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Background Definitions

Gaussian state

A state ρ in Γ(Cn) is called a n-mode Gaussian state if its Fourier transform ρ̂
is given by

ρ̂(x + ıy) = exp

[
−ı
√

2(lTx−mTy)−
(

x
y

)T

S
(

x
y

)]
, (1)

for all x, y ∈ Rn where l, m are elements of Rn and S is a real 2n× 2n
symmetric matrix satisfying the matrix inequality

S +
ı

2
J2n ≥ 0 (2)

with

J2n =
⊕

n-copy

[
0 1
−1 0

]
. (3)
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Background Definitions

G-matrix
A 2n× 2n real symmetric positive matrix S is said to be a G-matrix if it
satisfies the inequality

S +
ı

2
J2n ≥ 0. (4)

Suppose Σ = [[Aij]], i, j ∈ {1, 2, · · · } is an infinite matrix where each Aij is
a 2k × 2k real matrix and AT

ij = Aji for all i, j. For any finite subset
I = {i1 < i2 < · · · < in} ⊂ {1, 2, · · · }, let Σ(I) = [[Airis ]], r, s ∈ {1, 2, · · · }
be the 2kn× 2kn matrix obtained from Σ by restriction to its rows and
columns numbered i1 < i2 < · · · < in.

Σ is said to be a G-chain of order k if Σ(I) is the covariance matrix of a
kn-mode zero mean Gaussian state ρ(I) in the boson Fock space
Γ(Ckn) = Hi1 ⊗Hi2 ⊗ · · · ⊗Hin whereHj denotes the j-th copy of the Hilbert
spaceH = Γ(Ck), j = 1, 2, · · · .
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Background Definitions

We say that Σ is an exchangeable G-chain if it is a G-chain and there exist
two 2k × 2k matrices A, B such that

Aij =


B if j > i,
A if j = i,
BT if j < i.

(5)

In such a case we write
Σ = Σ(A,B),

Σ(I) = Σ(I; A,B). (6)

We say that a G-chain Σ is stationary if there exist 2k × 2k matrices
A, B1, B2, · · · such that

Aij =


A if i = j,
Bj−i if j > i,
BT

i−j if j < i
(7)

for all i, j.
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Exchangeable G-chain

Theorem

Let (A,B) be a pair of real 2k × 2k matrices. Then Σ(A,B) is a G-chain if
and only if A and B are nonnegative definite and A− B is a G-matrix.

Proof technique
Fix n, and Let I = {1, 2, · · · , n}. Set Σn(A,B) = Σn(I : A,B). Define
Nn = [[xij]]n×n where xij = 1 if i > j and 0 otherwise. Let
|ψn〉 = n−

1
2 [1, · · · , 1]T be the unit column vector of length n.

Σn(A,B) +
ı

2
J2kn =

(
A +

ı

2
J2k −

1
2

(B + BT)

)
⊗ (In − |ψn〉〈ψn|)

+

(
A +

ı

2
J2k +

1
2

(n− 1)(B + BT)

)
⊗ |ψn〉〈ψn|

+
1
2

(B− BT)⊗ (Nn − NT
n ). (8)
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Exchangeable G-chain

Multiplying both sides by In ⊗ |ψn〉〈ψn| and take relative trace over the second
component. Take relative trace over second component and relative trace over
second component gives

1
2

(B + BT) ≥ 0.

Similarly we get

A +
ı

2
J2k −

1
2

(B + BT) ≥ 0.

Consider complex unit vector |φn〉 = 1√
n [1, ω, ω2, · · · , ωn−1]T , where

ω = e
2πı

n . Now, multiplying both sides of (8) by In ⊗ |φn〉〈φn| and tracing over
the second Hilbert space we get the inequality

A +
ı

2
J2k −

1
2

(B + BT) + ı
B− BT

2
cot

π

n
≥ 0.

for n = 1, 2, · · · . Multiplying by tan π
n (for n ≥ 3) and letting n→∞ we get

the inequality
ı

2
(B− BT) ≥ 0.

Hence the result follows.
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Exchangeable G-chain

Corollary
In any exchangeable G-chain Σ(A,B) of order k, for every finite set
I ⊂ {1, 2, · · · }, the underlying Gaussian state ρ(I) is separable.

Proof
Without loss of generality we may assume that I = {1, 2, · · · , n} for some n.
Then the covariance matrix of ρ(I) is equal to the n× n block matrix

A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A

 = (A− B)⊗ In + B⊗


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 .
By previous theorem, (A− B)⊗ In is the covariance matrix of an n-fold
product Gaussian state and the second summand on the right hand side of the
equation 8 above is a nonnegative definite matrix. Hence by Werner and
Wolf’s theorem, ρ(I) is separable.
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Stationary G-chains

Let A, B be real 2k × 2k symmetric matrices. For any fixed j = 1, 2, · · · ,
denote by ∆j(A,B) the infinite block matrix all of whose diagonal blocks are
equal to A, (n, n + j)-th and (n + j, n)-th blocks are equal to B for every n and
all the remaining blocks are zero matrices of order 2k × 2k. For example,

∆1(A,B) =


A B 0 0 0 · · ·
B A B 0 0 · · ·
0 B A B 0 · · ·
...

