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Complementarity
Two observable are complementary if certainty in the 
measurement of  one of them precludes certainty in the 
measurement of a complementary one.

All possible measurement results of the 
second observable are equiprobable.

Dual wave-particle behavior.



Bohr (1927):

 Niels Bohr (1949). "Discussions with Einstein on Epistemological Problems in Atomic Physics". In P. Schilpp. Albert 
Einstein: Philosopher-Scientist. Open Court.



Bohr (1927):

 Niels Bohr (1949). "Discussions with Einstein on Epistemological Problems in Atomic Physics". In P. Schilpp. Albert 
Einstein: Philosopher-Scientist. Open Court.

Bohr has brought to my attention [that] the uncertainty in our 
observation does not arise exclusively from the occurrence of 
discontinuities, but is tied directly to the demand that we ascribe 
equal validity to the quite different experiments which show up in the 
[particulate] theory on one hand, and in the wave theory on the other 
hand.

Heisenberg (1927):
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Examples
• Position and momentum of a particle 

If 

• Spin 1/2:  

If 

�p = 0 �x = 1

�x = 0 �p = 1

{| "i, | #i}

| i = | "i �Sv = 0
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Englert–Greenberger duality relation

D2 + V 2  1 V :

D :

visibility
distinguishability 

(predictability)

D. M. Greenberger, A. Yassin, Phys. Lett. A 128, 391 (1988);


G. Jaeger, A Shimony, L. Vaidman, Phys. Rev. A 51, 54 (1995); 


B.-G. Englert Phys. Rev. Lett. 77, 2154 (1996).
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Two-level systems

⇢ =
1

2
(I+

!
r .

!
� ) θ

φ

z

x

y

∣0 〉

∣1 〉

Measurements: {+1.-1} 

p(±1|r,�n̂) =
1

2
(1± r · n̂)

Mean value in direction      : n̂

h�n̂i = (1)p(+1|r,�n̂) + (�1)p(�1|r,�n̂) = r · n̂



Complementarity for  a 2-
level  system
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level  system
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Operational Theory
Mathematically models a physical experiment in terms of 
primitive notions: preparations, measurements, 
outcomes and systems. 

{P,M,K, p(k|P,M)}

P :

M :

K :

set of mutuallly exclusive preparations
 set of mutually exclusive measurements
set of mutually exclusive (and exhaustive) outcomes

EX: QM is an OT:
n

⇢, O, pk = Tr{E†
kEk⇢}

o



Projector: ⇧n̂ := (1/2)(I + n̂ · �)

⇧n̂ +⇧�n̂ = I � · n̂ = ⇧n̂ �⇧�n̂

p(±1|r,�n̂) = Tr[⇧±n̂⇢(r)]

Principle of Complementarity is equivalent to 
imposing the postulate of positive operators

 PC violation        abdication of this postulate and a legitimate 
use of non-positive operators to represent 
preparations. 

similar extensions:

Extension of Q. theory

nonlocal boxes, toy models of q. theory 
and ``boxworld'' 





Implications 



Non-Local Boxes creation
Two observers measure dichotomic observables  

A1 A2

B2B1

                   (first observer)

            (second observer)

B := A1B1 +A1B2 +A2B1 �A2B2

Clauser-Horne-Shimony-Holt (CHSH): |hBi|  2

Maximal violation attainable by quantum states: 
 (Tsirelson’s bound) 

|hBi|  2
p
2

Popescu and Rohrlich non-signalling 
 probability distributions: |hBi|  4



For a two-level system, any preparation violating the 
pr inc ip le of complementar i ty enables the 
deterministic generation of a bipartite preparation 
that violates Tsirelson's bound.  

