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COHERENT STATE IN QUANTUM OPTICS 

 

 

 

a – annihilation operator 

 

Coherent state       defined by 

                   

                                                        , for any complex number   

 

 

 

Properties 

 

 

 

Coherent states are in fact not complete but overcomplete since 
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Sudarshan Glauber Representation and Nonclassicality 

Coherent states- closet to stable classical light 

Uncertainty principle brings in uncertainty. 

Classical Coherent Functions:             for complex signal  

Normally Ordered Coherent Function:  

Antinormally Ordered Coherent Function : 

For      ,  

Sudarshan Glauber Representation 

                                                                                      -real 

gives 

 

Since most experiments involve       and not      ,  

comparing this with classical result 

 

 

where                is probability for signal to lie between      and          .  
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Shows that if         is non-negative definite, it can be considered to be        and 

classical interpretation is possible. 

 

However if          is not non-negative definite, results can be outside classical 

optics. 

 

These are called NON-CLASSICAL FEATURES. 
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ENTANGLEMENT OF TWO-QUBITS 

 Coherent state        - closest to classical stable light 

Superposition of coherent states - 

                                                                 - Non-classical 

Simple examples- 

                                                         contains       only  with n even 

                                                        contains        only with n odd 

                                       exhibits squeezing 

                                       exhibits antibunching 

Similarity in Quantum Information: 

If two-qubit pure state can be written as product  

 

It is separable but if it cannot be written in this form in any basis it 

exhibites the non-classical feature, entanglement. 
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CONCEPT OF SQUEEZING 

In quantum optics, if we write  

                                 

relation                     gives  

 

 

Since in P- representation  

 

 

 

 

For classical fields              and               are separately         . 

 

Quantum considerations demand their product          and hence there are states  

for which no classical interpretation is possible. These states are called squeezed 

states in Quantum Optics. Both       and      cannot be squeezed. 
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GENERAL SQUEEZED STATES  

& ATOMIC or SPIN or POLARIZATION SQUEEZED STATES 

 If                            and we look for condition of squeezing of say        for any 

possible     we obtain  

                                                                       . 

 

Somewhat parallel situation for Dicke’s collective operators or spin operator or 

Stoke’s operator leads to Atomic or Spin or Polarization Squeezing. 

For operators          ,  

                                               ,                    ,     

First relation gives 

                                                                             . 

 

Hence Walls and Zoller defined squeezing if  

                      

                                                           or 
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and similarly for the other two relations. 

Thus       is said to be squeezed if  

 

 

Generalized definition of Atomic or Spin or Polarization squeezing 

This has been generalized by a number of authors. Rakesh Kumar and me. We 

considered  

                                                    and 

Since                       , condition for squeezing of     is  

 

 

Since maximum of RHS is                         the squeezing condition becomes 

 

 or for a general component 

     

This definition has been used to study polarization squeezing by R. Prakash & 

N. Shukla. 
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SPIN SQUEEZING OF ALL SPIN COMPONENTS 

Usual impression is that two orthogonal components of spin cannot be squeezed 

just as in quantum optics, both     and         or q and p cannot be squeezed. Simple  

calculation shows that all 3 orthogonal components can be squeezed. 

For state        and for a given direction  

                                                 ;     

Hence  

                                                                     ,                       . 

Obviously 

 

 

 and only general component ( except equatorial components,         ) are 

squeezed. 
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Coherent states, Superposed Coherent States 

 and Entangled Coherent States 

Coherent states are eigenstates of photon annihilation operator  

 

 

The commonly considered superposed coherent states are single mode 

states 

 

where 

 

 

 

 

To abbreviate we write these states as         whenever there is no chance of 

confusion. 
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The coefficients satisfy 

 

 

 

 

Since                                    , states           are not orthogonal and do not form a 

useful basis.  To cope with this problem, we use the basis of even and odd 

coherent states. 

The state is represented on Bloch sphere by angles θ  and φ defined by  

 

Entanglement and Concurrence has already been introduced by earlier 

speakers, and for pure and mixed states we write 
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It is worthwhile to investigate what happens if a non-maximally state is taken 

as the resource. The common belief is a reduction in fidelity and that 

happens for the case of atomic qubits. Verma and the speaker investigated 

this problem in detail for pure non-maximally entangled sates  (Q. Inf. Proc. 

10 (2011) 1951-59). 

We found that for a general non-maximally entangled resource information 

state dependent  fidelity is obtained and that the Minimum Assured Fidelity 

defined a the minimum fidelity for any possible information state is given by 

 

 

 

Here C is concurrence. 

We  also considered the question of identifying the parameter which gives 

best judgement about the quality of an imperfect teleportation and concluded 

that MASFI is better  than concurrence or  Minimum Average Fidelity. 