...
...

...
...

. . .

 .
Denote by ∆j

n(A,B) the 2kn× 2kn matrix obtained by ∆j(A,B) by restriction
to the first n row and column blocks. For example,

∆1
2(A,B) =

[
A B
B A

]
,∆2

3(A,B) =

A 0 B
0 A 0
B 0 A


and so on.
Our first result gives a necessary and sufficient condition for ∆j(A,B) to be a
G-chain.
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Stationary G-chains

Theorem
Let A, B be a pair of 2k × 2k real symmetric matrices. In order that ∆j(A,B)
may be a G-chain of order k it is necessary and sufficient that A + tB is a
G-matrix for every t ∈ [−2, 2].

Proof: Denote by Lj
n the upper triangular matrix whose (j + 1)-th upper

diagonal entries are all equal to 1 and all the remaining entries are zero. Thus
Lj

n is defined for 1 ≤ j ≤ n− 1. Then

∆j
n(A,B) = A⊗ In + B⊗ (Lj

n + (Lj
n)T). (9)

Consider the spectral decomposition of the n× n symmetric matrix
Lj

n + (Lj
n)T :

Lj
n + (Lj

n)T =
n∑

r=1

λnr 〈ψnr〉ψnr (10)

where {λnr : r = 1, 2, · · · , n} are the eigenvalues and
{|ψnr〉 : r = 1, 2, · · · , n} are the corresponding orthonormal basis of
eigenvectors for Lj

n + (Lj
n)T . Since each Lj

n is a matrix with operator norm
equal to unity and therefore Lj

n + (Lj
n)T has operator norm not exceeding 2.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015 9 / 21



Stationary G-chains

Theorem
Let A, B be a pair of 2k × 2k real symmetric matrices. In order that ∆j(A,B)
may be a G-chain of order k it is necessary and sufficient that A + tB is a
G-matrix for every t ∈ [−2, 2].

Proof: Denote by Lj
n the upper triangular matrix whose (j + 1)-th upper

diagonal entries are all equal to 1 and all the remaining entries are zero. Thus
Lj

n is defined for 1 ≤ j ≤ n− 1. Then

∆j
n(A,B) = A⊗ In + B⊗ (Lj

n + (Lj
n)T). (9)

Consider the spectral decomposition of the n× n symmetric matrix
Lj

n + (Lj
n)T :

Lj
n + (Lj

n)T =
n∑

r=1

λnr 〈ψnr〉ψnr (10)

where {λnr : r = 1, 2, · · · , n} are the eigenvalues and
{|ψnr〉 : r = 1, 2, · · · , n} are the corresponding orthonormal basis of
eigenvectors for Lj

n + (Lj
n)T . Since each Lj

n is a matrix with operator norm
equal to unity and therefore Lj

n + (Lj
n)T has operator norm not exceeding 2.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015 9 / 21



Stationary G-chains

|λnr| ≤ 2, 1 ≤ r ≤ n, n = 1, 2, · · · . (11)

Equations (9)–(10) imply

∆j
n(A,B) +

ı

2
J2kn =

n∑
r=1

(
A + λnrB +

ı

2
J2k

)
⊗ |ψnr〉〈ψnr| . (12)

Thus ∆j
n(A,B) is a G-matrix if and only if A + λnrB is a G-matrix for each r.

To prove necessity, we appeal to the theorem of Kac, Murdock and Szegö [J.
Ration. Mech. Anal. 2, 767–800, 1953]. Consider the probability distribution

µn =
1
n

n∑
r=1

δλnr

where λnr, r = 1, 2, · · · , n are as in (10). The left hand side of (10) is a
Toeplitz matrix of order n for each n. KMS theorem implies that the sequence
{µn} converges weakly as n→∞ to the probability measure Lh−1 where L is
the Lebesgue measure in the unit interval and h(t) = 2 cos 2πjt, t ∈ [0, 1].
This, in particular, implies that {λnr : r = 1, 2, · · · , n, n = 1, 2, · · · } is dense
in the interval [−2, 2]. The proof of necessity is now complete.
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Stationary G-chains

Corollary
Let A, B1, B2, · · · be real 2k × 2k symmetric matrices satisfying the
condition that A + tBj is a G-matrix for every j = 1, 2, · · · and t ∈ [−2, 2].
Suppose p1, p2, · · · , is a probability distribution on the set {1, 2, · · · }. Then
the block Toeplitz matrix

Σ(A; p1B1, p2B2, · · · ) =


A p1B1 p2B2 · · · · · ·

p1B1 A p1B1 p2B2 · · ·
p2B2 p1B1 A p1B1 · · ·

...
...

...
. . . . . .


is a stationary G-chain.

Σ(A; p1B1, p2B2, · · · ) =
∞∑

j=1

pj∆
j(A,Bj)

and each ∆j(A,Bj) is a G-chain.
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Entropy rate

Entropy rate of stationary G-chain

Suppose Σ = Σ(A,B1,B2, · · · ) is a stationary G-chain. For any G-matrix C
denote by S(C) the von Neumann entropy of a Gaussian state ρ with
covariance matrix C. Let

Σn = Σ({1, 2, · · · , n}),
Sn = S(Σn).