Theorem:



A preparation violates CP iff r > 1

⇢(r) =
1

2
[(1 + r)|⇠ih⇠|+ (1� r)|⇠?ih⇠?|]  (eigenstates of    )⇢

Defining: |±⇠i := (1/
p
2)(|⇠i± |⇠?i)

X⇠ := |⇠ih⇠|� |⇠?ih⇠?|

U = |+⇠ih+⇠|⌦ I + |�⇠ih�⇠|⌦X⇠

P = U [⇢(r)⌦ |+⇠ih+⇠|]U †

=
1

2
[(1 + r)|�+ih�+|+ (1� r)|��ih��|]

U

⇢

|+⇠i

|�±i = (1/
p
2)(|+⇠ +⇠i± |�⇠ �⇠i)



U

⇢

|+⇠i
U'

U'
U 0 = |0ih+⇠|+ |1ih�⇠|

U 0 ⌦ U 0
P 0 =

1

2
[(1 + r)|�0

+ih�0
+|+ (1� r)|�0

�ih�0
�|]

|�0
±i = (1/

p
2)(|00i± |11i)
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p
2 A1 = (�

x

+ �
y

)/
p
2, A2 = (�

x

� �
y
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p
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B1 = �
x

, B2 = ��
y

hBi = Tr(BP 0) = 2
p
2r 1 < r 

p
2

violation of 
Tsirelson's 

bound 
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Does not violate non-signaling



For a two-level system, any preparation violating the 
pr inc ip le of complementar i ty enables the 
deterministic generation of a bipartite preparation 
that violates Tsirelson's bound.  

Theorem:



Cloning
Two preparations with Bloch vectors      and       are  r r0

      jointly-clonable only if r · r0 = ±1

Theorem:



Let two preparations with Bloch vectors    and     be joint-
clonable. 

r r0

There exists an unitary U such that

U(⇢⌦ |e0ihe0|)U† = ⇢⌦ ⇢

U(⇢0 ⌦ |e0ihe0|)U† = ⇢0 ⌦ ⇢

We then have

Tr[(⇢⌦ ⇢)(⇢0 ⌦ ⇢0)] = Tr[U(⇢⌦ |e0ihe0|)U†U(⇢0 ⌦ |e0ihe0|)U †]

= Tr(⇢⇢0)

 Since Tr(A⌦B) = Tr(A)Tr(B)

= [Tr(⇢⇢0)]2
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Conclusions

• simple and operational formulation of the principle of 
complementarity in terms of the empirical unpredictability of fully 
incompatible measurements.  

For two-level systems violation of complementarity is equivalent to:  
(i) Creation of nonlocal preparations that violate Tsirelson's bound 

without violating non-signalling, with deterministic operations; 
(ii) Distinguishability and cloning of a plethora of states via 

deterministic protocols.  

• Extension for higher-dimensional systems  
• Complementarity is a major physical principle and we believe it is, 

if not the main reason, one strong argument ruling out 
superquantum phenomema in nature. 



Non-classicality



Non-classicality



Non-classicality



Non-classicality

non-classical ability 
to generate 

entanglement



Non-classicality

non-classical ability 
to generate 

entanglement



Non-classicality

non-classical ability 
to generate 

entanglement



Non-classicality

non-classical ability 
to generate 

entanglement

non-classical

ability 
of quantum computation to outperform 

classical computation



Nonzero 
Classical Discord

Vlad Gheorghiu, Marcos C. de Oliveira, and Barry C. Sanders, PRL 115, 030403 (2015) 
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• Mutual information
• Quantum discord
• Imperfect measurement
• Classical discord

Outline 



Mutual Information 
(Classical)

29

H(X) = �
X

j

p(xj) log2 p(xj) H(Y ) = �
X

k

p(yk) log2 p(yk)

H(X,Y ) = �
X

j,k

p(xj , yk) log2 p(xj , yk)

H(X,Y)

I(X:Y)

I(X : Y ) ⌘ H(X : Y ) = H(X) +H(Y )�H(X,Y )

H(X|Y ) = H(X,Y )�H(Y ) H(Y |X) = H(X,Y )�H(X)



Post and pre-selected 
states

30

⇢AB

Measurement on B with outcome k

A B

k
�k = |�k⇥��k|B�kAB =

�k�AB�k

pk

�kA =
TrB{�k�AB�k}

pk

Post-selected state

�A =
X

k

pk�
k
A =

X

k

TrB{⇧k�AB⇧k}

Pre-selected state

pk = Tr{�k�AB}



(quantum) Mutual 
Information

S(A : B) = SA � S(A|B)

JA|B = S(�A)�
X

j

pjS(�
j
A)

pj = TrAB

�
�B

j �AB�
B
j

 
, �jA =

TrB{�B
j �AB�B

j }
pj

J�
AB = max

{⇧B
j }

2

4S(�A)�
X

j

pjS(�
j
A)

