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Combinatorial designes

Take 4 aces, 4 kings, 4 queens and 4 jacks
and arrange them into an 4× 4 array, such that

a) - in every row and column there is only a single card of each suit

b) - in every row and column there is only a single card of each rank

Two mutually orthogonal Latin squares of size N = 4
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KŻ (IF UJ/CFT PAN ) Highly entangled states & designes 11.12.2015 2 / 40



Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: 2× 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(
|00〉+ |11〉

)
Entanglement measures

For any pure state |ψ〉 ∈ HA ⊗HB define its partial trace σ = TrB |ψ〉〈ψ|.
Definition: Entanglement entropy of |ψ〉 is equal to von Neuman entropy
of the partial trace

E (|ψ〉) := −Tr σ lnσ

The more mixed partial trace, the more entangled initial pure state...
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Entanglement of two real qubits

Entanglement entropy at the thetrahedron of 2× 2 real pure states
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Maximally entangled bi–partite quantum states

Bipartite systems H = HA ⊗HB = Hd ⊗Hd

generalized Bell state (for two qud its),

|ψ+
d 〉 =

1√
d

d∑
i=1

|i〉 ⊗ |i〉 (1)

distinguished by the fact that reduced states are maximally mixed,
e.g. ρA = TrB |ψ+

d 〉〈ψ
+
d | = 1d/d .

This property holds for all locally equivalent states, (UA ⊗ UB)|ψ+
d 〉.

Define bi-partite pure state by a matrix of coefficients, |ψ〉 =
∑

i ,j Gij |i , j〉.
Then reduced state ρA = TrB |ψ〉〈ψ| = GG †.

It represents a maximally entangled state if ρA = GG † = 1d/d , which is
the case if the matrix U = G/

√
d of size d is unitary.
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Multipartite pure quantum states

Three qubits, HA ⊗HB ⊗HC = H⊗3
2

GHZ state, |GHZ 〉 = 1√
2

(|0, 0, 0〉+ |1, 1, 1〉) has a similar property: all

three one-partite reductions are maximally mixed,
ρA = TrBC |GHZ 〉〈GHZ | = 12 = ρB = TrAC |GHZ 〉〈GHZ |.

(what is not the case e.g. for |W 〉 = 1√
3

(|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉)
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Genuinely multipartite entangled states

k-uniform states of N qud its

Definition. State |ψ〉 ∈ H⊗N
d is called k-uniform

if for all possible splittings of the system into k and N − k parts the
reduced states are maximally mixed (Scott 2001),
(also called MM-states (maximally multipartite entangled)
Facchi et al. (2008,2010), Arnaud & Cerf (2012)

Applications: quantum error correction codes, ...

Example: 1–uniform states of N qud its

Observation. A generalized, N–qud it GHZ state,
|GHZd

N〉 := 1√
d

[
|1, 1, ..., 1〉+ |2, 2, ...., 2〉+ · · ·+ |d , d , ..., d〉

]
is 1–uniform (but not 2–uniform!)
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Examples of k–uniform states

Observation: k–uniform states may exist if N ≥ 2k (Scott 2001)
(traced out ancilla of size (N − k) cannot be smaller than the principal
k–partite system).

Hence there are no 2-uniform states of 3 qubits.

However, there exist no 2-uniform state of 4 qubits either!

Higuchi & Sudbery (2000) - frustration like in spin systems –
Facchi, Florio, Marzolino, Parisi, Pascazio (2010) –

it is not possible to satisfy simultaneously so many constraints...

2-uniform state of 5 and 6 qubits
|Φ5〉 = |11111〉+ |01010〉+ |01100〉+ |11001〉+

+|10000〉+ |00101〉 − |00011〉 − |10110〉,
related to 5–qubit error correction code by Laflamme et al. (1996)

|Φ6〉 = |111111〉+ |101010〉+ |001100〉+ |011001〉+
+|110000〉+ |100101〉+ |000011〉+ |010110〉.
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Hadamard matrices (real)

definition

matrix of order N with mutually orthogonal row and columns,

HH∗ = N1 , Hij = ±1. (2)

given by

Sylvester (1867)

The simplest example: one qubit, N = 2

H2 =

[
1 1
1 −1

]
. (3)

m qubit case, N = 2m

H2m = H⊗m
2 , . (4)

works e.g. for N = 2, 4, 8, 16, 32, ....
Furthermore, there exist such matrices for N = 12, 20, 24, 28, 36, ...
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Hadamard matrices II

Hadamard conjecture

Hadamard matrices do exist for N = 2 and N = 4n for any
n = 1, 2, ...