C1

C2
MASFI
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Teleportation of Superposed Coherent State Using 

Non-Maximally Entangled Resource 

Hirota et al [Phys. Rev. A 64, 022313 (2001)]: Showed how to teleport a 

SCS encoded with one qubit using ECS with success probability equal to 

0.5. 

Wang [Phys. Rev. A 64, 022302 (2001)]: Showed how to teleport a bipartite 

ECS encoded with one qubit using ECS with success probability equal to 

0.5. 

Prakash et al [Phys. Rev. A 75, 044305 (2007) ]: Modified the photon 

counting scheme and reported almost perfect teleportation for an 

appreciable mean photon number.  

Many other schemes proposed the teleportation of SCS using ECS. 

However most of the schemes used maximally entangled coherent state 

(MECS) as quantum channel.  
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We consider more practical problem of teleporting SCS using non-maximally 

entangled coherent state (NMECS) and study the effect of entanglement on 

the quality of teleportation. 

For teleportation we use the bipartite ECS, 

 

 

 

 

 

Glauber coherent states 1800 out of phase:  
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Even coherent state (state with even number of photons) and Odd coherent 

state (state with odd number of photons): 

 

 

Coherent states in terms of Even and Odd coherent states: 

 

 

Entangled coherent state in terms of Even and Odd coherent states: 
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Concurrence [Wootters, Phys. Rev. Lett. 80, 2245 (1998)] of a pure bipartite 

state is given by relation,  

 

Concurrence of ECS is 

 

 

For                          :                                                                     and C = 1. 

This MECS was used in most of the previously proposed schemes for 

teleportation of SCS. 

For 

 

 

NMECS with                                  : 
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Maximally entangled coherent state (MECS), which has been extensively 

used as quantum channel for teleportation of SCS in many previously 

proposed schemes.  

 

Non-maximally entangled coherent state (NMECS) of which entanglement 

depends on the mean photon number which is of the order of |α|2 .  

In previous figures, ‘    ’ sign represents the MECS  with unit concurrence and 

two ‘    ’ signs represents a particular NMECS  with concurrence lesser than 

unit for low value of |α|2.  

However, we see that concurrence of particular NMECS becomes almost 

equal to unity for appreciable value of |α|2. Since for low values of |α|2, ECS is 

a NMECS except at points represented by ‘    ’, therefore it will be interesting 

to study how the quality of teleportation of SCS is affected by the amount of 

entanglement contained in ECS.  
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Let Alice desire to teleport information state (a SCS),  

 

 

Complex coefficients          satisfy the normalization condition, 

 

 

In terms of Even and Odd coherent state information state is 

 

 

The interrelationship between coefficients      and       are given by  

 

 

Quantum Channel shared by Alice and Bob 
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Shows the effect of 50:50 symmetric beam splitter (BS) and –π/2 phase 

shifter (PS) on a coherent state. 

Shows the teleportation scheme. 
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Information modes 0 and entangled mode 1 are with Alice (sender) while 

entangled mode 2 is with Bob (receiver).  

Initial joint state of the system is 

 

 

 

 

The final output state is found to be  

 

 

 
 

Alice performs photon counting (PC) in modes 3 and 4.  

It is clear that one of the counts is always zero.  
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For better treatment of all possible PC results, we expand the coherent states          

on Alice side into zero-photon state (the vacuum state), state with nonzero 

even numbers of photons and state with odd numbers of photons as 

 

 

where 

 

 

 

And expanding coherent state on Bob side in terms of Even and Odd 

coherent state 
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This gives 
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There are five possible photon counting results: 

 I (modes 3 and 4 count zero number of photon),                                             

II (mode 3 count zero and mode 4 count non-zero even numbers of photon), 

III (mode 3 count non-zero even and mode 4 count zero numbers of photon), 

IV (mode 3 count odd and mode 4 count zero numbers of photon) and          

V (mode 3 count zero and mode 4 count odd numbers of photon).  

Residual states with Bob in mode 2 after measurement corresponding to 

each PC results are 
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The residual state with Bob contains complex factors  C±  that depend on 

entanglement parameters (θ and φ), therefore required unitary operation 

should depend upon entanglement parameters to recover the replica of 

information state with as large fidelity as possible.  

