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Introduction
• Bell-type inequalities have played a major role in

unravelling the mysteries and structure of the quantum
mechanics formalism.

• In 1964, Bell obtained an inequality to demonstrate the
incompatibility between local realism and quantum
mechanics. It was done for a singlet state.

• After more than 25 years, in 1991, Gisin showed that any
pure entangled state of a bipartite system violates a Bell’s
inequality, more accurately CHSH inequality.

• Maximum value of CHSH operator of this inequality in
quantum mechanics can be 2

√
2 (Tsirelson’s bound,

1980). The local-realistic value is 2.
• This also establishes a relationship between entanglement

and nonlocality.
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Introduction
• The situation about mixed state is not clear. There are

entangled states which don’t violate standard CHSH
inequality. Prototype example is Werner state. This leads
to the phenomenon of hidden nonlocality.

• In literature, there are attempts to show that all entangled
states are nonlocal. For example, Gisin (1996), Buscemi
(2012), and Masanes et al (2008).

• So there may still be a relationship between nonlocality
and entanglement.

• Question, then, is - what is the nature of this relationship ?
• Even for pure states, the violation of CHSH inequality

depends on the observables that we choose to measure.
Violation by a less entagled state in one setting, can be
larger than by a more entangled state in a different setting.
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Introduction
• We will first discuss CHSH inequality for two-qubit pure

states and see its relation with a measure of entanglement,
namely concurrence.

• Then we will go to our real goal of obtaining a relationship
for a bipartite qudit state.

• The relationship that we get is between the value of the
Bell-type operator for a state and its entanglement. So by
measuring this operator, we can experimentally find the
entanglement of a state; or compare the entanglement of
two or more states.

• Whatever we have obtained, one should be able to do far
better. That is for future.

• I should mention that this work has been done in
collaboration with a student Chandan Datta and a PDF
Sujit Choudhury.
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CHSH Enequality

The CHSH inequality (John Clauser, Michael Horne, Abner
Shimony, and Richard Holt, 1969) is given in terms of the
following combination of the observables,

ICHSH = A1 B1 + A1 B2 + A2 B1 − A2 B2

In a local-realistic theory,

〈ICHSH〉 ≤ 2
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CHSH Inequality
• Let us now consider the measuremnet settings:

A1 = σx , A2 = σy ,

B1 =
1√
2
(σx + σy ), B2 = 1√

2
(σx − σy ).

• We take the nonmaximally entangled state as,

|ψ0〉 = c0|00〉+ c1|11〉.

• Note that the state is in σz basis, while A1 and A2 are in the
perpendicular directions.

• Then, we find,

〈ψ0|ICHSH |ψ0〉 = 4
√

2c0c1 = 2
√

2C.

Here C is the concurrence of the state.
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CHSH Inequality
• The state we have used is in the σz basis. We will always

get this result if the measurement settings are
perpendicular to the state basis vector direction.

• An arbitrary two-qubit state after Schmidt decomposition
can alway be written as

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉.

• We choose the measurement settings in the following way

A1 = m̂1 · ~σ, A2 = m̂2 · ~σ,

B1 = 1√
2
(m̂1 · ~σ + m̂2 · ~σ), B2 =

1√
2
(m̂1 · ~σ − m̂2 · ~σ).

Here n̂, m̂1 and m̂2 are the unit vectors perpendicular to
each other.

• The effect of these above operators on the state is

m̂1 · ~σ|n̂+〉 = −|n̂−〉, m̂1 · ~σ|n̂−〉 = −|n̂+〉,
m̂2 · ~σ|n̂+〉 = −i |n̂−〉, m̂2 · ~σ|n̂−〉 = +i |n̂+〉.
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CHSH Inequality
• Now we have to obtain the expectation value of the CHSH

operator in the state |ψn〉. We get same as before

〈ψn|IS|ψn〉 = 2
√

2C.

• Since concurrence is a measure of entanglement, we find
that there is relation between an entanglement measure
and the value of CHSH operator for any pure two-qubit
state. Of course, these measurement settings have a flaw.
Some of the entangled state don’t violate CHSH inequality.

• Advantage of these settings is that the value of operator is
zero for product states, and non-zero for entangled states.

• So, in this setting, CHSH operator can act as a witness to
the entanglement as well as measure it.
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CHSH Inequality
• Let us now consider another measurement settings:

A1 = σz , A2 = σx (1)

B1 =
1√
2
(σz + σx) B2 = 1√

2
(σz − σx).

• For these settings we find,

〈ψ0|ICHSH |ψ0〉 =
√

2(1 + C).

