Entropy power inequalities for qudits

Nilanjana Datta

University of Cambridge

&

jointly with:

Koenraad Audenaert

Royal Holloway, London;

& University of Ghent, Belgium

Maris Ozols University of Cambridge

arXiv:1503.0421

What is an entropy power inequality?

 Inequalities between entropic quantities play a fundamental role in classical & quantum information theory

- Shannon's entropy power inequality is one such inequality (EPI) [1948]
- It has wide-ranging applications in:

information theory, probability theory, mathematical physics

• It deals with independent, continuous random variables.

CAMBRIDGE Sums of Continuous Random Variables

- X : random variable (r.v.) on \mathbb{R}^d with p.d.f. f_X
- X takes values $\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$ $\int_{\mathbb{R}^d} f_X(\mathbf{x}) d\mathbf{x} = 1$

Entropy Power

For a continuous random variable (r.v) X on \mathbb{R}^d with p.d.f. f_X

entropy power

$$v(X) := e^{2H(X)/d}$$

$$H(X):=-\int_{\mathbb{R}^d} f_X(x)\log f_X(x)dx$$
 differential entropy

Note: usually entropy power is defined as $v(X) := \frac{e^{2H(X)/d}}{2\pi e}$ but here we ignore the denominator.

Entropy Power Inequality (EPI)

Proposed by Shannon (1948): for X,Y independent r.v.s on \mathbb{R}^d with p.d.f.s f_X,f_Y :

$$v(X + Y) \ge v(X) + v(Y)$$

= iff X, Y are Gaussian r.v.s

$$v(X) := e^{2H(X)/d}$$

$$e^{2H(X+Y)/d} \ge e^{2H(X)/d} + e^{2H(Y)/d}.$$

CAMBRIDGE Lieb (1978): EPI equivalently expressible as an inequality between differential entropies

For X, Y independent r.v.s on \mathbb{R}^d , $\forall a \in [0, 1]$: $H(\sqrt{aX} + \sqrt{1 - aY}) \ge aH(X) + (1 - a)H(Y)$

$$f_{\sqrt{a}X+\sqrt{1-a}Y} = f_{\sqrt{a}X} * f_{\sqrt{1-a}Y}$$

This motivates the definition of a 'scaled' addition rule:

$$X \boxplus_a Y := \sqrt{a}X + \sqrt{1-a}Y$$

$$H(X \boxplus_a Y) \ge aH(X) + (1-a)H(Y)$$

("concavity" of the differential entropy under \square_a)

Set

Scaling property of entropy power

$$v(X) := e^{2H(X)/d}$$

-

$$v(\sqrt{\alpha}X) = \alpha v(X) \quad \forall \ \alpha > 0$$

This follows from the scaling property of p.d.f.s:

If
$$f_{cX}$$
: p.d.f. of a r.v. cX on \mathbb{R}^d
 $f_{cX}(\mathbf{x}) = \frac{1}{c^d} f_X(\mathbf{x}/c)$
 $\implies H(cX) = H(X) + d \ln c$(2)
 $c = \sqrt{\alpha}$ and substitute (2) in
 $v(\sqrt{\alpha}X) := e^{2H(\sqrt{\alpha}X)/d} = \alpha e^{2H(X)/d} = \alpha v(X)$

CAMBRIDGE Shannon's EPI in terms of the scaled addition rule

$$X \boxplus_a Y := \sqrt{a}X + \sqrt{1 - a}Y$$

For X, Y independent r.v.s on \mathbb{R}^d ,

$$v(X \boxplus_{1/2} Y) \ge \frac{1}{2}v(X) + \frac{1}{2}v(Y)$$

Proof: since a = 1/2,

$$v(X \boxplus_{1/2} Y) = v\left(\frac{1}{\sqrt{2}}X + \frac{1}{\sqrt{2}}Y\right)$$
$$= v\left(\frac{1}{\sqrt{2}}(X+Y)\right)$$
$$= \frac{1}{2}v(X+Y) \qquad [v(\sqrt{\alpha}X) = \alpha v(X)]$$
$$\geq \frac{1}{2}(v(X) + v(Y)) \quad [v(X+Y) \ge v(X) + v(Y)]$$

