Exchangeable, stationary and entangled chains of
Gaussian states

Ritabrata Sengupta

Theoretical Statistics & Mathematics Unit,
Indian Statistical institute, Delhi Centre

STATISTICATL]

UNITY IN DIVERSITY]

In collaboration with K. R. Parthasarathy
J. Math. Phys., 56(10):102203, 2015.



Background Definitions

Gaussian state

A state p in I'(C") is called a n-mode Gaussian state if its Fourier transform p
is given by

T
p(x +1y) = exp [—zﬁ(lTx —m'y) — (;) S (;)] : (1)
for all x, y € R” where I, m are elements of R" and S is a real 2n x 2n
symmetric matrix satisfying the matrix inequality
S+ 57220 )

with

m=@ |4 4 G

n-copy
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A 2n x 2n real symmetric positive matrix S is said to be a G-matrix if it
satisfies the inequality

S+ %Jzn > 0. &)




Background Definitions

G-matrix
A 2n x 2n real symmetric positive matrix S is said to be a G-matrix if it
satisfies the inequality

S+ 272 2 0. @)

Suppose ¥ = [[A;]], i, j€ {1,2,---} is aninfinite matrix where each A; is
a 2k x 2k real matrix and A; = Aj; for all i, j. For any finite subset
I={i1<ip<---<ipyC{1,2,---},let (1) = [[Api,]]. r, s € {1,2,--- }
be the 2kn x 2kn matrix obtained from X by restriction to its rows and
columns numbered i1 < ir < -+ < I.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015 3/21



Background Definitions

G-matrix
A 2n x 2n real symmetric positive matrix S is said to be a G-matrix if it
satisfies the inequality

S+ 272 2 0. @)

Suppose 3 = [[A;]], i,j€ {1,2,---} is an infinite matrix where each Aj; is
a 2k x 2k real matrix and Aig = Aj; for all i, j. For any finite subset
I={i1<ip<---<ipyC{1,2,---},let (1) = [[Api,]]. r, s € {1,2,--- }
be the 2kn x 2kn matrix obtained from X by restriction to its rows and
columns numbered i1 < ir < -+ < I.

Y is said to be a G-chain of order k if X(I) is the covariance matrix of a
kn-mode zero mean Gaussian state p(/) in the boson Fock space

I‘((Ck”) =H;, @®Hi, ®---®@H,;, where H; denotes the j-th copy of the Hilbert
space H = I'(C*),j=1,2,--- .

R,
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Background Definitions

We say that X is an exchangeable G-chain if it is a G-chain and there exist
two 2k x 2k matrices A, B such that
B if j> i,
Aj =< A if j=i, )
BT if j<.i.
In such a case we write
£ = %(4,B),
() = X(I;A,B). (6)
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Background Definitions

We say that 3 is an exchangeable G-chain if it is a G-chain and there exist
two 2k X 2k matrices A, B such that

B if j>i,
Aj =< A if j=i, )
BT if j<.i.
In such a case we write
¥ = 3(A,B),
() = X(I;A,B). (6)

We say that a G-chain X is stationary if there exist 2k X 2k matrices
A, By, By, - - - such that
A if i=],
A,'j = Bj—i if j>i, @)
BiT_j if j<i

for all i, j.
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Let (A, B) be a pair of real 2k x 2k matrices. Then (A, B) is a G-chain if
and only if A and B are nonnegative definite and A — B is a G-matrix.




Exchangeable G-chain
Theorem

Let (A, B) be a pair of real 2k x 2k matrices. Then (A, B) is a G-chain if
and only if A and B are nonnegative definite and A — B is a G-matrix.

Proof technique

Fix n,and Let I = {1,2,--- ,n}. Set ¥,(A,B) = X, (I : A, B). Define
N, = [[xij]]nxn Where x;; = 1 if i > j and O otherwise. Let

) = nz [1,---,1]7 be the unit column vector of length n.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015

5/21



Exchangeable G-chain
Theorem

Let (A, B) be a pair of real 2k x 2k matrices. Then (A, B) is a G-chain if
and only if A and B are nonnegative definite and A — B is a G-matrix.

