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Periodically driven systems have a long history.
Eg. Kicked rotor (Chirikov Map)

These systems may display very rich dynamics:
integrability-to-chaos transition

Recently, it has been shown that periodic
perturbations can be used as a flexible
experimental tool to realize new phases of
matter, which may not easily accessible in
equilibrium systems

This new line of research may be called “Floquet
engineering”



* |n the simplest possible case, one considers a
single monochromatic driving scheme,

characterized by a coupling scheme (driving
amplitude) and a single frequency Q=27 /T.
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*Usually, these systems are analyzed for the two
extreme regimes: slow driving and fast driving

* In the former regime, the system almost adiabatically
follows the instantaneous Hamiltonian

* In the later regime, where the driving frequency is
faster than the natural frequencies of the non-driven

model, the system typically feels an effective static
potential dependent on the driving amplitude.
*Away from the adiabatic limit, the analysis of
periodically driven system relies on the Floquet

theorem

*The Floguet theorem is very similar to Bloch
theorem, but in time domain



* Consider a time-periodic Hamiltonian of the
form:
H(t)=Hy+V(t), where V() =V (@ +T)

* The Floquet theorem states that the time
evolution operator can be expressed as:

U(tz tl) — e_iF(tz )e_iHF (t2 -1 )eiF(t1)
where K(t) = K(t +T') 1s a pertodic Hermitian operator

and H  1s the time-independent Floquet Hamiltonian.

* The choice of K and Hj operators are not
unigue, there is some freedom in defining them



e Different choices correspond to different “Floquet”

gauge
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* The system evolves from time #, to #,. The
evolution operator will be:

“This is invariant under: (g} (f Rl ta )



The stroboscopic evolution starts at time %o,
which can be chosen to be anywhere within the
first period [t1,81 +T)

It is convenient to formally define the evolution
within one period as Uty + T\ tp) = exp |—tHp|to|T]
The choice of the Floquet gauge, i.e., the choice
of 7y, in general affects the form of the Floquet
Hamiltonian Hpg[tg]

U(tz tl) — e_iF(tz )e_iHF(tz_t1)eiF(t1)

However, different Floguet Hamiltonians are
gauge equivalent toa Hr which is ¢, independent



Generally, it is very difficult to evaluate Hg exactly,
one has to rely on approximation schemes

Different approximations can give very much
different Floquet Hamiltonians for different
“gauge”.

The most popular expansion scheme is based on
Magnus expansion

i T +to

U(T + to, to) — Ti exp (—ﬁ [ dtH(t)) _ exp (—%HF[tO]T)

Hp[to] = % log [75 exp (—’5 /t:o+T dtH(t))]

The RHS is then expanded in power of Q1 using
Cambell-Baker-Hausdorff formula



e We followed another method:

“(n) o~ _ n)
—H , F()= —F(

n=1
oo
V(t) — VO + Z (Vnelna)t + V_ne—lna)t)
n=1

. . . _ —iF(t,) —iH.(t,—t)) iF(t)
e Comparing this with Ulz.t)=¢e = ='e e

the perturbation series an be obtained upto any
desired accuracy.

* At each order, the averaged time-independent
coefficient is retained in Heis and all time
dependence push into the F(r)operator






* Our special interest is in periodically kicked
systems. For example, kicked top Hamiltonian:

Ht)=pJ, Y 8(t—nT)+ 2}%1%

* Corresponding Floguet operator:

n=—0oo

j: — e—ipre—i(K/2j)J§
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* Following the alternate method, we got the
effective Hamiltonian for the kicked systems

upto O(w_z):

* For the kicked top:
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* Double kicked top Hamiltonian:

* Floquet operator:

e The effective Hamiltonian:




Here, ¢ =n/nj for a =1/j

Kicked Harper and its effective

time-independent Hamiltonian
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* A class of Hamiltonians
H=al, +bA+ [6COS(X) —I—h.c.]
+J

where & = > (Im)(m + 1| + |m + 1)(m|)

m=—7

and X = p@J, +1)/2j
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Massless Dirac equation in curved (2+1) D space
= Rippled graphene

Metric: - daf i e (e 4 )

2D spatial part of this metric is the most general

Dirac equation in this space




 Pulse scheme:
V()

0T/N T t

* 4-Pulse scheme: p,:{H,+ A,Hy+ B,Hy — A, Hy — B}
e The effective Hamiltonian:

1+ O(1/w?)

: Dirac equation in flat space




e Substitute:

* A quantity of geometrical interest describing 2D
curved surface is Gauss curvature:

and
depends directly on the driving scheme f(x,y) and
the driving frequency



We analyze the effect on the LDOS for graphene
like optical lattice under a periodic driving

: __1 [ ()
LDOS: p(e’r)__;lm;(e+i6—En)

This approach has similar motivations to earlier
studies on LDOS in “Rippled Graphene”

We consider: f(z,y) = 2% +

LDOS correction:

£ 1
Po

p = the LDOS for pulsed graphene
Po = the LDOS for ordinarygraphene
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Future directions

e Realization of quantum system in
non-commutative space

* Realization of non-associative
guantum mechanical system



Conclusion

* Floquet engineering is a powerful experimental
knob to realize many different static Hamiltonians,
which otherwise may not be realized easily
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