Strategy 1:  For |C+| ≤ |C-| (i.e., for cos φ ≥ 0), Bob performs the following 

unitary operations: 
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ppACqAC++qqACpACNT

ppACqAC++qqAp+CACNT

qpACqAC++pqACpACNT

qpACqAC++pqAp+CACNT

q+C+pCNT

++++VV

++++IVIV

++++IIIIII

++++IIII

+II

Applying these unitary operations on Bob’s state, the teleported states with 

Bob are given by 
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Normalization factors  in terms of θ, φ and ω, ξ defined by                     and           

           are 
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Putting                       ,                          , the fidelity of teleported states are 
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Average fidelity                             is given by  

 

 

 

 

 

The probability of occurrence of different PC results are given by 
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Strategy 2:  For |C+| > |C-| (i.e., for cos φ < 0), Bob performs the following 

unitary operations: 

 

 

Applying these unitary operations on Bob’s state, the teleported states with 

Bob are given by 
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qpACqAC++pqACpAC=NT

}qpAq+CA+(C+pqAp+CAC=NT

ppACqAC++qqACpAC=NT

ppAq+CAC++qqAp+CAC=NT

q+C+pC=NT

++++VV

++++IVIV

++++IIIIII
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+II
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Putting                       ,                          , the fidelity of teleported states are 
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Average fidelity 

 

 

 

 

 

Minimum average fidelity  is defined as minimum possible value of average 

fidelity over all possible information states. 

We minimized average fidelity, over all possible information states, i.e., over 

angles ω and ξ, then plotted it with respect to entanglement parameters θ 

and φ.   

It is to be noted that for the process of minimization, a Mat-Lab code can be 

written in such a way that it gives minimum value of       as           if, |C+| ≤ |C-|  

otherwise it gives minimum value of         as           .  
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At low |α|2 , the values of              for the two maxima at                                       

That corresponds to NMECS                            , is higher than that at  

            which corresponds to MECS                         ,  used in previously 

proposed schemes. 

Minimum average fidelity for NMECS is,  

 

 

Minimum average fidelity for MECS 

 

 

Difference between these two minimum average fidelities is given as 
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The maximum difference              is  at               . 

Shows variation of                 for non-maximally ECS,               for maximally 

ECS and difference D with respect to mean photon number  |α|²  . 
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Teleportation of One Ququat Encoded in Single Mode 

Superposed Coherent State 

Recently, entangled qudits have arrested much more attention than the 

entangled qubits for their stronger non-locality and capacity of information 

transmission.  

Higher dimensional quantum system (qudits), like qutrit and ququat defined in 

3D & 4D Hilbert space, show advantage in secure quantum communication 

systems and in investigations on foundations of quantum mechanics.  

To date single mode SCS have been employed only for encoding a qubit using 

even and odd coherent state as logical states. 

However, various advantages of higher dimensional quantum states, makes it 

necessary to investigate the possibility of encoding one ququat in single mode 

SCS, generation of entangled ququats based on coherent states, and 

methods for quantum teleportation of SCS encoded with one ququat.  
41 
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Here we show that superposition of four non-orthogonal coherent states          

and           , that are 90ο out of phase can be employed for encoding one 

ququat.  

We propose a scheme to generate newly defined orthogonal states         

with             numbers of photons, where,                 . 

These multi-photonic states when fall upon a 50-50 beam splitter, the 

resulting state is a bipartite four component entangled coherent state 

equivalently represents an entangled ququat.  

We also propose a linear optical scheme that gives almost perfect 

teleportation (minimum average fidelity > 0.99) of single ququat encoded in 

singlr mode SCS with the aid of entangled ququat based on coherent 

states and using a 9-bit classical channel  with almost perfect success rate.  
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Define four multi-photonic states as 

 

 

 

 

States,         with                     are the multi-photonic states having 4n, 4n+1, 

4n+2, and 4n+3, numbers of photons, respectively.  

Normalization constants are given by 

 

 

 

Since        are orthogonal, we can easily write          and           in terms of           
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In terms of states         coherent states           and            can be written as 

 

 

where, 

Thus, any coherent state defined in an infinite dimensional Hilbert space 

spanned by photon Fock states, can equivalently be defined in a 4D Hilbert 

space spanned by the four ortho-normal multi-photonic states,        .  

We define four entangled ququat states based on coherent state, say, four 

bipartite four-component entangled coherent states (BFECS) as 
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Where 

 

 

 

In terms of orthogonal states         ,  these BFECS can also be written as 
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BFECS are the non-maximally entangled ququats.  

However, for appreciably large coherent amplitude, i.e., in the limit,              , 

the coefficients        and     , become almost equal to ½ and unity, 

respectively, therefore BFECS becomes maximally entangled in the limit of 

large coherent amplitude.  

The BFECS generation scheme 

Consider two even coherent states in mode 0 and 1, respectively,  

 

Where 

The initial state of the system is written as  
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Scheme for generating BFCECS 

Following given scheme which uses a Mach 

Zehnder  se up final output state in modes 4,5 is 

 

 

In terms of states         , this can be written as 
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It is clear that photon counting (PC) in mode 4 gives four possible PC results: 

4n, 4n+1, 4n+2 or 4n+3 numbers of photon count corresponding to which 

states        ,       ,        and         gets generated in mode 5. 