Proof technique

Fix n,and Let I = {1,2,--- ,n}. Set ¥,(A,B) = X, (I : A, B). Define
N, = [[xij]]nxn Where x;; = 1 if i > j and O otherwise. Let

[Yn) = nz [1,- -+, 1]7 be the unit column vector of length 7.
7 ) 1
DA B)+ 5n = (At 3= 5B+ B)) & 1~ [l
? 1
# (A4 30+ 50- D@+ BT)) @ )
1
+§(B—BT)®(N,,—N,{). (8)
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Exchangeable G-chain

Multiplying both sides by I, ® |1, ){1),,| and take relative trace over the second
component. Take relative trace over second component and relative trace over
second component gives

1
—(B+B") >o0.
2
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Exchangeable G-chain

Multiplying both sides by I, ® |1, ){1),,| and take relative trace over the second

component. Take relative trace over second component and relative trace over
second component gives

1
5B+ B") > 0.
Similarly we get

7 1
A+ —Joy — —(B+ BT) > 0.
+22k 2( +B") >
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Exchangeable G-chain

Multiplying both sides by I, ® |1, ){1),,| and take relative trace over the second
component. Take relative trace over second component and relative trace over
second component gives

1
5B+ B") > 0.
Similarly we get

1
A+ %Jzk —5(B+B)>0.

Consider complex unit vector |¢,) = ﬁ[l, w,w?, - W
2me

w = e n . Now, multiplying both sides of (8) by I,, ® |$,){¢,| and tracing over
the second Hilbert space we get the inequality

T where

T
A+ %Jz,( - %(BJFBT) +.2 _23 cot% > 0.
forn=1,2,---. Multiplying by tan 7 (for n > 3) and letting n — oo we get
the inequality
%(B —BT)>0.

Hence the result follows.
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In any exchangeable G-chain (A, B) of order k, for every finite set
I C{1,2,---}, the underlying Gaussian state p(/) is separable.




Exchangeable G-chain

Corollary

In any exchangeable G-chain X(A, B) of order k, for every finite set
I C{1,2,---}, the underlying Gaussian state p(/) is separable.

Proof

Without loss of generality we may assume that / = {1,2,--- ,n} for some n.
Then the covariance matrix of p(7) is equal to the n x n block matrix

A B B

B A B

. . . .|=A-B)L+B®

B B ... A 1 1 1

By previous theorem, (A — B) ® I, is the covariance matrix of an n-fold
product Gaussian state and the second summand on the right hand side of the
equation 8 above is a nonnegative definite matrix. Hence by Werner and
Wolf’s theorem, p(I) is separable.
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Stationary G-chains

Let A, B be real 2k x 2k symmetric matrices. For any fixedj = 1,2, - -,
denote by A/(A, B) the infinite block matrix all of whose diagonal blocks are
equal to A, (n,n + j)-th and (n + j, n)-th blocks are equal to B for every n and
all the remaining blocks are zero matrices of order 2k x 2k. For example,

A B 0 0O
. B A B 0O
AAB)=10 B A B 0
Denote by Al (A, B) the 2kn x 2kn matrix obtained by A/(A, B) by restriction
to the first n row and column blocks. For example,

A B

A
AY(A,B) = [B A] 22a.8) = [0
B

o> O

B
0
A

and so on.
Our first result gives a necessary and sufficient condition for A/(A, B) to be
G-chain.
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Stationary G-chains

Theorem

Let A, B be a pair of 2k x 2k real symmetric matrices. In order that /N (A, B)
may be a G-chain of order k it is necessary and sufficient that A + tB is a
G-matrix for every t € [—2,2].
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Stationary G-chains

Theorem

Let A, B be a pair of 2k x 2k real symmetric matrices. In order that N (A, B)
may be a G-chain of order k it is necessary and sufficient that A + tB is a
G-matrix for every t € [—2,2].