Here C is the concurrence of the state.
• We again see a relation, though a different one. We can

again measure the entanglement. However, here the
expectation value is higher, so violation is higher. But still
some entangled states don’t violate the inequality.

• Notice the difference in the settings. In the first case, the
direction of the measurements were perpendicular to the
”direction” of the state. In this case, one measurement
”direction” is parallel.
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CHSH Inequality
• Let us again consider a general two-qubit state,

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉.

• We choose the measurement settings in the following way

A1 = n̂ · ~σ, A2 = m̂ · ~σ,

B1 = 1√
2
(n̂ · ~σ + m̂ · ~σ), B2 =

1√
2
(n̂ · ~σ − m̂ · ~σ).

• We again find,

〈ψ0|ICHSH |ψ0〉 =
√

2(1 + C).

Here C is the concurrence of the state.
• We see that we have higher values and some entangled

states do not violate CHSH inequality. But still there is a
relation which can be used to measure entanglement.
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CHSH Inequality
• Let us now consider a third set of measurement settings:

A1 = σz , A2 = σx , (2)
B1 = cos(η) σz + sin(η) σx , B2 = cos(η) σz − sin(η) σx .

Here cos(η) = 1√
1+C2

.

• For a nonmaximally entangled state

|ψ0〉 = c0|00〉+ c1|11〉

we find,
〈ψ0|ICHSH |ψ0〉 = 2

√
1 + C2.

Here C is the concurrence of the state.
• These settings are the best. For any entangled state there

is a violation of CHSH inequality. These settings have been
optimized for each state to give maximum possible value.
(Horodecki3, 1995)
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CHSH Inequality
• Again we consider the general two-qubit state.

|ψn〉 = c0|n̂+n̂+〉+ c1|n̂−n̂−〉

• We choose the measurement settings in the following way

A1 = n̂ · ~σ, A2 = m̂ · ~σ,
B1 = n̂ · ~σ cos(η) + m̂ · ~σ sin(η), B2 = n̂ · ~σ cos(η)− m̂ · ~σ sin(η).

Here n̂ and m̂ are the unit vectors perpendicular to each
other.

• We again get

〈ψn|ICHSH |ψn〉 = 2
√

1 + C2.

• Though these setting give the optimized value and largest
violation, but there is a flaw. You have to know the state in
advance for these settings.

• So if we wish to find how entangled an unknown state is,
we should be using earlier settings.
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CHSH Inequality
• The question may be asked what about the most general

state-independent settings ? One can show that there is a
relation,

〈ψ0|ICHSH |ψ0〉 = A + B C.

Here A and B would depend on measurement setting
angles.

• Here is a plot to show the value of CHSH operator for the
three different settings:
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CHSH Inequality
• We had written above the CHSH inequality in terms of

correlation functions. It is possible to rewrite this inequality
in terms of joint probabilities:

ICHSH = P(A1 = B1)+P(B1 = A2+1)+P(A2 = B2)+P(B2 = A1).

• In this expression P(A = B + k), more generally, stands for

P(A = B + k) =
d−1∑
j=0

P(A = j + k mod d ,B = j).

For qubits d = 2. P(A=j, B=k) is a joint probability of
obtaining A = j and B = k on measuring A and B.

• This form of CHSH inequality was generalized to qudits
and is known as CGLMP inequality. (D. Collins, N. Gisin,
N. Linden, S. Massar, and S. Popescu, 2002)
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Bell-type Inequalities and Qudits
• Qudits, i.e., systems with d-dimensional Hilbert space, can

play important role in quantum information processing. It
would also be interesting to investigate their nonlocality
structure.

• Here is the typical set-up to observe Bell-type inequality
violation

• Gisin (1991) and Gisin & Peres (1992) examined CHSH
inequality with dichotomic observables for a system of two
qudits. Gisin theorem also holds for two-qudit pure states.
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Bell-type Inequalities and Qudits
• It is natural to examine inequalities, where the observables

can take d different values - like 0,1,2, ....,d − 1. One can
also measure more than 2 observables on each qudit.

• Our focus will be on inequalities with two observables with
d values on each side.

• One early development in this direction was the
introduction of CGLMP inequality. (D. Collins, N. Gisin, N.
Linden, S. Massar, and S. Popescu, 2002). This inequality
has its own advantages and disadvantages.

• Subsequently, many more inequalities for two or more
qudit systems have been proposed. We will pick one such
inequality, which was one of many that were proposed by
W. Son, J. Lee and M. S. Kim (2006). It is called SLK
inequality.