The probability of generation of state        is given by                       which 

becomes equal to 0.25 for appreciable value of coherent amplitude      .  

After illuminating a 50-50 BS by state        ,the resulting state is an entangled 

ququat similar to BFECS            .  
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Teleportation of one ququat encoded in superposition of coherent state  

The information state to be teleported is given by 

 

 where      are the complex coefficients with normalization condition 

 

 

This can also be written as 

 

 

 

 

This represents an arbitrary ququat defined in a 4D Hilbert space.  
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In principle any of the four BFECS (entangled ququat ) can be used for 

teleportation. The BFECS (entangled ququat ) to be used as quantum 

channel 

 

Information mode 1 is with Alice. Entangled mode 2 is with Alice and mode 3 

is sent to Bob. Initial joint state is given by 
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Scheme for teleporting one ququat encoded in superposition of coherent 

states with the aid of entangled ququat based on coherent state called 

BFECS. BS and PS stands for 50-50 beam splitter and -π/2 phase shifter, 

respectively. Bold numbers represent the quantum mode. 
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The final joint state of Alice and Bob system is described by 

 

 

 

 

 

where 

Alice performs the photon counting (PC) in modes 8, 9, 10, and 11 and 

conveys her PC result to Bob, on the basis of which Bob performs an 

appropriate unitary operation on his mode 3 to get faithful replica of the 

original information state. 

One mode always counts zero photon. 

Since coherent states are the superposition of all possible photon number 

states, therefore, there will be many possible PC results.   
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For better understanding of all possible PC results it is appropriate to expand 

coherent states,         and          , into states      ,       ,       ,        and         with 

0, 4n+1, 4n+2, 4n+3 and 4n+4 numbers of photon, respectively. 

 

 

 

 

where,  
 

In the very similar way, coherent states,          and           can be expanded 

into states     ,       ,       ,       and        with 0, 4m+1, 4m+2, 4m+3 and 4m+4 

numbers of photon, respectively. 

    

 

 

 

Coefficients               can be obtained by substituting         instead of         in 

expressions for coefficients  
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Using these expansions one can verify that one of the modes 8, 9, 10, and 11 

always has vacuum state and of the other three modes can give any of the 

five results, zero or nonzero, which is 0, 1, 2 or 3 (modulo 4).  

Thus, there are                                                        different PC results.  

These results can be transmitted to Bob on a 9-bit classical channel.  Since 

Bob has to know only the required unitary transformation and there are only 

64 distinct unitary transformations, even 8 c-bit channel is sufficient. 

We write these PC results as 0, 1, 2, 3 and 4, the last one being the nonzero- 

result (0 modulo 4) written as 4 to distinguish it from the result of 0 counts.  

These results can be classified into four groups:  

Group I (All modes count zero photon),  

Group II (Any three modes count zero and one mode count non-zero photon), 

 Group III (Any two modes count zero photon and rest two modes count non-

zero photon), and  

Group IV (Only one mode count zero and rest three modes count non-zero 

photons).  
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Group I (All modes count zero photon); only one case of result:  The 

teleported state is seen to be                                       irrespective of the 

information, if the information is in this state F=1 and if the information is 

orthogonal to it F=0. Thus MASFI is 0 and we say that the Teleportation 

Fails. This case is however important for small       , and for                 

probability for occurrence of this case is nearly zero. 

Group II (Any three modes count zero and one mode counts non-zero 

photons): This group has 16 possible PC results as the non-zero photon 

mode may be any one of the four modes and non-zero photon counts may be 

any of 4n+1, 4n+2, 4n+3 or 4n+4. For this case, the teleported state is 

 

 

 Since nonzero counts may be obtained both for           and for         , one 

cannot devise a prescription for the required unitary transformation to be 

performed by Bob. Similar results come for the rest 15 cases in this group. 

Hence Teleportation Fails. 54 
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Group III (Any two modes count zero photon and rest two modes count non-

zero photons) : This group has                    PC results, which may further  be 

divided into two subgroups, Subgroup III.I and Subgroup III.II.  

Subgroup III.I (Pair of modes '8 and 10' or '8 and 11' or '9 and 10' or '9 and 

11' show zero counts, while the rest two modes show non-zero photons): This 

subgroup has                  PC results.  The situation for this case is exactly 

similar to that discussed for Group II and Teleportation Fails. 

Figures on next slide shows variation of maximum probability of occurrence 

for PC result of different groups. From where it is clear that probability of 

maximum probability of occurrence for PC result belonging to groups I, II and 

III becomes zero for appreciable coherent amplitude. 
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(a) Dashed curve shows variation of maximum probability of occurrence for photon counting 

result (0000) of group I, with respect to coherent amplitude . Continuous curve shows the 

variation of summation of probabilities of occurrence for all 256 photon counting results 

belonging to Group IV. (b) Dashed and continuous curves shows variations of maximum 

probability of occurrence with respect to coherent amplitude for typical cases of group II and 

III of the photon counting result (4000) and (4040) respectively.  