After a discovery of N = 428 Hadamard matrix
(Kharaghani and Tayfeh-Razaie, 2005)
this conjecture is known to hold up to N = 664

see: Catalogue of Hadamard matrices of Sloane
http://neilsloane.com/hadamard

Great challenge in combinatorics

Prove the Hadamard conjecture:
Construct Hadamard matrices for every N = 4n ! !
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Orthogonal Arrays

Combinatorial arrangements introduced by Rao in 1946 used in statistics
and design of experiments, OA(r ,N, d , k)

Orthogonal arrays OA(2,2,2,1), OA(4,3,2,2) and OA(8,4,2,3).
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Definition of an Orthogonal Array

An array A of size r × N with entries taken from a d–element set S is
called Orthogonal array OA(r ,N, d , k) with r runs, N factors, d levels,
strength k and index λ if every r × k subarray of A contains each k−tuple
of symbols from S exactly λ times as a row.

Each OA is determined by 4 independent parameters r ,N, d , k satisfying
Rao bounds

r ≥
k/2∑
i=0

(
N

i

)
(d − 1)i if k is even, (5)

r ≥

k−1
2∑

i=0

(
N

i

)
(d − 1)i +

(
N − 1

k−1
2

)
(d − 1)

k−1
2 if k is odd. (6)

The index λ satisfies relation r = λdk see Hedayat, Sloane, Stufken
Orthogonal Arrays: Theory and Applications (1999)
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Orthogonal Arrays & k-uniform states

A link between them

orthogonal arrays multipartite quantum state |Φ〉
r Runs Number of terms in the state
N Factors Number of qudits
d Levels dimension d of the subsystem
k Strength class of entanglement (k–uniform)

holds
provided an orthogonal array OA(r ,N, d , k)

satisfies additional constraints !

(this relation is NOT one–to–one)
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k–uniform states and Orthogonal Arrays I

Consider a pure state |Φ〉 of N qudits,

|Φ〉 =
∑

s1,...,sN

as1,...,sN |s1, . . . , sN〉,

where as1,...,sN ∈ C, s1, . . . , sN ∈ S and S = {0, . . . , d − 1}. Vectors
{|s1, . . . , sN〉} form an orthonormal basis.

Density matrix ρ reads

ρAB = |Φ〉〈Φ| =
∑

s1,...,sN
s′
1
,...,s′

N

as1,...,sN a∗s′1,...,s′N
|s1, . . . , sN〉〈s ′1, . . . , s ′N |.

We split the system into two parts SA and SB containing NA and NB

qudits, respectively, NA + NB = N. and obtain the reduced state
ρA = TrB(ρAB)
=
∑

s1...sN
s′
1
...s′

N

as1...sN a∗s′1...s′N
〈s ′NA+1, . . . , s

′
N |sNA+1 . . . sN〉 |s1 . . . sNA

〉〈s ′1 . . . s ′NA
|.
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k–uniform states and Orthogonal Arrays II

A simple, special case: coefficients as1,...,sN are zero or one. Then

|Φ〉 = |s1
1 , s

1
2 , . . . , s

1
N〉+ |s2

1 , s
2
2 , . . . , s

2
N〉+ · · ·+ |sr

1, s
r
2, . . . , s

r
N〉,

upper index i on s denotes the i − th term in |Φ〉. These coefficients can
be arranged in an array

A =

s1
1 s1

2 . . . s1
N

s2
1 s2

2 . . . s2
N

...
... . . .

...
sr
1 sr

2 . . . sr
N

.

i). If A forms an orthogonal array for any partition the diagonal elements
of the reduced state ρA are equal.

ii). If the sequence of NB symbols appearing in every row of a subset of
NB columns is not repeated along the r rows (irredundant OA), the
reduced density matrix ρA becomes diagonal.
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How to construct a k–uniform state of N qudits ?

a) Take an orthogonal array OA(r ,N, d , k) of strength k.

b) check if condition ii) is satisfied, so the array is
irredundant.

