one of the many worlds in the ensemble.

• When the Born rule is satisfied, attraction to measurement
eigenstates scales as g while the noise scales as

√
g. This

relation is local between the system and the apparatus.

• Measurement outcomes are independent of ρi 6=j, and so
are unaffected by decoherence. Noise can be added to the
phases of ρi 6=j without spoiling the described evolution of
ρii. The Born rule imposes no constraint on that noise.
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Summary
The quadratically nonlinear quantum Langevin equation for
state collapse supplements the Schrödinger evolution:

d
dtρ =

∑

iwi g[ρPi + Piρ− 2ρTr(ρPi)] .

The weights wi contain attraction towards measurement
eigenstates and stochastic white noise. Fixing their ratio,
i.e. gSξ = 1, makes the Born rule a constant of evolution.
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Summary
The quadratically nonlinear quantum Langevin equation for
state collapse supplements the Schrödinger evolution:

d
dtρ =

∑

iwi g[ρPi + Piρ− 2ρTr(ρPi)] .

The weights wi contain attraction towards measurement
eigenstates and stochastic white noise. Fixing their ratio,
i.e. gSξ = 1, makes the Born rule a constant of evolution.

The precise relation between the magnitude of the noise
and the system-apparatus coupling governing the collapse
time scale, points to a common origin for the two.
The dynamics is closed and local; different interacting
system-apparatus pairs can have different couplings.

It is not a universal background dynamics.
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Summary
The quadratically nonlinear quantum Langevin equation for
state collapse supplements the Schrödinger evolution:

d
dtρ =

∑

iwi g[ρPi + Piρ− 2ρTr(ρPi)] .

The weights wi contain attraction towards measurement
eigenstates and stochastic white noise. Fixing their ratio,
i.e. gSξ = 1, makes the Born rule a constant of evolution.

The precise relation between the magnitude of the noise
and the system-apparatus coupling governing the collapse
time scale, points to a common origin for the two.
The dynamics is closed and local; different interacting
system-apparatus pairs can have different couplings.

It is not a universal background dynamics.

It is a challenge to unify the two dynamical contributions in a
fundamental underlying theory of quantum measurements.
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Open Questions
• What underlying dynamics can simultaneously produce
attraction towards measurement eigenstates (geodesic
evolution) and irreducible noise (stochastic fluctuations)?

These features appear in variational principles and path integral framework.

Non-abelian gauge theories and general relativity also have quadratic nonlinearities.
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Open Questions
• What underlying dynamics can simultaneously produce
attraction towards measurement eigenstates (geodesic
evolution) and irreducible noise (stochastic fluctuations)?

These features appear in variational principles and path integral framework.

Non-abelian gauge theories and general relativity also have quadratic nonlinearities.

• Can the measurement dynamics be converted/extended
to the quantum field theory language, e.g. exchange of
quanta between the system and the apparatus?

• Are there generalisations that would allow the noise to be
bypassed or modified under some unusual conditions?

• Incomplete measurements can test the dynamics of
quantum state collapse. Experiments would require
determination of the density matrix evolution, using weak
measurements and with highly suppressed decoherence.

Such tests are becoming technologically feasible! Superconducting qubit
experiments need to be extended to larger quantum systems.
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