Summary : Classical EPI

For X, Y independent r.v.s on \mathbb{R}^d , $\forall a \in [0, 1]$ 'scaled' addition rule: $X \boxplus_a Y := \sqrt{a}X + \sqrt{1-a}Y$

 $X \boxplus_a Y \underbrace{\qquad \quad X \text{ if } a = 1}_{Y \text{ if } a = 0} (\boxplus_a : \text{ interpolating map})$

 $H(X \boxplus_a Y) \ge aH(X) + (1-a)H(Y)$

$$v(X \boxplus_{1/2} Y) \ge \frac{1}{2}v(X) + \frac{1}{2}(Y)$$

 $e^{2H(X\boxplus_{1/2}Y)/d} \ge \frac{1}{2}e^{2H(X)/d} + \frac{1}{2}e^{2H(Y)/d}$

Timeline of proofs

$$\frac{v(X \boxplus_{1/2} Y) \ge \frac{1}{2}v(X) + \frac{1}{2}(Y)}{H(X \boxplus_a Y) \ge aH(X) + (1-a)H(Y)} \dots \text{(cEP12)}$$

- **1948** Shannon: proposed (cEPI1)
- 1959 Stam: proof of (cEPI1)
- **1965** Blachmann: simplied proof of (cEPI1)
- 1978 Lieb: proof of (cEPI2); (cEPI1) \equiv (cEPI2)
- 1991 Dembo, Cover & Thomas: common proof of EPI & the Brunn-Minkowski inequality of convex geometry
- 2006 Verdu & Guo alternative proof of EPI
- various other proofs, generalizations & applications

- Fisher info
 - de Bruijn's identity

Applications & generalizations of the EPI

EPI proposed by Shannon as a means to bound the capacity of an additive noise channel:

 EPI has been used to find bounds on the capacity of Gaussian broadcast channel:

Applications & generalizations of the EPI

- Central Limit Theorem: convergence in relative entropy X_1, X_2, \ldots , i.i.d. r.v.s; $\mathbb{E}(X_i) = \mu$, $\operatorname{var} X_i = \sigma^2$ $Z_n := \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma}}$, p.d.f. f_n $D(f_n || \phi) \to 0$ as $n \to \infty$ ϕ : p.d.f. N(0, 1)
 - Many generalizations of EPI: e.g. monotonicity property [Artstein et. Al.]: X_1, X_2, \ldots , i.i.d. continuous r.v.s;

$$H\left(\frac{X_1+X_2+\ldots+X_n}{\sqrt{n}}\right) \ge H\left(\frac{X_1+X_2+\ldots+X_{n-1}}{\sqrt{n-1}}\right)$$

Analogues of EPIs for continuous variable (CV) quantum systems (arising e.g. in quantum optics)

<u>Quantum</u>

 ρ_X, ρ_Y

X,Y on \mathbb{R}^d

Classical

(differential entropy) H(X)

quantum states describing bosonic modes of e.m. radiation (e.g.*n*-mode bosonic fields)

(von Neumann entropy)

$$H(\rho_X) := -\operatorname{Tr}(\rho_X \log \rho_X)$$

 $\mathcal{E}_a(\rho_X \otimes \rho_Y) := \rho_X \boxplus_a \rho_Y$

What is the analogue of 'scaled' addition rule \square_a ?

- Can be applied to pairs of uncorrelated quantum states $(\rho_X, \rho_Y) \mapsto \rho_X \boxplus_a \rho_Y$
- Given by a linear CPTP map: (quantum channel) \mathcal{E}_a :

Quantum Addition Rule \square_a [Koenig & Smith]

Since the q-m analogue of **additive Gaussian noise** is modelled by the mixing of 2 bosonic modes at a **beamsplitter**;

- $a \in [0, 1]$: transmissivity of a beamsplitter
 - ρ_X, ρ_Y : states corresponding to its input modes

EXAMPRIDGE Motivation behind this choice of \square_{a}

 \hat{a}_i : annihilation ops.

 (Q_i, P_i) : corrs. pos. & mom. ops. in Heisenberg picture;

 $Q_i = (\hat{a}_i + \hat{a}_i^{\dagger})/\sqrt{2}; \qquad P_i = i(\hat{a}_i - \hat{a}_i^{\dagger})/\sqrt{2}$

 $Q = \sqrt{a}Q_1 + \sqrt{1-a}Q_2$; $P = \sqrt{a}P_1 + \sqrt{1-a}P_2$;

Mimics the classical scaled addition rule!