3

5

Classical Correlation
L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001)



Local accessible and 
Inaccessible information

J�
AB = max

{⇧k}

"
SA �

X

k

pkSA|k

#
,

(Quantum Discord)� AB = IAB � J AB

SA SBIAB

IAB = SA + SB � SAB

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)



EAB = 0 , �AB =
X

i

pi�
A
i ⌦ �Bi � AB = 0 , ⇥AB =

X

i

pi⇥
A
i ⌦�B

i

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)
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Conservation law for distributed entanglement of formation and quantum discord

Felipe F. Fanchini,1,* Marcio F. Cornelio,2 Marcos C. de Oliveira,2 and Amir O. Caldeira2

1Departamento de Fı́sica, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
2Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas, P.O. Box 6165, CEP 13083-970, Campinas, São Paulo, Brazil

(Received 30 August 2010; revised manuscript received 3 May 2011; published 13 July 2011)

We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF)
and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending
it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF
and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum
computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that
quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations
are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the
balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.

DOI: 10.1103/PhysRevA.84.012313 PACS number(s): 03.67.Mn, 03.67.Ac

I. INTRODUCTION

Quantum discord (QD) is a measure of quantum correlation
defined by Ollivier and Zurek almost ten years ago [1] and,
yet, a subject of increasing interest today [2]. It is well known
that, for a bipartite pure state, the definition of QD coincides
with that of the entanglement of formation (EOF). But it
has remained an open question how those two quantities are
related for general mixed states. Here, we present this desired
relation for arbitrarily mixed states and show that the EOF
and the QD obey a monogamic relation. Surprisingly, this
necessarily requires an extension of the bipartite mixed system
to its tripartite purified version. Nonetheless, we obtain a
conservation relation for the distribution of EOF and QD in the
system—the sum of all possible bipartite entanglement shared
with a particular subsystem, as given by the EOF, cannot be
increased without increasing, by the same amount, the sum of
all QD shared with this same subsystem. When extended to
the case of a tripartite mixed state, this relation results in an
alternative proof for the strong subadditivity of entropy, with
stronger bounds depending on the balance between the sum of
EOF and the sum of QD shared with a particular subsystem.

As an example of the importance of this conservation
relation, we explore the distribution of entanglement in
deterministic quantum computation with one single pure qubit
and a collection of N mixed states (DQC1). The algorithm,
developed by Knill and Laflamme [3], is able to perform
exponentially faster computation of important tasks [4,5] when
compared with well-known classical algorithms, without any
entanglement between the pure qubit and the mixed ones [4].
Arguably, the power of the quantum computer is supposed to
be related to QD, rather than entanglement [6]. Here, using
the conservation relation, we have shown that even in the
supposedly entanglement-free quantum computation there is
a certain amount of multipartite entanglement between the
qubits and the environment, which is responsible for the
nonzero QD (see Fig. 1).

*fanchini@iceb.ufop.br

II. CONSERVATION RELATION

Let us first consider an arbitrary system represented by
a density matrix ρABE with A and B representing two
subsystems and E representing the environment. It is important
to emphasize that the environment, here, is constituted by
the universe minus the subsystems A and B, since, in this
case, ρABE is a pure density matrix. There is an important
monogamic relation between the entanglement of formation
[7] and the classical correlation (CC) [8] between the two
subsystems developed by Koashi and Winter [9], which we
employ to understand the distribution of entanglement. It is
given by

EAB + J←
AE = SA, (1)

where EAB ≡ E(ρAB) is the EOF between A and B, J←
AE ≡

J←(ρAE) is the CC between A and E, and SA ≡ S(ρA) is the
usual Shannon entropy [10] of A. Further, ρAB = TrE{ρABE}
and analogously for ρAE and ρA. Explicitly, the CC reads
J←

AE = max{"E
x }[S(ρA) −

∑
x pxS(ρx

A)], where the maximum
is taken over all positive-operator-valued measurements {"E

x }
performed on subsystem E, with probability of x as an out-
come, px = TrA{"E

x ρAE"E
x }, and ρx

A = TrE{"E
x ρAE"E

x }/px .
One can easily understand Eq. (1). The entropy S(ρA) measures
the amount of correlation (classical and/or quantum) between
A and the external world. If we divide the external world into
two parts B and E, the amount of quantum correlation between
A and B, plus the amount of classical correlation between A
and the complementary part E, must be equal to SA. In this
sense, Eq. (1) poses constraints on the ability that system A
has to share correlations with other systems. For this reason it
is called a monogamous relation.

