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A7 choose sign

at this Is positive (it's real)

) arbitrary state orthogonal to the system state |¢)

constructive procedure to choose |+), or just
choose a random one
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Red: new part, always # 0 except if
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AA® + AB? > +i([A, B)) + (| A+ iBlyb)|
application of Schwartz inequality
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proof by an anonymous refe\reAe
Masanao Ozawa
(original proof more complicated)

G




First bound: minimum uncert. st.

togliere questa
states peri il
la disugu

um uncertainty
|psi®perp>,
uaglianza!



First bound: minimum uncert. st.

Harmonic 0SscC. X =

f( a+a'), P



First bound: minimum uncert. st.
Harmonic 0ScC. X = J(a+a'), P = 5(a' —a)

(AX? + AP > 1+ 2|{gla 5




First bound: minimum uncert. st.
Harmonic 0ScC. X = J(a+a'), P = 5(a' —a)

(AX? + AP > 1+ 2|{gla 5

" Fock states ‘n>

AX 4+ AP =02n+1)=L



First bound: minimum uncert. st.
Harmonic 0ScC. X = J(a+a'), P = 5(a' —a)

(AX? + AP > 1+ 2|{gla 5

" Fock states ‘n>
AX 4+ AP =02n+1)=L

v

MUS



First bound: minimum uncert. st.
Harmonic 0ScC. X = J(a+a'), P = 5(a' —a)

(AX? + AP > 1+ 2|{gla 5

" Fock states ‘n>

AX 4+ AP =02n+1)=L
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AX? + AP? = L



HR Non-MUS HR MUS

- Fock states - o) Coherent states

They're all MUS (for first, but not second bound)
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this bound is # 0 if |1))
IS not an eigenstate of
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AA?+ AB? > 1A82

~

appllcatlon of the parallelogram ineq/.

C=A-(A);, D=B— (B)

20A% +2AB° = ||(C + D))" + I(C = D))

A(A+B) = [[(C+ D)), AlA—=B) =[[(C = D)[y)]

AA2+ AB? = YA(A+ B)? + A(A— B

A(A+ B)?,

Vo
DO | — DO |
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Asher Peres introduced this not
uncertainty relation:

“The only correct interpretation of [the uncertainty relations for x and p]
IS the following: If the same preparation procedure is repeated many
times, and is followed either by a measurement of X, or by a
measurement of p, the various results obtained for x and for p have
standard deviations, Ax and Ap, whose product cannot be less than
h/2. There never is any question here that a measurement of x
‘disturbs’ the value of p and vice versa, as sometimes claimed.
These measurements are indeed incompatible, but they are performed
on different particles (all of which were Iidentically prepared) and
therefore these measurements cannot disturb each other in any way.
The uncertainty relation [...] only reflects the intrinsic randomness of

the outcomes of quantum tests.”

(he didn't want to talk about unc principle)

try looking up “uncertain principle” in his book.




What did | say?!? Lorenzo Maccone
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variances with nontrivial lower bound.
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Nature India:http://www.natureasia.com/en/nindia/article/10.1038/nindia.2015.6
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We always say that entangled states are more
correlated... WHAT DOES IT MEAN exactly?

they have more correlations
among complementary
observables than separable ones




Usual approaches to study
entanglement

*Non locality

* Negative partial transpose

* Bell Inequality violations
* Enhanced precision iIn measurements

* elC.



Here: we use correlations
among two (or more)
COMPLEMENTARY
PROPERTIES

different way to think about
entanglement, as
correlations among
complementary properties
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simplest example:
00) +[11) |
V2
Maximally entangled state: perfect
correlation BOTH on 0/1 and on +/-

(100)(00] + [11)(11[)/2 =
(Y + =) (=D)/2 @ (1) (+] + [=){=])/2

separable state: perfect correlation for 0/1,
no correlation for +/-




Simple experiment

* On system 1 measure either Aor C
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Use these to measure correlations
among

2 complementary properties
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of 2 systems
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The system state Is entangled if correlations on
both A-B and C-D are large enough

r Iap+ 1op > 10gd :)1
P12 ent

Can the bound be made tlght/»

NO!!
"the separable state
3(100){00] + [11)(11})

_saturates it: [ap + Icp = logd
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The systen state Is entangled if correlations on
both A-B and C-D are large enough

IS the converse true?
NO!!
) = €|00) + /1 — €2|11)

IS entangled but has negligible
s, mutual info for € — 0
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perfect correlation
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It can be complex for quantum expectation values

.. but its modulus is still < |1]:
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Pearson correlation Coeﬁicient

Cin = (AB)—(A Capl=1=
AB — o perfect correlation
ImB\ or anticorrelation

It can be complex for quantum expectation values

.

not a problem for us: A and
B commute, so It's REAL <

ARB=AR14+1Q®B

e




Total correlation: again use
the sum
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Again, the inequality Is tight:
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Conjecture: |C4p| + [Cop| > 1 = state is ent.

Again, the inequality Is tight:

separable state ‘()())(()()‘ ‘11)(11‘
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Is the Pearson correlation- o0 linear

correlations
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|s the Pearson correlation- — onvlinear
weaker than the mutual info?

NO!
WJ — E‘OO —|— \/1 — 62‘11>

Has negligible mutual info for € — O
but Pearson correlation

always >1!

all correlations




§ Simple criterion for entanglemenf
detection!!

Just measure two complementary
properties. Are the correlations greater
than perfect correlation on one?

—> The state g2l
Is entangled! a b 2

A 4

Simple to measure and simple to optimize.

Unfortunately: not very effective In
finding entanglement in random states



What did | say?!?

- Entanglement as correlation amomngal
complementary observables

 Mutual Iinfo
 Pearson correlation

« Some theorems and some conjectures



Take home message

The most correlated states are entangled
but ent states are not the most correlated

Lorenzo Maccone
maccone@unipv.it
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