 $X \boxplus_a Y = \sqrt{a}X + \sqrt{1-a}Y$

Analogues of EPIs for CV quantum systems

Koenig & Smith; For n-mode bosonic states, $\forall a \in [0, 1]$

$$H(\rho_X \boxplus_a \rho_Y) \ge a H(\rho_X) + (1-a) H(\rho_Y)$$
(q1)

$$e^{H(\rho_X \boxplus_{1/2} \rho_Y)/n} \ge \frac{1}{2} e^{H(\rho_X)/n} + \frac{1}{2} e^{H(\rho_Y)/n} \dots (q2)$$

De Palma et. al; $\forall a \in [0, 1]$ entropy power for n-mode bosonic state $e^{H(\rho_X \boxplus_a \rho_Y)/n} \ge a e^{H(\rho_X)/n} + (1-a)e^{H(\rho_Y)/n}$

Analogues - not generalizations!

For X, Y indep. r.v.s on \mathbb{R}^d $H(X \boxplus_a Y) \ge aH(X) + (1-a)H(Y)$(c1) $e^{2H(X \boxplus_{1/2} Y)/d} \ge \frac{1}{2}e^{2H(X)/d} + \frac{1}{2}e^{2H(Y)/d}$ (c2)

CAMBRIDGE Our Aim: To establish analogues of EPIs for finite-dimensional quantum systems (qudits)

<u>Classical</u>

X,Y on \mathbb{R}^d

(differential entropy)

H(X)

 \boxplus_a (scaled addition rule)

Finite-dl Quantum

 $\rho,\sigma\in\mathcal{D}(\mathbb{C}^d)$

(von Neumann entropy)

 $H(\rho) := -\operatorname{Tr}(\rho \log \rho)$

 \boxplus_a (qudit addition rule)

- Given by a linear CPTP map (or quantum channel) \mathcal{E}_a $ho oxplus_a \sigma = \mathcal{E}_a(
 ho \otimes \sigma)$
 - Mimics the behaviour of a beamsplitter
 - Based on a continuous version of the swap operation

To see how we obtain \square_a :

Let us look at a simple example of a beamsplitter

 $U_1 = I$, $U_0 = i\sigma_x$: swaps the 2 input modes (upto a phase)

 $\forall a \in (0,1), U_a$ partially swaps the 2 input modes

This intuition \implies partial swap operator for 2 qudits $\implies \square_c$

WINVERSITY OF Obtaining a qudit addition rule
$$\square_a$$
:
 $\rho, \sigma \in \mathcal{D}(\mathbb{C}^d)$; $\{|i\rangle\}_{i=1}^d$ orthonormal basis of \mathbb{C}^d
Swap operator
 $S := \sum_{i,j=1}^d |i\rangle\langle j| \otimes |j\rangle\langle i|$ $S = S^{\dagger}; S^2 = I$
 $\forall |ij\rangle = |i\rangle \otimes |j\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d, \ S|ij\rangle = |ji\rangle$
Unitary operator $U_a := \sqrt{a} I + i\sqrt{1-a}S$
 $U_1 = I,$ $U_0 = iS$: swaps the qudits under conjugation
 $U_1(\rho \otimes \sigma)U_1^{\dagger} = \rho \otimes \sigma;$ $U_0(\rho \otimes \sigma)U_0^{\dagger} = \sigma \otimes \rho$
For $a \in (0, 1), U_a$ partially swaps the 2 qudits

ightarrow partial swap channel \mathcal{E}_a & hence \boxplus_a

WIVERSITY OF Partial swap channel $\mathcal{E}_a \rightarrow$ Qudit addition rule \square_a

$$\mathcal{E}_a: \mathcal{D}(\mathbb{C}^d \otimes \mathbb{C}^d) \to \mathcal{D}(\mathbb{C}^d)$$