c) If yes, write the corresponding k–uniform state!
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Very simple examples

a) Two qubit, 1–uniform state

Orthogonal array

OA(2, 2, 2, 1) =
0 1
1 0

leads to the Bell state |Ψ+
2 〉 = |01〉+ |10〉, which is 1–uniform

b) Three–qubit, 1–uniform state

Orthogonal array

OA(4, 3, 2, 2) =

0 0 0
0 1 1
1 0 1
1 1 0

leads to the balanced, 1–uniform state,
|Φ3〉 = |000〉+ |011〉+ |101〉+ |110〉.
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Hadamard matrices & Orthogonal Arrays

A Hadamard matrix H8 = H⊗3
2 of order N = 8 implies OA(8,7,2,2)

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


→

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

This OA allows us to construct a 2–uniform state of 7 qubits:

|Φ7〉 = |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉.

a simplex state |Φ7〉
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Examples of 2–uniform states obtained form H12

8 qubits

|Φ8〉 = |00000000〉+ |00011101〉+ |10001110〉+ |01000111〉+

|10100011〉+ |11010001〉+ |01101000〉+ |10110100〉+

|11011010〉+ |11101101〉+ |01110110〉+ |00111011〉.

9 qubits

|Φ9〉 = |000000000〉+ |100011101〉+ |010001110〉+ |101000111〉+

|110100011〉+ |011010001〉+ |101101000〉+ |110110100〉+

|111011010〉+ |011101101〉+ |001110110〉+ |000111011〉.

10 qubits

|Φ10〉 = |0000000000〉+ |0100011101〉+ |1010001110〉+ |1101000111〉+

|0110100011〉+ |1011010001〉+ |1101101000〉+ |1110110100〉+

|0111011010〉+ |0011101101〉+ |0001110110〉+ |1000111011〉,
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Higher dimensions:
uniform states of qutrits and ququarts

From OA(9,4,3,2) we get a 2–uniform state of 4 qutrits:

|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+

|1011〉+ |1120〉+ |1202〉+

|2022〉+ |2101〉+ |2210〉.

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α 1β 2γ

1γ 2α 0β

2β 0γ 1α

=

A♠ K♣ Q♦
K♦ Q♠ A♣
Q♣ A♦ K♠

.

Corresponding Quantum Code: |0〉 → |0̃〉 := |000〉+ |112〉+ |221〉
|1〉 → |1̃〉 := |011〉+ |120〉+ |202〉
|2〉 → |2̃〉 := |022〉+ |101〉+ |210〉
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State |Ψ6
4〉 of six ququarts can be generated by three
mutually orthogonal Latin cubes of order four!

(three quarts + three address quarts = 6 quarts in 43 = 64 terms)
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Six ququarts

The same 3–uniform state of 6 ququarts: read from
three Mutually orthogonal Latin cubes
|Ψ6

4〉 =

|000000〉+ |001111〉+ |002222〉+ |003333〉+ |010123〉+ |011032〉+

|012301〉+ |013210〉+ |020231〉+ |021320〉+ |022013〉+ |023102〉+

|030312〉+ |031203〉+ |032130〉+ |033021〉+ |100132〉+ |101023〉+

|102310〉+ |103201〉+ |110011〉+ |111100〉+ |112233〉+ |113322〉+

|120303〉+ |121212〉+ |122121〉+ |123030〉+ |130220〉+ |131331〉+

|132002〉+ |133113〉+ |200213〉+ |201302〉+ |202031〉+ |203120〉+

|210330〉+ |211221〉+ |212112〉+ |213003〉+ |220022〉+ |221133〉+

|222200〉+ |223311〉+ |230101〉+ |231010〉+ |232323〉+ |233232〉+

|300321〉+ |301230〉+ |302103〉+ |303012〉+ |310202〉+ |311313〉+

|312020〉+ |313131〉+ |320110〉+ |321001〉+ |322332〉+ |323223〉+

|330033〉+ |331122〉+ |332211〉+ |333300〉.
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A quick quiz

What quantum state can be associated with this design ?
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Hints

Two mutually orthogonal Latin squares of size N = 4

Three mutually orthogonal Latin squares of size N = 4
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The answer

Bag shows three mutually orthogonal Latin squares of size N = 4
with three attributes A,B,C of each of 42 = 16 squares.
Appending two indices, i , j = 0, 1, 2, 3 we obtain a 16× 5 table,
A00,B00,C00, 0, 0
A01,B01,C01, 0, 1
.........................
A33,B33,C33, 3, 3.
It forms an orthogonal array OA(16,5,4,2)
leading to the 2–uniform state of 5 ququarts,

|Ψ5
4〉 = |00000〉+ |12301〉+ |23102〉+ |31203〉

|13210〉+ |01111〉+ |30312〉+ |22013〉+

|21320〉+ |33021〉+ |02222〉+ |10123〉+

|32130〉+ |20231〉+ |11032〉+ |03333〉

related to the Reed–Solomon code of length 5.
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Absolutely maximally entangled state (AME)