Proof: Denote by L, the upper triangular matrix whose (j + 1)-th upper
diagonal entries are all equal to 1 and all the remaining entries are zero. Thus
L, is defined for 1 <j < n — 1. Then

AN(A,B)=A®1,+B® (L, + (L,)"). )

Consider the spectral decomposition of the n X n symmetric matrix
L, + ()T

I, + Z Mr (Wour) Pnr (10)
r=1
where {\,, : r=1,2,---  n} are the eigenvalues and
{|¥hnr) : ¥ =1,2,---  n} are the corresponding orthonormal basis of

eigenvectors for L, + (L{;)T. Since each I, is a matrix with operator norm

equal to unity and therefore I, 4+ (L) has operator norm not exceeding 2.
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Stationary G-chains

el <2, 1<r<n, n=1,2,---. (11)
Equations (9)-(10) imply
: 1 - (3
N(AB) + 2 = 3 (A MB+ 50) @ [ur)onr] . (1)
r=1

Thus A{, (A, B) is a G-matrix if and only if A + \,,B is a G-matrix for each r.
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Stationary G-chains

A <2, 1<r<n, n=1,2,---. (1)
Equations (9)-(10) imply
. 2 1 (3
N(AB) + 2 = 3 (A MB+ 50) @ [ur)onr] . (1)
r=1

Thus A{, (A, B) is a G-matrix if and only if A + \,,B is a G-matrix for each r.
To prove necessity, we appeal to the theorem of Kac, Murdock and Szego [J.
Ration. Mech. Anal. 2, 767-800, 1953]. Consider the probability distribution

1 n
Hn = Z z} (5>\nr
r=

where A\, r = 1,2,--- ,nare as in (10). The left hand side of (10) is a
Toeplitz matrix of order n for each n. KMS theorem implies that the sequence
{1, } converges weakly as n — oo to the probability measure Lh~! where L is
the Lebesgue measure in the unit interval and h(t) = 2 cos 27jt, t € [0, 1].
This, in particular, implies that {\,, : r=1,2,--- ;n,n=1,2,---} isde

in the interval [—2, 2]. The proof of necessity is now complete.
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Stationary G-chains

Corollary

Let A, By, By, - - - bereal 2k x 2k symmetric matrices satisfying the
condition that A + ¢B; is a G-matrix forevery j = 1,2,--- and t € [-2,2].
Suppose p1,pa2, - - - , is a probability distribution on the set {1,2,-- - }. Then
the block Toeplitz matrix

A piB1 p2B»

piBi A piBi p:B
Z(A§PlBlap2327"'): 2By p1B; A p1B;

is a stationary G-chain.
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Stationary G-chains

Corollary

Let A, By, By, - - - bereal 2k x 2k symmetric matrices satisfying the
condition that A + ¢B; is a G-matrix forevery j = 1,2,--- and t € [-2,2].
Suppose p1,pa2, - - - , is a probability distribution on the set {1,2,-- - }. Then
the block Toeplitz matrix

A piB1 p2B»

piBi A piBi p:B
E(A;PlBlaP2327"'): 2By p1B; A p1B;

is a stationary G-chain.

o0
E(A;p1Bi,p2Ba, - -) = ijAj(AaBj)
=

and each AV(A, B;) is a G-chain.
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Entropy rate

Entropy rate of stationary G-chain

Suppose ¥ = X(A, By, By, - - - ) is a stationary G-chain. For any G-matrix C
denote by S(C) the von Neumann entropy of a Gaussian state p with
covariance matrix C. Let

Yn = E({1’27"'7n})7
S, = S().
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Entropy rate

Entropy rate of stationary G-chain

Suppose ¥ = X(A, By, By, - - - ) is a stationary G-chain. For any G-matrix C
denote by S(C) the von Neumann entropy of a Gaussian state p with
covariance matrix C. Let

Yn = E({l,2,--~,n}),
S, = S().