 $\forall \rho_{12} \in \mathcal{D}(\mathbb{C}^d \otimes \mathbb{C}^d),$

$$\mathcal{E}_a(\rho_{12}) := \operatorname{Tr}_2(U_a \rho_{12} U_a^{\dagger});$$

$$U_a := \sqrt{a} \, I + i\sqrt{1-a}S$$

In particular, if

$$\rho_{12} = \rho \otimes \sigma, \ \rho, \sigma \in \mathcal{D}(\mathbb{C}^d),$$

$$\mathcal{E}_a(\rho \otimes \sigma) \equiv \rho \boxplus_a \sigma = \operatorname{Tr}_2 U_a(\rho \otimes \sigma) U_a^{\dagger};$$

Calculations

 $U_a := \sqrt{a} I + i\sqrt{1-a}S$

$$\mathcal{E}_a(\rho \otimes \sigma) \equiv \rho \boxplus_a \sigma = \operatorname{Tr}_2 U_a(\rho \otimes \sigma) U_a^{\dagger};$$

$$= \operatorname{Tr}_{2} \left[(\sqrt{a}I + i\sqrt{1-a}S)(\rho \otimes \sigma)(\sqrt{a}I - i\sqrt{1-a}S) \right]$$

 $= a \operatorname{Tr}_2(\rho \otimes \sigma) + (1 - a) \operatorname{Tr}_2(\sigma \otimes \rho) \quad [S(\rho \otimes \sigma)S = \sigma \otimes \rho]$

Calculations

 $U_a := \sqrt{a} I + i\sqrt{1 - aS}$

$$\mathcal{E}_a(\rho \otimes \sigma) \equiv \rho \boxplus_a \sigma = \operatorname{Tr}_2 U_a(\rho \otimes \sigma) U_a^{\dagger};$$

$$= \operatorname{Tr}_2\left[(\sqrt{a}I + i\sqrt{1-a}S)(\rho \otimes \sigma)(\sqrt{a}I - i\sqrt{1-a}S) \right]$$

 $= a \operatorname{Tr}_2(\rho \otimes \sigma) + (1 - a) \operatorname{Tr}_2(\sigma \otimes \rho)$

$$-i\sqrt{a(1-a)}\operatorname{Tr}_{2}\left[(\rho\otimes\sigma)S-S(\rho\otimes\sigma)\right]$$

 $= a\rho + (1-a)\sigma - i\sqrt{a(1-a)}\operatorname{Tr}_2\left[(\rho \otimes \sigma)S - S(\rho \otimes \sigma)\right]$

 $= \rho \sigma - \sigma \rho$

$$\mathcal{E}_a(\rho \otimes \sigma) = a\rho + (1-a)\sigma - i\sqrt{a(1-a)}[\rho,\sigma]$$

WIVERSITY OF Partial swap channel \mathcal{E}_a \rightarrow Qudit addition rule \square_a

$$\mathcal{E}_a(\rho \otimes \sigma) \equiv \rho \boxplus_a \sigma = \operatorname{Tr}_2 U_a(\rho \otimes \sigma) U_a^{\dagger};$$

(a=0)

(a = 1)

Partial swap channel

$$\forall \ a \in [0,1]$$

$$\mathcal{E}_a(\rho \otimes \sigma) = a\rho + (1-a)\sigma - i\sqrt{a(1-a)}[\rho,\sigma]$$

combines the 2 qudit states in a non-trivial manner, which mimics the action of a beamsplitter

Main Results: EPIs for qudits

$$\forall \rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1],$$

•
$$H(\rho \boxplus_a \sigma) \ge a H(\rho) + (1-a)H(\sigma)$$
(qd1)
• $e^{H(\rho \boxplus_a \sigma)/d} \ge a e^{H(\rho)/d} + (1-a)e^{H(\sigma)/d}$(qd2)

i.e. analogues of EPIs for n-mode bosonic states

$$H(\rho_X \boxplus_a \rho_Y) \ge aH(\rho_X) + (1-a)H(\rho_Y)$$

$$e^{H(\rho_X \boxplus_a \rho_Y)/n} \ge a e^{H(\rho_X)/n} + (1-a) e^{H(\rho_Y)/n}$$

and much more!

