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Heisenberg model systems

), PHASETRANSITION IN A 2D BOSE GAS

Ata certain point, a superfluid Bose-Einstein condensate (left) --
\ in which the atoms are, in effect, spread out freely across
the whole lattice -- undergoes a phase transition to a
\ state called a“Mott insulator” (below) in which the . .
\ »  atomsare localized at particular lattice sites. H amlltOnlan: H — H (t U)
This dynamics of this transition, which is ’
critically important to using condensates as
models of condensed-matter physics, has
not been understood for an inhomogenous
systemsuchas A *\ trapped ultracold gases.

t = tunneling term

the relationship among the variables that

The PFC-supported researchers identified v U o Onfs ite interaction term

determine the onset of the transition: the
fraction of the atoms that are in the Bose-

Einstein condensate state; the depth of the
energy wells in the optical lattice; and the
atomic density. The findings are in excellent
agreement with recent theoretical calculations

performed by another group. 1 < <
http://pfculd.edu/ Suppress tunneling =2 ¢t <<U

Effective Hamiltonian: p7 = g 2 §i§j J=J(tU)
i)



Road from 1D to 2D
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» The quantum properties of a ladder do not extrapolate
trivially from the 1D chain to the 2D isotropic lattice



Road from 1D to 2D: Even - odd dichotomy

The quantum properties of a ladder do not extrapolate trivially
from the 1D chain to the 2D isotropic lattice
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FIG. | Spin gaps as a function of system size L for open
/

O SYS
n, coupled chain Heisenberg systems.

S. R. White et. al. PRL, 73, 886

e SDin gap

e (Odd-legged ladders are gapless
(power law decay of classical correlation
function)

* Even-legged ladders are gapped
(exponential decay of classical correlation
function)



Generalized geometric measure

A measure for genuine multiparty entanglement



Generalized geometric measure

Consider a four party system
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Multiparty pure quantum state is genuinely multiparty entangled if it is
entangled across all possible bipartitions




Generalized geometric measure

| W2 - Quantum state of N-party

| @) - Pure quantum states that are not genuinely entangled

£=1- |§<I>WN>\2,

Task is to minimize the distance over all pure quantum
states which are not genuinely multiparty entangled

A. Sen(De) and U. Sen, PRA, 2010



Multiparty entanglement in ladders
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Multiparty entanglement in ladders
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» Even-odd dichotomy of genuine multiparty entanglement in
Heisenberg ladders



A foursite plaquette: two legs and two rungs
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H=J (0408+0c00)+J (080ct040D)

S. Nascimbene, et. al. PRL, 108,
205301 (2012)




Two legs multi rungs

Ground state of State constructed by all
Heisenberg lattice, W possible dimer coverings, P
2 legoed ;
R A@ @B *AQB
DY ¥C " pg=mC
M=2
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F(Y,®) tend to converge towards 0.9 as M increases



Multi legs multi rungs

Ground state of State constructed by all
Heisenberg lattice possible dimer coverings

A@ B AME—EB
< > @ ¥ e
D® ¥C " pa=m>C




Multi legs multi rungs

Ground state of State constructed by all
Heisenberg lattice possible dimer coverings
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Multi legs multi rungs

Ground state of State constructed by all
Heisenberg lattice possible dimer coverings
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RVB state —» |'l/>=zhk(ia,ib)|(01,b1),(az,bz).--(a.«',bw))k;

m —> N=8; 5 coverings, 80 terms
m —> N=10; 8 coverings, 256 terms

Extensive growth with increasing system size
How to handle?



m ) 4o =

31, 2)2),,



1 v o

4) 3)), 2)2)..

For arbitrary L - legged with M+2 rungs

l"'M + 21‘C> — "M + 1!£>|1>m Lo T .;'M,;C)I?)m L1.m4-2

|

Recursion relation for the state



Reduced density matrix

Reduced density matrix -
Trace out all parties except M+1% and M+2% rungs

Recursion relation

Pms1,m+2) = NM[2)2|(ms1,ma2) T NM-1Pm 1
® |1)(1)(m+2) + (|2)ms1,me2(ms2(xM|m+1 + hec.)
where Ny = (M|M) and
pmi1 =Um(2)2lmms1), and
(XM|ms1 = 2lmms1{M = 1M).

Himadri, Aditi, Ujjwal, PRL, 2013



Heisenberg vs. RVB (even legged ladders)
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Heisenberg Ground state RVB state

For even rungs, GGM increases with increasing rungs



Heisenberg vs. RVB (odd legged ladders)
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For even rungs, GGM increases with decreasing rungs

RVB state



Asymptotic behavior (Odd wvs. even)

e

Fig. Asymptotic GGM as a function of
number of legs.



Asymptotic behavior (Odd wvs. even)
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Fig. Asymptotic GGM as a function of
number of legs.

* The sequences of the values from even and odd-legged
ladders reach same asymptotic value when L = inf.



Asymptotic behavior (Odd wvs. even)

Fig. Asymptotic GGM as a function of
number of legs.

* The sequences of the GGM values from even and odd-legged
ladders reach same asymptotic value when L = inf.

* However, there a function of GGM, which still distinguishes
even from odd at the asymptotic limit !!!
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e The scaling exponent, x(L), for odd and even ladders,
converges to different values with increase of L

* Diverging scaling exponent for odd- and even-legged ladders,
even though the corresponding multisite entanglement converge,
scaling coefficient can still distinguish even-odd dichotomy



v Even-odd dichotomy of genuine multiparty entanglement, GGM, in
Heisenberg ladders

v Resonating valance bond ansatz encapsulates qualitative features

of GGM in Heisenberg ladders

v" The scaling exponent of GGM can distinguish the even-odd
dichotomy, even when corresponding GGM merge at asymptotic limit
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