Proposition

The sequences {S, — Sy—1}, {%Sn} monotonically decrease to the same limit
S > 0 as n — oo. Furthermore, S,, > S,_; for all 7.
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Entropy rate

Consider Gaussian systems P, Q, R such that POR = p({1,2,--- ,n+ 1}),
0=p({2,---,n}), PO =p({1,2,--- ,n}) and OR = p({2,--- ,n+ 1}).
Using stationarity S(p(PQR)) = Sy+1, S(p(PQ)) = Su, S(p(OR)) = Sy,
S(p(Q)) = Sn—1. By the strong subadditivity,

Sn—H + Sn—l < 2Sn

or
Sn+1 - Sn S Sn - Sn—]-

Since
Sn (Sn_Sn—l)+(Sn—l _Sn—2)+"'+(Sl _SO)

n n

where Sy is defined to be zero, it follows that Sn—” decreases monotonically to a
limit S > 0. This also implies that S,, — S,,—1 cannot decrease to —oo and
hence S, — S,,_ also decreases monotonically to S. This also shows that

S, > S, for all n.

<4
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We denote the limit S by S(X) and call it the entropy rate of the stationary
G-chain X.




o
We denote the limit S by S(X) and call it the entropy rate of the stationary
G-chain X.

Let Y. = %(A, B) be an exchangeable G-chain. Then S(X) = S(A — B).




Entropy rate

Entropy rate

We denote the limit S by S(X) and call it the entropy rate of the stationary
G-chain X.

Theorem
Let Y. = %(A, B) be an exchangeable G-chain. Then S(X) = S(A — B).

Proof: Using the fact that S(C @ D) = S(C) + S(D), we get from

Yn(A,B) = (A=B)® (I — [n)(thn) + (A+ (n = 1)B) @ |thn)(¢n|
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Entropy rate

Entropy rate

We denote the limit S by S(X) and call it the entropy rate of the stationary
G-chain X.

Theorem
Let Y. = %(A, B) be an exchangeable G-chain. Then S(X) = S(A — B).

Proof: Using the fact that S(C @ D) = S(C) + S(D), we get from

%.(A,B) = (A=B)® (In — [Yu){¥ul) + (A + (n — 1)B) @ [n)(¢hn|
Sy = S(SW(A,B))=(n—1)S(A—B)+SA+ (n—1)B). (13)
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Entropy rate

Entropy rate

We denote the limit S by S(X) and call it the entropy rate of the stationary
G-chain X.

Theorem
Let Y. = %(A, B) be an exchangeable G-chain. Then S(X) = S(A — B).

Proof: Using the fact that S(C & D) = S(C) + S(D), we get from
Yn(A;B) = (A=B)®@ (I = [n)(tn]) + (A + (n = 1)B) @ [thu)(¢/n]
Sy = S(S.(A,B))=(n—1)S(A—B)+SA+ (n—1)B). (13)

o be the mean zero Gaussian state with covariance matrix A. £ = £, ® &,
W(&) is Weyl or displacement operator at &; + &, and ¢(&) is the Gaussian
density function with mean zero and covariance matrix (n — 1)B. Then

P = | WP W(E)6(8) de
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Entropy rate
Using concavity of von Neumann entropy, we get
SA+(n—1)B) = S(p05)
< [ st de+ He) (14

where H(¢) is the Shannon differential entropy of the density function ¢.
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Entropy rate
Using concavity of von Neumann entropy, we get
SA+(n—1)B) = S(p05)
< [ st de+ He) (14

where H(¢) is the Shannon differential entropy of the density function ¢.

H(¢) = klog2me + %log det[(n — 1)B] (15)
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Entropy rate
Using concavity of von Neumann entropy, we get
S(A+(n—1)B) = S(p*-DE)
< [ st de+ He) (14

where H(¢) is the Shannon differential entropy of the density function ¢.