We can show a different aspect of Eq. (1) by adding to
both of its sides the mutual information between A and E,
IAE = SA + SE − SAE . After some manipulation we obtain

EAB = δ←
AE + SA|E, (2)

where SA|E = SAE − SE is the conditional entropy and δ←
AE =

IAE − J←
AE is the QD between subsystem A and the en-

vironment E. Equation (2) tells us that the entanglement
between two arbitrary subsystems A and B is related to the

012313-11050-2947/2011/84(1)/012313(4) ©2011 American Physical Society

Entanglement Irreversibility from Quantum Discord and Quantum Deficit

Marcio F. Cornelio,1,* Marcos C. de Oliveira,1,† and Felipe F. Fanchini1,2

1Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas, CEP 13083-859, Campinas, São Paulo, Brazil
2Departamento de Fı́sica, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil

(Received 1 July 2010; revised manuscript received 28 April 2011; published 5 July 2011)

We relate the problem of irreversibility of entanglement with the recently defined measures of quantum

correlation—quantum discord and one-way quantum deficit. We show that the entanglement of formation

is always strictly larger than the coherent information and the entanglement cost is also larger in most

cases. We prove irreversibility of entanglement under local operations and classical communication for a

family of entangled states. This family is a generalization of the maximally correlated states for which we

also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the

distillable secret key, and the quantum discord.

DOI: 10.1103/PhysRevLett.107.020502 PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

Two complementary and among the most important
tasks in quantum information theory (QIT) are entangle-
ment dilution and entanglement distillation [1,2]. These
tasks are performed in a scenario where two spatially
separated observers, usually called Alice and Bob, share
some quantum states and are able to manipulate their
respective parties through local operations and classical
communication (LOCC) [2]. In the first task, Alice and
Bob share a large number of copies of a standard pure
maximally entangled state,

j!i ¼ 1ffiffiffi
2

p ðj00iþ j11iÞ; (1)

which is associated with a unit of entanglement called
e-bit. Their task is to construct many copies of an arbitrary,
generally mixed, state ! from many copies of j!i using
only LOCC (see Fig. 1). In the second task, Alice and
Bob want to perform the reverse operation, i.e., to extract
from many copies of an arbitrary state, generally mixed,
the maximal possible amount of e-bits using only LOCC.
Those tasks naturally raise the two most important mea-
sures of entanglement-entanglement cost (EC) and distil-
lable entanglement (ED) [2]. For a given state !ab, E

Cð!abÞ
is the optimal rate for converting a large number of e-bits
into a large number of copies of the mixed state !ab under
LOCC by Alice and Bob. Similarly EDð!abÞ is the optimal
rate for converting a large number of !ab into e-bits under
LOCC [3].

When Alice and Bob can build a large number of copies
of an arbitrary state !ab and can get the same amount
of e-bits back through LOCC, it is said that there is
entanglement reversibility. Conversely, the entanglement
is said irreversible. To understand the aspects leading to
entanglement irreversibility is one of the most important
open problems in QIT [2] with practical implications.
Particularly, entanglement dilution is connected to the
problem of classical communication over a noise quantum
channel [4] and entanglement distillation is connected to

quantum communication and quantum key distribution
[3,5–7] for secure cryptography. It is known that the task
of building an entangled state and extracting back the
e-bits is reversible if Alice and Bob are limited to build
and to distill pure entangled states [1]. For a pure state ’,
EC and ED are equal to the von Neumann entropy Sð!rÞ of
the reduced density matrix !r of one of the subsystems.
Moreover, it is a long-standing conjecture that the only
states with EC ¼ ED are pure states and the so-called
pseudopure (PP) [3,8] states,

!PP ¼
X

pij’i
abih’i

abj % jfiihfij; (2)

where jfii is an ancilla, locally accessible for Alice or Bob,
working as a flag that indicates which pure entangled state
j’i

abi is in the mixture. Although widely believed, there are
few concrete evidences for this conjecture. To understand
irreversibility for mixed states has revealed itself to be a
very difficult question and the first examples were given
only some years later in Refs. [9–12]. Particularly, in
Ref. [12] it is shown that one can find mixed states that
consume entanglement to be created but no entanglement
can be extracted from it, the so-called bound entanglement.