To state our full result, recall the definition of majorization

Majorization

To state our full result, we define the following class of functions

<u>Class of functions</u>: $\mathcal{F} := \{ f : \mathcal{D}(\mathbb{C}^d) \to \mathbb{R} \}$

1. Concave : For $\rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1]$:

$$f(a\rho + (1-a)\sigma) \ge af(\rho) + (1-a)f(\sigma).$$

2. Symmetric : $f(\rho)$ depends only on the eigenvalues of ρ and is symmetric in them.

e.g. of a function $f \in \mathcal{F}$:

 $f(
ho) = H(
ho) := -\operatorname{Tr}(
ho\log
ho)$ von Neumann entropy

<u>Class of functions</u>: $\mathcal{F} := \{ f : \mathcal{D}(\mathbb{C}^d) \to \mathbb{R} \}$

1. Concave : For $\rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1]$:

 $f(a\rho + (1-a)\sigma) \ge af(\rho) + (1-a)f(\sigma).$

2. Symmetric : $f(\rho)$ depends only on the eigenvalues of ρ and is symmetric in them.

1 & 2 imply that: $f(\rho)$ is Schur-concave:

Let
$$\lambda(\rho) = (r_1, r_2, \dots, r_d)$$
 vectors of eigenvalues of
 $\lambda(\sigma) = (s_1, s_2, \dots, s_d)$ ρ, σ
Schur Concavity $\lambda(\rho) \prec \lambda(\sigma) \implies f(\rho) \ge f(\sigma)$

Theorem 1: $\forall f \in \mathcal{F}, a \in [0, 1],$ $f(\rho \boxplus_a \sigma) \ge a f(\rho) + (1 - a) f(\sigma)$

• Since the von Neumann entropy $H(\rho) \in \mathcal{F}$,

Theorem 1
$$\implies$$
 $H(\rho \boxplus_a \sigma) \ge aH(\rho) + (1-a)H(\sigma)$

• What other functions belong to the class \mathcal{F} ?

e.g. Renyi entropy:

$$H_{\alpha}(\rho) = \frac{1}{\alpha - 1} \operatorname{Tr} \rho^{\alpha}; \quad \alpha > 0; \, \alpha \neq 1.$$

Solution for the examples of functions in the class \mathcal{F}

For an *n*-mode bosonic state ρ :

• entropy power: $e^{H(\rho)/n}$

In analogy, for a qudit $\rho \in \mathcal{D}(\mathbb{C}^d)$ define

Entropy power for a qudit : $\forall c \geq 0, \ \rho \in \mathcal{D}(\mathbb{C}^d),$ $E_c(
ho):=e^{cH(
ho)}$

<u>**Result:</u>** $E_c(\rho) \in \mathcal{F}, \quad \forall 0 \le c \le 1/(\log d)^2$ </u>

Note: functions in \mathcal{F} , 1. concave 2. symmetric \checkmark

 $E_c(
ho)=e^{cH(
ho)}$: depends only on ~H(
ho)

Theorem 2:

$$E_c(
ho)$$
 is concave $\forall \, 0 \leq c \leq 1/(\log d)^2$

Theorem 1:
$$\forall f \in \mathcal{F}, f(\rho \boxplus_a \sigma) \ge af(\rho) + (1-a)f(\sigma)$$

Theorem 1

 $E_c(\rho \boxplus_a \sigma) \ge a E_c(\rho) + (1-a) E_c(\sigma)$

 $\forall 0 \le \mathbf{c} \le 1/(\log d)^2$

Theorem 1:
$$\forall f \in \mathcal{F}, f(\rho \boxplus_a \sigma) \ge af(\rho) + (1-a)f(\sigma)$$

Key ingredient of the proof of Theorem 1

Theorem 3:
$$\forall \rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1],$$

$$\lambda(\rho \boxplus_a \sigma) \prec a\lambda(\rho) + (1-a)\lambda(\sigma)$$

Proof of Theorem 1, given Theorem 3:

Define diagonal matrices $\tilde{\rho} := \operatorname{diag}(\lambda(\rho)); \tilde{\sigma} := \operatorname{diag}(\lambda(\sigma))$ with their entries arranged in non-increasing order.

$$\begin{array}{lll} \underline{\text{Theorem 3}} & \longrightarrow & \lambda(\rho \boxplus_a \sigma) \prec a\lambda(\tilde{\rho}) + (1-a)\lambda(\tilde{\sigma}) \\ & = \lambda(a\tilde{\rho}) + \lambda((1-a)\tilde{\sigma}) \\ & = \lambda(a\tilde{\rho} + (1-a)\tilde{\sigma}) \end{array}$$