Thus Occurrence of PC results belonging to Groups I, II, III will not degrade 

the average fidelity for  2.3 56 
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 Subgroup III.II (modes '8 and 9' or '10 and 11' counts zero, while rest mode 

count non-zero photons): This subgroup has  32 PC results. If we look at the 

states with Bob for the 32 PC results, it is seen that the Bob’s state is 

invariably in the form 

                                                  where 

For 16 cases, a unitary transformation resulting in perfect or almost perfect 

teleportation exists, the required unitary transformations for the Bob’s state            

              is  

                                                       where 

For the cases where no unitary transformation giving F =1 is possible and  

MASFI=0, we admit failure, but prescribe unitary transformations             which 

give F=1 for certain cases of special information states, although MASFI=0. 

There are 16 such cases.  

Table in next slide shows all 32 PC results belonging to subgroup III.II, 

corresponding state with Bob, the unitary operations, teleported state and the 

fidelity.  For 16 cases for which fidelity is F5 or F6, MASFI≈1 for              .         
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The fidelities are seen to occur in one 

of six different forms                . 

It is found that 

Plot given below shows that              

reaches unity for             .  

Thus 16 PC results of this subgroup 

fails to teleport the information state, 

while rest 16 PC results gives almost 

perfect teleportation for             .  

6,5,4,3,2,1F
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Group IV (Only one mode count zero and rest three modes count non-zero 

photons): This group has                     PC results.   

For this group of PC results the Bob’s state and unitary transformation are 

seen to occur in the form    

                                                            and   

respectively, defined earlier.  

For all 256 PC results corresponding Bob’s state and required unitary 

transformation, are tabulated in table given in next slide. 
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It is seen that, for all PC results belonging to k=0, teleported state is 

 

with fidelity F=1 , and the teleportation is perfect.  

For PC results belonging to k=1, 2 and 3  teleported states are  
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Dashed curve shows variation of 

minimum assured fidelities (MASFI)      

           against coherent amplitude. 

Dash-dotted curve shows variation of 

minimum assured fidelity              against  

coherent amplitude. 

Thus, out of all 256 PC results belonging 

to Group IV, 64 PC results gives perfect 

teleportation for any value of      , while 

rest 192 PC results gives almost perfect 

teleportation for             . 

 Continuous curve shows minimum 

average fidelity (MAVFI). 

It is clear that                        for              .  
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Thus almost perfect teleportation with perfect success rate  

is achieved for 2.3
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Long Distance Atomic Teleportation Using Entangled Coherent States and 

Cavity Assisted Interaction  

Large numbers of schemes for teleportation of qubits based on single photon and 

superposed coherent states (SCS) have been proposed. 

However, single-photon or SCS are not ideal for long term storage of quantum 

information as they are very difficult to keep in a certain place.  

On the other hand, it has been demonstrated that a single atom can be trapped for 

a few seconds inside an optical cavity. Thus, atoms are ideal for quantum 

information storage.  

Numbers of schemes for atomic teleportation using atom-cavity interactions and 

atoms as flying qubit have been proposed.  

Since atoms move slowly and interact strongly with their environment, these 

schemes are unable to perform long distance atomic teleportation and hence can 

not be used as link between two quantum processors working distant apart. 

Long distance teleportation is of particular importance because of its applicability in 

secure quantum communication and future satellite based quantum 

communication.  

S Bose [Phys. Rev. Lett. 83, 5158 (1999)], have presented a novel scheme for 

teleporting quantum state of an atom trapped in an optical-cavity to second atom in 

another distant optical-cavity.  
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This scheme involves mapping of atomic state to a cavity state with Alice, 

followed by the detection of photons leaking out from Alice’s cavity and Bob’s 

cavity (initially in maximally entangled atom-cavity state) by mixing over a beam 

splitter. 

The main shortcoming of this scheme is that the teleportation fidelity and 

success rate in this depends on the state to be teleported. Under reasonable 

cavity parameters and cavity decay time, success rate is near ½.   

Further Chimczak [Phys. Rev. A 79, 042311 (2009)] pointed out the inefficiency 

of scheme proposed by Bose due to large damping values of currently available 

cavities that reduces the fidelity of state mapping from atom to cavity and 

discussed a modification  using non-maximally entangled atom-cavity state with 

amplitudes chosen in such a way that compensates the damping factors due to 

state mapping.  