FIG. 1 (color online). Entanglement dilution-distillation cycle.
The entanglement loss is given by ". In the case of reversible
entanglement, " vanishes. In the irreversible case of Eqs. (8) and
(9), " is the regularized quantum discord.
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Abstract. Quantum discord (QD) measures the fraction of the pairwise mutual
information that is locally inaccessible in a multipartite system. Fundamental
aspects related to two important measures in quantum information theory,
namely the entanglement of formation (EOF) and the conditional entropy, can
be understood in terms of the distribution of this form of local inaccessible
information (LII). As such, the EOF for an arbitrarily mixed bipartite system
AB can be related to the gain or loss of LII due to the extra knowledge that
a purifying ancillary system E has on the pair AB. Similarly, a clear meaning
of the negativity of the conditional entropy for AB is given. We employ these
relations to elucidate important and yet not well-understood quantum features,
such as the bipartite entanglement sudden death and the distinction between EOF
and QD for quantifying quantum correlation. For that we introduce the concept
of LII flow that quantifies the LII shared in a multipartite system when sequential
local measurements are carried out.
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Campinas, São Paulo, Brazil
3Institute for Quantum Information Science, University of Calgary, Alberta, Canada T2N 1N4

4Departamento de Fı́sica, Universidade Federal de São Carlos, Código de Endereçamento Postal 13565-905, São Carlos, São Paulo, Brazil
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Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one
system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This
concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be
divided as contributions of the entanglement between A and B and A and C, plus a term τABC involving genuine
tripartite entanglement and so expected to be always positive. A very important measure in quantum information
theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons
for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a
monogamous measure, i.e., for τABC ! 0. The relation derived is connected to the discrepancy between quantum
and classical correlations, τABC being negative whenever the quantum correlation prevails over the classical one.
This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution.
It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement
measure that is always monogamous.

DOI: 10.1103/PhysRevA.87.032317 PACS number(s): 03.67.Mn, 03.65.Ud

I. INTRODUCTION

The concept of the monogamy of an entanglement measure
E asserts that, in a tripartite A, B, and C system, the
entanglement of A with BC can be divided as EA|BC = EA|B +
EA|C + τABC , where EA|i , i = B,C, is a bipartite entanglement
and τABC is a genuine tripartite entanglement. In that sense,
unlike correlation in classical systems, for entanglement there
is a trade-off between the amount of bipartite entanglement
A can share with B and C. In 2000, Coffman, Kundu, and
Wootters (CKW) [1] derived a monogamous relation for
the squared concurrence and defined the genuine tripartite
entanglement as the tangle (hereafter called the concur-
rence tangle) [1], τABC = C2

A(BC) − C2
AB − C2

AC , where C2
ij is

the square of the concurrence between the pair i and j . The
concurrence tangle is always positive for a three-qubit system
[1] and for multiqubit systems [2]. However, it is known that
a similar analysis made with the entanglement of formation
(EOF) would give a tangle that can be positive or negative
(hereafter we call this tangle the EOF tangle). Although there
are some instances in which the EOF could be distributed in
a monogamous fashion, it is known that it is not, in general, a
necessarily monogamous entanglement measure (see a more
complete discussion in Refs. [3–5]). This is puzzling, since
the EOF satisfies many of the axioms required for a good
entanglement measure and, further, has a clear operational
meaning [6]. So why is the EOF tangle negative or positive?

In fact it is now known that entanglement is not the only
form of quantum correlation, since there are instances where
a state that is separable (not entangled) still possesses a sort

*fanchini@fc.unesp.br
†marcos@ifi.unicamp.br

of correlation which, in principle, could be used to perform
certain tasks more efficiently than with classical correlation
only. It is not surprising though that both forms of quantum
correlation can be related to each other through extended
system [7] distribution formulas. For example, it is possible to
describe a conservation relation [8] for distribution of the EOF
and quantum discord (QD), a measure of quantum correlation;
for an arbitrary tripartite pure system, the sum of the QD of a
chosen partition, given measurements on the complementary
partitions, must be equal to the sum of the pairwise EOF
between the chosen partition and the complementary ones.
Surprisingly, the sum of the pairwise EOFs appears in a
fashion quite similar to the desired expression for the so-called
monogamy of entanglement, and the relation obtained can
be connected to the way that classical correlations [9,10] are
distributed [11–13].