• We will obtain a relation between an entanglement
measure and the expectation value of SLK operator in a
particular set of observation settings. For these settings no
such relation exists for CGLMP operator.
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CGLMP Inequality
• The CGLMP inequality is a generalization of CHSH

inequality. It is a specific generalization in terms of joint
probability distributions:

Id =

[ d
2 ]−1∑
k=0

(1− 2k
(d − 1)

)[(P(A1 = B1 + k) + P(B1 = A2 + k + 1)

+P(A2 = B2 + k) + P(B2 = A1 + k))
−(P(A1 = B1 − k − 1) + P(B1 = A2 − k)
+P(A2 = B2 − k − 1) + P(B2 = A1 − k − 1))] (3)

• This generalization was obtained by first trying to find an
optimum expression for d = 3 and d = 4.

• There are other ways to write it, as we will see later.
• The maximum local-realistic value for this is 2 and

maximum possible value is 4.
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CGLMP Inequality
• This has been more popular qudit inequality. It has been

tested experimentally also. (Dada et al, 2011)
• However this inequality has one drawbeck. A

nonmaximally entangled state violates it more than a
maximally entangled state. Following table from Acin, Durt,
Gisin, and Latorre (2002) illustrates this.

• Given this, it would appear unlikely that a relation where a
relation like that for CHSH inequality may exist for CGLMP
inequality.
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SLK Inequality
• In the case of SLK (Son-Lee-Kim) inequality, two far

separated observers Alice and Bob, can independently
choose one of the two observables denoted by A1, A2 for
Alice and B1, B2 for Bob. Measurement outcomes of the
observables are elements of the set, V = {1, ω, · · · , ωd−1},
where ω = exp (2πi/d).

• In a variant of SLK inequality, the SLK function, ISLK , is
given by

ISLK =
1√
2

d−1∑
n=1

(
ω−n/4Cn

1,1 + ω−3n/4Cn
2,1

+ωn/4Cn
1,2 + ω−n/4Cn

2,2
)
+ c.c.,

ω = exp(2πi/d), c.c. is for complex conjugate.
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SLK Inequality
• For d = 2, it reduces to CHSH inequality. It has been

shown that maximum local-realistic value is

1√
2
[3 cot(

π

4d
)− cot(

3π
4d

)]− 2
√

2

• The correlation function can be written as

Cn
a,b =

∫
dλρ(λ)(A∗a(λ) Bb(λ))

n

=
d−1∑
k ,l=0

ωn(l−k)P(Aa = k ,Bb = l)

=
∑
α

ωnαP(Aa = Bb + α mod d)

where P(Aa = k ,Bb = l) represents the probability that
Alice and Bob get ωk and ωl on measurement.
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SLK Inequality
• In terms of probabilities, it can be written as

ISLK =
d−1∑
α=0

f (α)[P(A1 = B1 + α)

+P(B1 = A2 + α+ 1) + P(A2 = B2 + α)

+P(B2 = A1 + α)],

where sums inside the probabilities are modulo d sums,
and

f (α) =
1√
2

(
cot[

π

d
(α+

1
4
)]− 1

)
.

• CGLMP inequality can also be written in the same form as
above, except,

fCGLMP(α) = 1− 2α
d − 1

.

• Using identity
d−1∑
k=0

cot(4k+1
4d )π = d , we get

d−1∑
α=0

f (α) = 0.
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SLK Inequality
• One good feature of this inequality is that it is maximally

violated by maximally entangled state.
• For maximally entangled state

ISLK = 2
√

2(d − 1)

• For a two-qutrit state

|ϕ〉 = N(|00〉+ γ |11〉+ |22〉),

the difference between the CGLMP and SLK inequality can
be seen easily. CGLMP function has maximum value for
this state when γ = 0.7923. The value is 2.9149. This is
same as given in the table on an earlier slide. For SLK
function, the maximum value of 4

√
2 is obtained for γ = 1.
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SLK Inequality
• Following plot from Lee, Ryu, and Lee (2006) illustrates

this.