Definition. A k–uniform state of N = 2k qud its is called
absolutely maximally entangled

Examples: 2-uniform state |Ψ4
3〉 of 4 qutrits,

3-uniform state |Ψ6
4〉 of 6 ququarts,

AME state of four parties A,B,C ,D, |ψ〉 =
∑

i ,j ,l ,m Gijlm|i , j , l ,m〉
is maximally entangled with respect to all three partitions:

AB|CD and AC |BD and AD|BC .

Let ρABCD = |ψ〉〈ψ|. Hence its three reductions:
ρAB = TrCDρABCD and ρAC = TrBDρABCD and ρAD = TrBCρABCD are
maximally mixed.
Thus matrices Uµ,ν obtained by reshaping the tensor Gijkl/d are unitary
for three reorderings: a) µ, ν = ij , lm, b) µ, ν = im, jl , c) µ, ν = il , jm.

Such a tensor G is called perfect.
Corresponding unitary matrix U of order d2 is called multi-unitary if
reordered matrices UR1 and UR2 remain unitary.
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Exemplary multiunitary matrices

multi–unitary permutation matrix of size 9
associated to the AME state |Ψ4

3〉 of 4 qutrits

U = U ij
ml

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)

Furthermore, also two reordered matrices
(by partial transposition and reshuffling) remain unitary:
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UT1 = U il
mj

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0


∈ U(9)

UR = U im
jl

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)
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Constructive results

1 Basing on multi–qubit Hadamard matrices, H2m = H⊗m
2 , we

constructed 2–uniform states of N qubits for any N ≥ 6.

2 Every orthogonal array of index unity, OA(dk ,N, d , k) allows us to
generate a k–uniform state of N qudits of d levels if and only if
k ≤ N/2.

3 Making use of known results on orthogonal matrices we
demonstrate existence of show following k–uniform states:
(i) k–uniform states of d + 1 qudits with d levels,

where d ≥ 2 and k ≤ d+1
2 .

(ii) 3–uniform states of 2m + 2 qudits with 2m levels, where m ≥ 2.
(iii) (2m − 1)–uniform states of 2m + 2 qudits with 2m levels,

where m = 2, 4.

4 From every k–uniform state generated from an OA we construct an
entire orbit of maximally entangled states.
Three–qubit example: a 3–parameter orbit of 1–uniform states
|Φ3〉(α1, α2, α3) = |000〉+ e iα1 |011〉+ e iα2 |101〉+ e iα3 |110〉,

KŻ (IF UJ/CFT PAN ) Highly entangled states & designes 11.12.2015 33 / 40



Cracow

and Tatra mountains in the background
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Post Scriptum

possible applications:
• tensor networks,
• holographic codes,
• toy models for the boundary–bulk correspondence
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Tensor networks

i) Tensor network diagrams:

a) scalar z , b) vector vi , c) matrix Aij , d) 4-index tensor Tijkl ,
e) scalar product vjwj , f) product of two matrices, Cik = AijBjk ,
g) trace of a three matrix product, AijBjkCki = TrABC = TrBCA.

ii) tensor networks describing matrix product states and projected
entangled pair state
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Holographic quantum error correction codes:
Pastawski, Yoshida, Harlow, Preskill, JHEP 2015

Holographic state Holographic code

If in each sites the tensors Tijklmn are perfect the code provides
a partial isometry between the boundary and the bulk !
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Area Law

For any subset P defining a partition the entropy S of the corresponding
reduced state

S
(
TrQ |ψ〉〈ψ|

)
= M log d

is proportional to the area of the set P measured in the number M of
edges cut!
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Key idea:
Making use of absolutely maximally entangled states (multiunitary
matrices or perfect tensors) one can construct holographic codes, which
map the Hilbert space corresponding to the boundary
into the Hilbert space corresponding to the bulk.

Key issue:
Assuming any dynamics (Hamiltonian/theory) at the boundary,

which dynamics (Hamiltonian/theory) will it imply for the bulk ?
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