Although this resolves the effect of damping but gives very low success rate. In 

case of failure, in both schemes the message state is destroyed. Moreover, 

both schemes are expected to suffer decoherence due to photon absorption 

while propagating toward beam splitter.  
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For all these reasons, a dream scheme for long distance atomic teleportation 

is required that, 

 (i) gives state independent teleportation fidelity and 

(ii) high success rate and 

(iii) conserves message state on failure thus permitting repeated attempts and  

(iv) does not need efficient single photon detection ability, and 

(v) many matter-light interaction stages.  

Along with these requirements, the scheme should use  

(i) quantum channel that can be deterministically prepared and  

(ii) must be robust against photon absorption.  

Since ECS are more robust against decoherence due to photon absorption 

than the SBBS [Hirota et al, quant-ph/0101096v1] and trapped atom in an 

optical cavity are ideal for quantum information storage,  we propose here a 

scheme for long distance atomic teleportation using ECS that fulfills most of 

the requirements mentioned above.  
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Effect of an atom-cavity coupling over an external input coherent pulse 

B Wang and L M Duan, Phys. Rev A 72, 022320 (2005) 

      and       are the ground levels with different hyperfine spins.  

     is the excited level.  

The transition                 is resonantly coupled to the cavity mode ac, which is resonantly 

driven by an input coherent pulse      .  

The transition                 is decoupled to the cavity mode ac due to large detuning from 

the hyperfine frequency.  
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If initial joint state of atom and input pulse is                    , then input pulse is resonant 

with cavity and exact quantum optics calculation by [D F Walls, Quantum Optics 

(Springer Verlag, Berlin, 1994)], shows that input pulse reflects with a phase .  

If initial state is                    , then due to strong atom cavity coupling, cavity mode ac is 

significantly detuned from the center frequency of the input pulse, thus input pulse 

reflects like from a mirror without any change in phase and pulse shape [Duan et al]. 

Mathmatically these can be written as  
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Alice wishes to teleport message state of an atom in cavity C1 given by 

 

to a second atom in a distant cavity C2, initially in state  

 

Alice and Bob shares an entangled coherent state 

 

 

 

 

Initial state of the system is 
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Scheme for teleportation of atomic-state trapped in cavity C1 to second atom in a 

distant cavity C2. Entangled coherent state (                                                      ) in 

modes 1 and 2 is produced by illuminating beam splitter BS1 with an even-coherent 

state (                                           ) in mode 0. Inset shows level structure of atom. D1, 

2, 3, 4 are photon detectors, atom in cavity C1 is measured in basis (      ).  Encircled 

numbers represent the quantum mode.  
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Following this scheme the final output state is given by 

 

 

 

 

 

Now Alice performs photon counting in mode 7 & 8, and performs atomic 

measurement in diagonal basis in cavity C1. While Bob performs PC in modes 

9 & 10. 

It is clear form the above given output state that two modes always gives zero 

count. 

For appreciable value of mean photon numbers of the order of       all possible 

measurement results are different and hence appropriate unitary operation 

can be prescribed to generate exact replica of original information state in 

cavity C2.   
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However, since coherent states are the superposition of vacuum state and all photon 

number state, thus there is nonzero probability to detect vacuum state even when light 

is present. 

This results to some nonzero probability of failure at small mean photon numbers      . 

To estimate success rate and resolve the problem of failure at small values of      , we 

expand coherent state            into vacuum state (     ) and state with nonzero numbers 

of photons (         ) given by  

 

Using this the final output state becomes                                                                               
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It is clear that two modes of the 7, 8, 9, and 10 are always in vacuum state and 

measurement results can be classified into two groups: 

Group I: Two field modes among 7-10 gives non-zero photon counts and atom in cavity 

C1 is detected in either of the states      or     . 

Group II: Three or all field modes among 7-10 are detected as OFF and atom in cavity 

C1 is detected in either of the states      or      . 

When measurement results falls into group I, Bob’s atom can be transformed to the 

original message state just by applying an appropriate unitary operation. Group I gives 

perfect teleportation with unit fidelity.  

The probability of successful teleportation Ps is given by summing the probability of 

occurrence of all measurement results corresponding to group I, and it is given by 

relation,  
 

 

 

1422 )1()1(  xxPS
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Measurement results for successful teleportation. Tick stands for detection of non-zero 

photon and cross stands for detection of vacuum by detectors.  ± stands for atomic state 

in basis      and σ’s are Pauli matrices.  
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However, for the measurement results corresponding to group II, teleportation fails. 

Probability of failure Pf   is given by 

 

But it is clear that in such case before measurement on atom in cavity C1, the joint 

state of atoms in cavity C1 and C2 is given by                 .   

Thus message state of atoms in cavity C1 and initial state of the atom in cavity C2 

remains conserved up to this stage.  

We now summarize our scheme:  

(a). Alice (Bob) detects field modes 7 & 8 (9 & 10) using detectors D7 & D8 (D9 & 

D10).  

