Simulations with optical time-multiplexed quantum walks

Aurél Gábris Czech Technical University in Prague

QIPA 2015 Allahabad 8 December 2015

Outline

Quantum Walks

- Simple time evolution: experimentally attractive
- Quantum algorithms (e.g. search)
- Computational universality
- Applications to quantum simulation
- Optical time-multiplexed implementation
 - Basic principle
 - Features: compact, versatile, well-controlled
- Review experiments with time-multiplexing (Ch. Silberhorn)
 - Dynamical localization
 - Interacting DTQW
 - Recently: percolation

Discrete time quantum walks (DTQW)

Walk on a graph

- position space: \mathcal{H}^V discrete basis
- quantum coin: C
- evolution: discrete time step U = SC, $\mathcal{H}^C \otimes \mathcal{H}^V$
 - C: coin "flip" operator
 - S: propagator (graph edges)

Quantum optical implementation by analogy

Galton board

Binomial distribution $\downarrow N = \infty$ Gaussian Position: place of BS

Time multiplexing

"Optical Galton board" Unfavorable: cost, stability $\sim n^2$

More compact solution

Time-bin encoding of position PRL **104**, 050502 (2010)

Time multiplexing and feedback loop

Next

Review simulation experiments

Anderson localization

Well-known in solid-state physics: metal-insulator transition

Phase disorder

$$C = \sum_{x} F(\varphi_x) C_0 \otimes |x\rangle \langle x|$$

Position and time dependent phase shift:

$$F(\varphi_{xt}) = \begin{pmatrix} e^{i\varphi_{xt}^{L}} & 0\\ 0 & e^{-i\varphi_{xt}^{R}} \end{pmatrix}$$

[PRL 106 180403 (2011)]

Quentched disorder: $\varphi_{xt} = \varphi_x$

Exponential localization in *d* dimensions Joye: Quant. Inf. Proc. **11** 1251 (2012)

Experimental results

Two interacting walkers: "2D setup"

Carefully chosen delays [Science 336, 55 (2012)]

Two interacting walkers: measurement results

Percolation Quantum Walk

Dynamical percolation graph

- Percolation: edge present with probability p
- Dynamical percolation: at each instant a new percolation graph

RUM (random unitary map)

$$\hat{\rho}(n) = \sum_{\kappa \in \mathcal{K}} p(\kappa, \mathfrak{p}) \left(\hat{S}_{\kappa} \hat{C} \right) \hat{\rho}(n-1) \left(\hat{S}_{\kappa} \hat{C} \right)^{\dagger}$$

Attractors

$$(\hat{S}_{\kappa}\hat{C})\hat{X}_{n}(\hat{S}_{\kappa}\hat{C})^{\dagger} = \lambda_{n}\hat{X}_{n}, \forall \kappa \in \mathcal{K}.$$

Eigenvalues: $|\lambda| = 1$ survive

Non-trivial asymptotic dynamics

$$\varrho(t\gg 1) = \sum_{n} \lambda^t \operatorname{Tr}\{\hat{X}_n \varrho_0\} \hat{X}_n,$$

Non-trivial: $\lambda \neq 1$ (oscillations)

Implementation by quantum walk primitives

QW with operator \hat{C}

break one step into two

$$\hat{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \hat{R} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

$$\hat{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \hat{R} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

(limitation of the EOM)

In the experiment:

Measurement results: position distribution

Sci. Rep. 5, 13495 (2015)

Measurement results: coin state

Full tomography on the coin state

Reduced density operator

$$\hat{\sigma} = \operatorname{Tr}_C \hat{\varrho} = \frac{\mathbbm{1} + \vec{S}\hat{\vec{\sigma}}}{2}$$

Measurement results

Hilbert–Schmidt distance from asymptotic

Non-Markovian evolution; $\sigma_{\infty} \sim \mathbb{1}$

Summary

- Realization of disorder schemes in QW
 - Coin disorder
 - Graph disorder
- Links to
 - Dynamical localization
 - Transport on random graphs

Prague (theory):

- Igor Jex
- AG
- Jaroslav Novotný

Paderborn (experiments):

- Christine Silberhorn
- Fabian Elster
- Sonja Barkhofen
- Thomas Nitsche