1
H(¢) = klog2me + 3 logdet[(n — 1)B] (15)
it follows from (13)—(15) that

S, n-—1

n n

S(A) & 1
S(A — B)' < sS4k log2me + — log(n — 1)* det B
n n 2n

1 k
< [S(A) + klog2me + 3 logdetB| + —log(n — 1]
n

S|

Take n — oo to get the result.
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Entropy rate

Theorem

Let py,pa, - -+ be a probability distribution over {1,2,3,---}, and let A and B
be 2k x 2k symmetric real matrices satisfying the condition that A + tB is a
G-matrix for every t € [—2,2]. Let X2 be the stationary G-chain defined by the
infinite block Toeplitz matrix

A  pB p>B

B A pB pB
p2B piB A piB

Then the entropy rate of 3. is given by

1
5(z) = / S(A + h(s)B) ds
0
where h(s) = 232, pjcos 2js, s € [0, 1].
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Entropy rate

Express ¥, as
Y. =ARI,+B®T,(p)

0O p1 p2 o pai]
Pi 0O p1 - paa
T,(p)=| P2 D1 0 - pps
| Pn—1 Pn—2 DPn-3 - 0 J
Let A\y1, A2, - -, Any e the eigenvalues of 7),(p) and let
[n1) s |¥n2) 5+, |¥un) the corresponding eigenvectors constituting an

orthonormal basis for R” so that
n

B = Y (A+AyB) ® [ty

j=1

%s(zn) - % Z S(A + AyB) = / S(A + 5B) djin(s),
=1

where (i, is the probability measure defined by p, = % Z;':l On,-
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Entropy rate

By KMZ theorem ji,, converges weakly as n — oo to the distribution Lh ™!
where L denotes the Lebesgue measure in [0, 1] and

o0
h(s) =2 ij cos 27js.
=1

Note that ||7,,(p)|| < 2 and the eigenvalues ), lie in the interval [—2,2].
Furthermore, the symplectic spectrum of A 4 sB is a continuous function of s
and hence the entropy S(A + sB) is a continuous function of s in [—2, 2]. Thus

lim 1S(zn) = / ’ S(A + sB)Lh™ ' (ds)

n—oo n )

_ / ' S(A + h(s)B) ds.
0
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Entanglement property

A Al

1 0] .
B = B_b[o _J j=1,2,--,

where )\ and b are positive scalars with A > % We start with two elementary
lemmas. Let

My, piB p)B
piB A, pB p)B
pB piB Ay piB - (16)
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Entanglement property

A Al

1 o] .
Bj = B_b[o _J J=1,2,-,

where )\ and b are positive scalars with A > % We start with two elementary
lemmas. Let

My, piB p)B
piB A, pB p)B
pB piB Ay piB - (16)

Lemma

The infinite block matrix 3 in (16) is a stationary G-chain of order one if
1
b<i(@- bl

]
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Entanglement property

Lemma

Let A > %, ¢ > 0. Then the matrix

A 0 ¢ O
0O X 0 —c
I'= c 0 X O
0O — 0 X

is the covariance matrix of an entangled 2-mode Gaussian state if

1

1 1)z

A— = W=
2<c<< 4>
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Entanglement property

Lemma

Let \ > %, ¢ > 0. Then the matrix

A 0 ¢ O
0O X 0 —c
= c 0 X O
0 — 0 A\

is the covariance matrix of an entangled 2-mode Gaussian state if

1

1 1\2
\— = B — )
Leee(-1)

Proposition

Let% <AL %,)\— % <b< /N — i. Suppose pjb > )\—%forsomej.
Then the 2-mode Gaussian state p({1,/}) determined by the stationary
G-chain X defined by (16) is entangled.
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Find out what happens if the covariance matrix is a general block Toeplitz
matrix.




Entanglement property

Open problem

Find out what happens if the covariance matrix is a general block Toeplitz
matrix.

Thank you!!! )
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