Until a few years ago, the conjecture that the classical
correlation would always be greater than the quantum cor-
relation for any quantum state was broadly accepted [9,10]. In
2009, Maziero et al. [14] presented the first counterexample
to this conjecture, while studying the dissipative dynamics
for two qubits. Despite their findings, the balance between
classical and quantum correlation has not been connected to
any quantum measure or protocol. In this paper, we show
necessary and sufficient conditions for the monogamy of the
EOF to be established with the help of a general quantum
correlation measure, the QD, and identify the EOF tangle for
an arbitrary tripartite state as the difference between classical
and quantum correlations. We show that the balance between
classical and quantum correlation is crucial to understand this
important open problem. For that we develop an operational
interpretation of the EOF tangle as a measure of the imbalance
of the quantum and the classical correlations, here called the
correlation discrepancy. In fact, very recently, Giorgi showed

032317-11050-2947/2013/87(3)/032317(6) ©2013 American Physical Society
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We use the classical correlation between a quantum system being measured and its measurement

apparatus to analyze the amount of information being retrieved in a quantum measurement process.

Accounting for decoherence of the apparatus, we show that these correlations may have a sudden

transition from a decay regime to a constant level. This transition characterizes a nonasymptotic

emergence of the pointer basis, while the system apparatus can still be quantum correlated. We provide

a formalization of the concept of emergence of a pointer basis in an apparatus subject to decoherence.

This contrast of the pointer basis emergence to the quantum to classical transition is demonstrated in an

experiment with polarization entangled photon pairs.
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The measurement problem is at the core of fundamental
questions of quantum physics and the quantum-classical
boundary [1]. One way to approach the classical limit is
through the process of decoherence [2], where a quantum
measurement apparatus A interacts with the system of
interest S. The apparatus suffers decoherence through
contact with the environment (E) that collapses A into
some classical set of pointer states, which are not altered by
decoherence. The correlations between these states and the
system are preserved, despite the dissipative decoherence
process. In this sense, decoherence selects the classical
pointer states of A, inducing a transition from quantum
to classical states of the measurement apparatus. The time
scale associated with this transition is usually estimated
by the decoherence half-life. In this work, we show that
contrary to this idea, the pointer states can emerge in a
well-defined instant of time. This result is obtained by
showing that the pointer basis emerges when the classical
correlation (CC) [3] between system and apparatus be-
comes constant. It emphasizes the importance of CC in
the investigation of the measurement process, even though
the joint SA state still has quantum features, as can
be inferred by quantum discord [4]. After the transition,
measurements are repeatable being verifiable by other
observers [5], signaling the emergence of the pointer
basis. We demonstrate this behavior experimentally using
entangled photons [6].

The discussion starts by considering that a system S
initially in a state jc si interacts with a measurement
apparatus A, so that they become entangled [1,2].

The apparatus is in constant interaction with the environ-
ment E, so that during the measurement process the com-
posite system S þAþ E evolves from the (uncoupled)
initial state jc sijA0ijE0i to

P
icijsiijAiijEiðtÞi, where jAii

are orthogonal and thus distinguishable states of the
apparatus, and jEiðtÞi are the states of the environment,
which are inaccessible to the observer. The reduced density
matrix of the system and the apparatus becomes

!sa ¼
X

i;j

cic
&
j hEjðtÞjEiðtÞijsiijAiihsjjhAjj; (1)

where hEjðtÞjEiðtÞi, with i ! j, are rapidly decaying time-
dependent coefficients. Therefore, after a characteristic
period of time known as the decoherence time "D, the
resulting state of S þA is well approximated by