Theorem 1:
$$\forall f \in \mathcal{F}, f(\rho \boxplus_a \sigma) \ge af(\rho) + (1-a)f(\sigma)$$

Key ingredient of the proof of Theorem 1

Theorem 3:
$$\forall \rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1],$$

 $\lambda(\rho \boxplus_a \sigma) \prec \lambda(a\tilde{\rho} + (1 - a)\tilde{\sigma})$

Proof of Theorem 1, given Theorem 3:

Define diagonal matrices $\tilde{\rho} := \operatorname{diag}(\lambda(\rho)); \tilde{\sigma} := \operatorname{diag}(\lambda(\sigma))$ with their entries arranged in non-increasing order.

$$\begin{array}{lll} \underline{\text{Theorem 3}} & \implies & \lambda(\rho \boxplus_a \sigma) \prec a\lambda(\tilde{\rho}) + (1-a)\lambda(\tilde{\sigma}) \\ & = \lambda(a\tilde{\rho}) + \lambda((1-a)\tilde{\sigma}) \\ & = \lambda(a\tilde{\rho} + (1-a)\tilde{\sigma}) \end{array}$$

Theorem 1:
$$\forall f \in \mathcal{F}, f(\rho \boxplus_a \sigma) \ge af(\rho) + (1-a)f(\sigma)$$

Key ingredient of the proof of Theorem 1

Theorem 3:
$$\forall \rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \forall a \in [0, 1],$$

 $\lambda(\rho \boxplus_a \sigma) \prec \lambda(a\tilde{\rho} + (1 - a)\tilde{\sigma})$

Proof of Theorem 1, given Theorem 3:

<u>Theorem 3</u> \implies

$$\forall f \in \mathcal{F}, \ f(\rho \boxplus_a \sigma) \ge f(a\tilde{\rho} + (1-a)\tilde{\sigma}) \quad \text{Schur-concavity} \\ \ge af(\tilde{\rho}) + (1-a)f(\tilde{\sigma}) \quad \text{concavity} \\ = af(\rho) + (1-a)f(\sigma) \quad \text{symmetric} \blacksquare$$

An application of the EPIs

Partial swap channel: $\mathcal{E}_a(\rho \otimes \sigma) \equiv \rho \boxplus_a \sigma$

 $\mathcal{E}_a(\rho \otimes \sigma) = a\rho + (1-a)\sigma - i\sqrt{a(1-a)[\rho,\sigma]}$

Now consider σ to be fixed $\forall \rho \in \mathcal{D}(\mathbb{C}^d)$

<u>Additive noise channel:</u> $\mathcal{E}_{a,\sigma}(\rho) = \mathcal{E}_a(\rho \otimes \sigma)$

 $\mathcal{E}_{a,\sigma}(\rho)$

a (family of) quantum channels which depends on the parameter \mathcal{Q} & the state \mathcal{T}

$$[\rho, I/d] = 0$$

depolarizing channel

IF inputs are restricted to be product states, i.e.

$$\rho_x^{(n)} = \rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_n$$

Then, product-state classical capacity:

 $C_{prod}(\Lambda): \begin{matrix} \text{max. number of bits that can be sent per use of the} \\ \text{channel s.t. } p_{err}^{(n)} \to 0 & \text{as} \quad n \to \infty \end{matrix}$

CAMBRIDGE It follows from the HSW Theorem that

$$C_{prod}(\Lambda) \le \log d - \min_{\rho} H(\Lambda(\rho))$$
 $(\Lambda \equiv \mathcal{E}_{a,\sigma})$

$$H(\Lambda(\rho)) \equiv H(\mathcal{E}_{a,\sigma}(\rho)) = H(\rho \boxplus_a \sigma)$$

EPI:
$$H(\rho \boxplus_a \sigma) \ge aH(\rho) + (1-a)H(\sigma)$$

$$C_{prod}(\Lambda) \le \log d - a (\min_{\rho} H(\rho)) - (1 - a)H(\sigma)$$
$$= 0$$

$$C_{prod}(\Lambda) \le \log d - (1-a)H(\sigma)$$

upper bound on the product-state classical capacity!