• We clearly see that SLK inequality is maximally violated for
maximally entangled two-qutrit state.
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SLK Inequality
• We now calculate the value of the Bell-SLK function for an

arbitrary pure two-qudit state |ψ〉 =
∑

i ci |ii〉 and for the
measurement settings originally given by Durt,
Kaszlikowski and Zukowski (2001). The nondegenerate
eigenvectors of the operators Âa, a = 1,2, and B̂b,
b = 1,2, are respectively

|k〉A,a =
1√
d

d−1∑
j=0

ω(k+δa)j |j〉,

|l〉B,b =
1√
d

d−1∑
j=0

ω(−l+εb)j |j〉,

where δ1 = 0, δ2 = 1/2, ε1 = 1/4 and ε2 = −1/4.
• Putting probabilities together, we get

ISLK =
4
d

d−1∑
α=0

f (α)
d−1∑

p,q=0

cpcqω
(α+1/4)(p−q).
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SLK Inequality
• We have to now compute the expression. We will need to

find some sums.
• We can now rewrite

ISLK =
4
d

d−1∑
α=0

f (α)
∑
p 6=q
p>q

2cpcq cos
(2π

d
(α+

1
4
)(p − q)

)

=
4
d

d−1∑
α=0

1√
2

(
cot[

π

d
(α+

1
4
)]− 1

)
∑
p 6=q
p>q

2cpcq cos
(2π

d
(α+

1
4
)(p − q)

)
.

• In particular, we need to find

d−1∑
α=0

cos
(2πm

d
(α+

1
4
)
)

cot
(π

d
(α+

1
4
)
)
, (4)

where we have replaced p − q by m (an integer).



Introduction CHSH Inequality and Qubits Bell-type Inequalities and Qudits CGLMP Inequality SLK Inequality Conclusions

SLK Inequality
• This sum could not be found in various handbooks or

googling. However, it turns out that we can compute these
sums using method of residues.

• To compute the sum, we have proved two lemmas.
• With a and k being positive integer such that a < k , and

0 < b < 1,

k−1∑
j=0

cos
2πaj

k
cot (

πj
k

+ πb)

= k cos [b(2a− k)π] cosec (bkπ).

• With a and k being positive integer such that a < k , and
0 < b < 1.

k−1∑
j=0

sin
2πaj

k
cot (

πj
k

+ πb)

= −k sin [b(2a− k)π] cosec (bkπ).
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SLK Inequality
• Using these sums, we obtain

d−1∑
α=0

cos
(2πm

d
(α+

1
4
)
)

cot
(π

d
(α+

1
4
)
)
= d .

• We note that the value of this sum is independent of m.
This is most important. If there were dependence on m,
then we would not have been able to write SLK function in
terms of concurrence. In the case of CGLMP funnction, the
sum that appears is not independent of m. Therefore, such
a relation dows not exist.

• Putting everything together

ISLK = 4
√

2
∑
p 6=q
p>q

cpcq.

• This sum is proportional to the concurrence of the state.
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SLK Inequality
• The concurrence, C, for a two-qudit pure state is defined as

C =
∑
p 6=q
p>q

cpcq
2

d − 1
.

• This is a generalization of the concurrence for a system of
two qubits. Using this we finally get

ISLK = 2
√

2(d − 1)C.

• Note that for d = 2, it reduces to the expression that we
had obtained for the CHSH operator, for the first
measurement settings. Actually it is not surprising, since
DKZ measurement settings reduce to our first
measurement settings.

• This result establishes a relation between nonlocality and
entanglement. For product states this function is zero. So it
is an entanglement witness also.
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SLK Inequality
• So given an unknown state, we can find its entanglement,

by measuring this function. Given a set of states, we can
also find which state is more entangled

• On the negative side, for some entangled states, this
inequality is not violated.

• We may also like to find a relation that is analog of the third
measurement setting for qubits. Then one can relate the
nonlocality, as reflected in the violation of the inequality,
with the entanglement.

• For this one has to find appropriate state dependent
settings. For each state, the settings would depend on its
entanglement.
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Conclusions
• As we saw, CHSH operator can be used to measure the

entanglement of a pure qubit state with several different
settings. For mixed states, such relations are still to be
established, as we have the phenomenon of hidden
nonlocality.

• In the case of qudits, CGLMP inequality is violated more by
a nonmaximally entangled state than by a maximally
entangled state. So it may not be useful to find a relation
between nonlocality and entanglement measure.

• However, we show that SLK function can be used to
characterize the entanglement. However, it would be better
to find an inequality, or settings where the violation and
entanglement are related.

• In the case of multiqubit states, it is far from clear if one
can find such relationships. For this, one has to find a way
to characterize a state’s entanglement.
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Advertisement

• In the end, let me advertise a school-cum-conference that
we will be organizing at the Institute of Physics,
Bhubaneswar.

International School and Conference on Quantum
Information

Feb 9 - 18, 2016
www.iopb.res.in/∼iscqi2016

It is 5th in the series that started in 2008. There will be a
five-day school followed by a four-day conference.
Students are encouraged to register and others are invited
to the conference.
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