(b). Bob conveys his results to Alice using a two-bit classical channel.  

(c). Alice looks over her measurement results and those conveyed by Bob, if any three 

or all modes among modes 7-10 are OFF, she rejects the complete process. As 

already mentioned in such case initial message state and Bob’s atomic state remain 

unchanged. Therefore, Alice does not make measurement on her atom in cavity C1 

and starts new process with a fresh copy of ECS.  
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(d). However, if Alice finds two modes in nonzero photon states and remaining two in 

vacuum, she measures her atom in cavity C1 and finally conveys two bit information to 

Bob about “atomic measurement result and the detector clicking result” through the 

same two-bit channel which was used earlier by Bob in step (b).  

(e). Finally Bob performs the appropriate unitary operation on his atom in accordance 

of results conveyed by Alice and his own and generates exact replica of the 

information. 

In this measurement scheme, step (c) avoids the failure by allowing us to repeat the 

complete process. In case if teleportation fails then in ‘n’ number of attempts probability 

of success becomes 

 
n

f
(n)
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We plott PS
(n)  with respect to      and ‘n’  

In a single attempt ‘n =1’, the probability 

of success increases as        increases 

and becomes almost equal to unity for               

               . 

This is due to the fact that for higher 

values        probability of detecting 

vacuum in coherent state becomes 

almost zero.  

However for small       , probability of 

success is appreciably less then unity 

but increases rapidly with increasing 

number of attempts ‘n’. 

For example, at             , success is 

0.734, 0.963 or 0.998 for one, two or 

three attempts.  

Shows variation of the success 

probability (PS
(n)) for different 

numbers of attempts ‘n’ with |α|2.  
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Thus unit success can be obtained in a single attempt for                 or in 

finite number of attempts for low value of                .  

We made calculations using a shared non-maximally entangled coherent 

state                                                    . If we use the maximally entangled 

coherent stat e                                                  , it is seen that the success 

rate increases by a multiplicative factor  of                         . For this, 

however, in case   of a failure, the message states alter trivially and require 

transformation by Pauli matrix        for restoration. 
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Quantum Discord Dynamics for Two-Level Atom Initially in Thermal 

Equilibrium Interacting with n-Photon State 

Quantum entanglement is one of the most remarkable features of the quantum 

mechanics and it leads to applications like quantum teleportation, quantum 

cryptography, dense coding and quantum computing. 

However a quantum state of a composed system may contain other types of 

non- classical correlations even if it is seprable (not entangled). 

Aiming such correlation Zurek et al [PRL 88, 017901 (2001)], introduced 

quantum discord. 

Consider a bipartite state       in a composite Hilbert space                       . 

The von Neumann mutual information between X and Y is defined as 

 

where                               is the von Neumann entropy and                         .  

Mutual information quantifies the total amount of correlations in quantum states. 

A classically equivalent definition of mutual information is,                          ,      

where        is the state of X given a measurement in Y.  

             is called conditional entropy. In quantum theory conditional entropy can 

be obtained by applying measurement over system Y.  
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Assuming perfect measurements of Y defined by a set of one-dimensional 

projectors          with                , state of subsystem X after this measurement is 

given by  

 
 

with probability 
 

Conditional entropy is defined as,  

 
 

where 
 

Using these definitions, one can define mutual information as,  

 
 

Dispite both definations for the mutual information being equivalent for the classical 

systems, the quantum genralizations             and              in genral do not coincide. 

Their difference defines quantum discord, 

 

 

The minima of this is defined as, 
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Investigating QD in some systems is of important significance. On the one hand, it allows 
us to discover relevant quantum properties of systems. On the other hand, studying QD in 
physical systems helps and prompts us to explore the theory of QD. Most of the studies 
related to quantum discord remained focused on qubit systems.  

We considered Werner-Like states formed by MECS’s                and NMECS               , which 
are defined by 

 

These states are  given by 

 

 

 

We considered the measurement basis 

 

And calculated the quantum discord 
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),( a ),( aWe find that the quantum discord for state                      and                    and found  that 
this does not depend on angles θ, φ or α . We calculated the entanglement of 
formation of these states also and found that quantum discord δ is greater than or 
equal to the entanglement of formation E. The two are identical and equal to 0 at a=0 
and identical and equal to 1 at a=1.  D is zero in the beginning and then picks up. 
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For states                and               which we call quasi-Werner states, however, the 

dependence of quantum discord  D is seen on θ, and α although it is independent of φ. 
For very small |α|, the dependence on θ is very pronounced and D  first increases 
with  a and then it decreases. Dependence on θ, however,  becomes unnoticeable 
for |α|>1.  For this case, however, D increases uniformly with a. This is shown in the 
figures given here  
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More figures are shown here for higher values of |α|.  