CAMBRIDGE Entropy Photon Number Inequality (EPnl)

• another generalization of the classical EPI to the CV quantum setting Thermal state of a bosonic mode with annihilation op. $\hat{a},$

$$\rho_{th} = \sum_{i=0}^{\infty} \frac{N^i}{(N+1)^{i+1}} |i\rangle\langle i|$$

average photon number $N := \operatorname{Tr}\left(\rho_{th} \, \hat{a}^{\dagger} a\right)$

Its von Neumann entropy :

$$H(\rho_{th}) = g(N), \quad g(x) := (1+x)\log(1+x) - x\log x,$$

$$N = g^{-1}(H(\rho_{th}))$$

AMBRIDGE Entropy Photon Number Inequality (EPnl)

• another generalization of the classical EPI to the CV quantum setting Thermal state of a bosonic mode with annihilation op. $\hat{a},$

$$\rho_{th} = \sum_{n=0}^{\infty} \frac{N^n}{(N+1)^{n+1}} |n\rangle \langle n|$$

average photon number $N := \operatorname{Tr}\left(\rho_{th} \, \hat{a}^{\dagger} a\right)$

Its von Neumann entropy :

 $H(\rho_{th}) = g(N), \quad g(x) := (1+x)\log(1+x) - x\log x,$

For an n-mode bosonic state:

$$N = g^{-1} (H(\rho_{th})/n)$$

Conjecture: [Guha et al.]

$$N(\rho \boxplus_a \sigma) \ge aN(\rho) + (1-a)N(\sigma)$$

- has important implications
- proved only for Gaussian states.

Entropy photon number for qudits

$$\begin{array}{l} \forall \ \rho \in \mathcal{D}(\mathbb{C}^d), \ N(\rho) := g^{-1}(H(\rho)/d) \\ \\ \text{where} \quad g(x) = -x \log x + (1+x) \log(1+x) \end{array}$$

Entropy photon number inequality for qudits

$$N(\rho \boxplus_a \sigma) \ge aN(\rho) + (1-a)N(\sigma)$$

Summary & Open Questions

Analogues of EPIs for qudits under a qudit addition rule

 $\rho \boxplus_a \sigma \equiv \mathcal{E}_a(\rho \otimes \sigma) = a\rho + (1-a)\sigma - i\sqrt{a(1-a)}[\rho,\sigma]$ (partial swap channel)

$$\begin{array}{l} \hline \textbf{Theorem 1:} \ \forall f \in \mathcal{F}, \, a \in [0,1], \\ f(\rho \boxplus_a \sigma) \geq a f(\rho) + (1-a) f(\sigma) \\ H(\rho \boxplus_a \sigma) \geq a H(\rho) + (1-a) H(\sigma) \\ e^{H(\rho \boxplus_a \sigma)/d} \geq a e^{H(\rho)/d} + (1-a) e^{H(\sigma)/d} \\ N(\rho \boxplus_a \sigma) \geq a N(\rho) + (1-a) N(\sigma) \end{array}$$
$$\begin{array}{l} \hline \textbf{Theorem 2:} \ \forall \rho, \sigma \in \mathcal{D}(\mathbb{C}^d), \, \forall a \in [0,1], \\ \lambda(\rho \boxplus_a \sigma) \prec a \lambda(\rho) + (1-a) \lambda(\sigma) \end{array}$$

- Can our proof of the qudit analogue of the entropy photon number inequality (EPnl) be generalized to establish EPnl for the bosonic case ?
- Is the partial swap channel \mathcal{E}_a (& hence the \boxplus_a that we define) the unique channel resulting in an interpolation between the input states & resulting in a non-trivial EPI?

$$\begin{split} \text{Mixing:} \quad & \tilde{\mathcal{E}}_a(\rho \otimes \sigma) \equiv \rho \tilde{\boxplus}_a \sigma := a\rho + (1-a)\sigma \\ & H(\rho \tilde{\boxplus}_a \sigma) \geq a H(\rho) + (1-a) H(\sigma) \\ & H(a\rho + (1-a)\sigma) \geq a H(\rho) + (1-a) H(\sigma) \ \text{ concavity!} \end{split}$$

- Is it possible to generalize \boxplus_a for combining more than two states ? Multi-mode generalization of our EPI?
- EPI for conditional entropies ?

Thank you!