!sa ¼
X

i

jcij2jsiijAiihsijhAij; (2)

for which the states of the bases fjsiig and fjAiig are
classically correlated. This correlation permits an observer
to obtain information about S via measurements on A.
In this sense, it is said that the environment selects a basis
set of classical pointer states fjAiig of the apparatus and
the decoherence time "D is traditionally recognized as a
reasonable estimate of the time necessary for the pointer
basis to emerge [2,7]. However, is it correct to assume that
"D is the necessary time for the information about S be
accessible to a classical observer?
To answer this question, let us consider the amount of

information one obtains about the quantum system by
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The degree of non-Markovianity of quantum processes has been characterized in several different ways
in the recent literature. However, the relationship between the non-Markovian behavior and the flow of
information between the system and the environment through an entropic measure has not been yet
established. We propose an entanglement-based measure of non-Markovianity by employing the concept of
assisted knowledge, where the environment E, acquires information about a system S, by means of its
measurement apparatus A. The assisted knowledge, based on the accessible information in terms of von
Neumann entropy, monotonically increases in time for all Markovian quantum processes. We demonstrate
that the signatures of non-Markovianity can be captured by the nonmonotonic behavior of the assisted
knowledge. We explore this scenario for a two-level system undergoing a relaxation process, through an
experimental implementation using an optical approach that allows full access to the state of the
environment.
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The inevitable interaction between a system and its
environment typically results in the loss of quantum
features, such as coherence [1,2]. One important aspect
in the study of these so-called open quantum systems is the
concept of non-Markovianity, which arises due to memory
effects of the environment. Non-Markovian features might
enable the system to recover part of the lost coherence and
information back from the environment [1–4]. Although
these memory effects have been investigated in the past,
only recently an increase in the understanding of non-
Markovianity from a quantum information perspective has
emerged [5–11].
The non-Markovian nature of a dynamical quantum map

can be characterized through a number of distinct methods
[5–10]. To date, the measure defined by Breuer, Laine, and
Piilo [6] based on trace distance, is the most significant
quantifier of the degree of non-Markovianity, due to its
interpretation: non-Markovianity manifests itself as a
reverse flow of information from the environment back to
the system. An alternative method to measure the degree of
non-Markovianity relies on the fact that local, completely
positive trace-preserving (CPTP) maps cannot increase the
entanglement between an open quantum system and an
isolated ancillary system [12]. Exploiting this property,
Rivas, Huelga, and Plenio (RHP) have defined another
measure for the degree of non-Markovianity [7]. According
to the RHP measure, a dynamical process is said to be non-
Markovian if the entanglement between the open system and
the isolated ancilla temporarily increases throughout the

dynamics. Although the RHP measure provides a connec-
tion between the non-Markovian behavior of dynamical
maps and entanglement, a meaning in terms of information
flow is still lacking in this approach.
Here, we propose an entanglement-based measure of

non-Markovianity having a direct information based inter-
pretation. Our method is based on the decoherence program
[13], where a system S is coupled to a measurement
apparatusA, which in turn interacts with an environment E.
During this process, E acquires information about S since
an amount of classical correlation is created between them.
We reveal a link between the proposed measure and the
flow of information between the system S and the envi-
ronment E in terms of the maximum amount of classical
information that the environment can obtain about the
system, here called the accessible information (AI),
J←SE [14]. In particular, we show that the rate of change
of the entanglement of formation (EOF) ESA shared
by the isolated system S and the apparatus A is directly
related to the rate of change of the AI that the environment
E acquires about the system S. As a direct consequence of
this connection, J←SE turns out to be a monotonically
increasing quantity for all Markovian quantum processes.
We illustrate this scenario considering a two-level
system undergoing an amplitude damping process [1]. We
demonstrate the connection between J←SE and ESA present-
ing an experimental realization using an optical setup
that allows full access to the environmental degrees of
freedom [15].
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What are the requirements for the existence of a similar 
classical stochastic theory? 



• Accessing X through  a noisy channel  

• Back-action: Probability that a measurement on      
causes a transition from              to              :

Imperfect (Classical) 
Measurements
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Classical Discord
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Conclusions

• Discord manifests when there is some stochasticity 
affecting the acquisition of information  

• Quantum discord: natural stochasticity due to non-
orthogonal basis 

• Discord can be understood classically as a 
stochastic information figure of merit  

•  State merging, thermodynamical aspects… 

• Relevance for inference…

39

(except when entanglement is present) 