Variation of minimum of quantum discord against θ and of the entanglement of 
formation E with |α| and a are shown in the figures that follow.  
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We also study the difference of  δ and E against |α| and a.  
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We now consider a well-known cavity QED system, of single two-level atom (initially in 
thermal equilibrium with its environment) interacting with a cavity-fock state. The cavity 
we choose can have finite dimensionality more than two. 

The interaction Hamiltonian is 

 

where 

                suffix ac refers to atom-cavity interaction,    

                               is the creation (annihilation) operator of the field mode,  

                        is the atom field coupling constant,   

                        and      are the atomic raising, lowering, and inversion operators of the atom. 

Time-evolution operator in the interaction picture is described by 

 

We assume that  initially atom is in thermal equilibrium represented by density matrix 

  

)( †
   aaHac

)(† aa



 z

)exp()( tiHtU ac

1100)0( 10  a



88 

 where 

 

and the initial state of cavity is n-photon state given by density matrix 

 

Initially atom-cavity has no quantum correlation, i.e., the atom-cavity joint state is a 
product state and write 

 

The state of the atom-cavity system at any arbitrary time is described by 
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To study the dynamics of quantum discord we perform an ideal von Neumann projection 
measurement on atom by a complete set of one-dimensional projector 

 

where 

and satisfies the completeness relation, 

 

Cavity state after measurement on atom corresponding to outcomes {        } is  

 

 where       is the probability of outcome        given by 

 

The quantum discord for this system is given by 
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The expression for quantum discord is given by 
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Consider the case                        , i.e., at initial time              the state of the atom is      

                                                    that correspond to the limit of very high temperatures.  

With this initial condition on atom, Figs 1(a), (b), (c), and (d) show the contour plot of 
quantum discord with respect to interaction time (     ) and measurement parameter      , 
for initial photonic Fock state of cavity with n =1, 2, 4 and 8 numbers of photons, 
respectively.  

Fig. 1 (a) shows the interesting case that there are certain ranges of interaction times for 
which the quantum correlation or discord between atom and the cavity do not vanish for 
any measurement basis (i.e., for any value of measurement parameter    ).  

Figs. 1 (a-d) also show that, for any measurement basis, the quantum discord is rapidly 
oscillating in nature in a complex way with respect to interaction time.  

However, the frequency of oscillation increases with increase in numbers of photon 
initially in cavity.  

This is also evident by the fact that the density of the fringes that represents the variation 
of quantum discord increases as the number of photons increase from n=1 to n=8. 
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We also note that the quantum discord is showing phenomenon of beats with interaction 
time.  

Figs. 2 (a-e) show the minimum value of quantum discord over the measurement basis and the 
mean value of inversion operator for n=1, 2, 4, 8, 15 with respect to interaction time. 

 It is clear that both the minimum quantum discord and inversion operator exhibit the 
phenomenon of beats with interaction time.  

The frequency of oscillation increases rapidly with increasing number of photons.  

The mean inversion operator is given by 

The first factor involves larger frequency and gives phase of the oscillations.  

The mean frequency of these oscillations is                              and the mean periodic time is                       
.  

The amplitude of oscillations oscillates itself periodically and the beat frequency is                          

                                                                        and the beat period is                                   .  

In one beat-period number of oscillations is   
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For               the periodic time and the beat period are                      and                   , 
respectively, i.e., during two minima of amplitude of the oscillations, about 2n 
oscillations take place.  

The cases for n=1, 2, 4, 8 and 15 are shown in Figs 2(a-d).  

For largest n, n=1 in Fig 2d, the number of oscillations in one beat period is nearly 
31 while the expression                                           gives 30.99 and the approximate 
result gives 2n=30 oscillations. 

Quantum discord D is a periodic function of    with the period           . 

There is no general periodicity with the interaction time. 
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Fig 3 Quantum discord δ(c:a) for  

              (blue) and              (red) with 

respect to interaction time for n=8 

number of photons initially in cavity. 
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For                      and                  behaviour of D is shown in Fig. 3.  

For                    oscillations of D occur with a period which is 1/2 of the period for       

The beat period is also one half of the corresponding value for          .  

For                    the oscillatory behaviour of D is very complicated and interesting. For some 
intervals the period is same as that for             while for remaining intervals it is one half of 
that for           . 

For minimum (against     ) quantum discord     , it is seen that its behaviour is oscillatory 
with       and there appear beats in the amplitude. 

The period of oscillation of      is about  one half of that for oscillations of           as is clear 
from Figs &.2 (a)-(e).  

The beat period of      is also about one half of that for            .  

One other interesting observation is that, for even beats, the maxima of   are alternately 
high and low although this behaviour is absent for minima (Fig. 2(d) and (e) for n = 8 or 
15).  

In addition to this we also see that the high maxima in even beats show a dip. 
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