Proposition

The sequences {Sn − Sn−1},
{ 1

n Sn
}

monotonically decrease to the same limit
S̄ ≥ 0 as n→∞. Furthermore, Sn ≥ Sn−1 for all n.
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Entropy rate

Consider Gaussian systems P,Q,R such that PQR = ρ({1, 2, · · · , n + 1}),
Q = ρ({2, · · · , n}), PQ = ρ({1, 2, · · · , n}) and QR = ρ({2, · · · , n + 1}).
Using stationarity S(ρ(PQR)) = Sn+1, S(ρ(PQ)) = Sn, S(ρ(QR)) = Sn,
S(ρ(Q)) = Sn−1. By the strong subadditivity,

Sn+1 + Sn−1 ≤ 2Sn

or
Sn+1 − Sn ≤ Sn − Sn−1.

Since
Sn

n
=

(Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (S1 − S0)

n

where S0 is defined to be zero, it follows that Sn
n decreases monotonically to a

limit S̄ ≥ 0. This also implies that Sn − Sn−1 cannot decrease to −∞ and
hence Sn − Sn−1 also decreases monotonically to S̄. This also shows that
Sn ≥ Sn−1 for all n.
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Entropy rate

Entropy rate
We denote the limit S̄ by S̄(Σ) and call it the entropy rate of the stationary
G-chain Σ.

Theorem
Let Σ = Σ(A,B) be an exchangeable G-chain. Then S̄(Σ) = S(A− B).

Proof: Using the fact that S(C ⊕ D) = S(C) + S(D), we get from

Σn(A,B) = (A− B)⊗ (In − |ψn〉〈ψn|) + (A + (n− 1)B)⊗ |ψn〉〈ψn|
Sn = S(Σn(A,B)) = (n− 1)S(A− B) + S(A + (n− 1)B). (13)

ρA be the mean zero Gaussian state with covariance matrix A. ξ = ξ1 ⊕ ξ2,
W(ξ) is Weyl or displacement operator at ξ1 + ıξ2 and φ(ξ) is the Gaussian
density function with mean zero and covariance matrix (n− 1)B. Then

ρA+(n−1)B =

∫
R2k

W(ξ)ρAW(ξ)†φ(ξ) dξ
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Entropy rate

Using concavity of von Neumann entropy, we get

S(A + (n− 1)B) = S(ρA+(n−1)B)

≤
∫

S(A)φ(ξ) dξ + H(φ) (14)

where H(φ) is the Shannon differential entropy of the density function φ.

H(φ) = k log 2πe +
1
2

log det[(n− 1)B] (15)

it follows from (13)–(15) that∣∣∣∣Sn

n
− n− 1

n
S(A− B)

∣∣∣∣ ≤ S(A)

n
+

k
n

log 2πe +
1
2n

log(n− 1)2k det B

≤ 1
n

[
S(A) + k log 2πe +

1
2

log det B
]

+
k
n

log(n− 1).

Take n→∞ to get the result. 2
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Entropy rate

Theorem
Let p1, p2, · · · be a probability distribution over {1, 2, 3, · · · }, and let A and B
be 2k × 2k symmetric real matrices satisfying the condition that A + tB is a
G-matrix for every t ∈ [−2, 2]. Let Σ be the stationary G-chain defined by the
infinite block Toeplitz matrix

Σ =


A p1B p2B · · · · · ·

p1B A p1B p2B · · ·
p2B p1B A p1B · · ·

...
...

...
. . . . . .

 .
Then the entropy rate of Σ is given by

S̄(Σ) =

∫ 1

0
S(A + h(s)B) ds

where h(s) = 2
∑∞

j=1 pj cos 2πjs, s ∈ [0, 1].
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Entropy rate

Express Σn as
Σn = A⊗ In + B⊗ Tn(p)

Tn(p) =


0 p1 p2 · · · pn−1
p1 0 p1 · · · pn−2
p2 p1 0 · · · pn−3
... · · ·

...
. . .

...
pn−1 pn−2 pn−3 · · · 0

 .
Let λn1, λn2, · · · , λnn be the eigenvalues of Tn(p) and let
|ψn1〉 , |ψn2〉 , · · · , |ψnn〉 the corresponding eigenvectors constituting an
orthonormal basis for Rn so that

Σn =

n∑
j=1

(A + λnjB)⊗ |ψnj〉〈ψnj|

1
n

S(Σn) =
1
n

n∑
j=1

S(A + λnjB) =

∫
S(A + sB) dµn(s),

where µn is the probability measure defined by µn = 1
n

∑n
j=1 δλnj .
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Entropy rate

By KMZ theorem µn converges weakly as n→∞ to the distribution Lh−1

where L denotes the Lebesgue measure in [0, 1] and

h(s) = 2
∞∑

j=1

pj cos 2πjs.

Note that ‖Tn(p)‖ ≤ 2 and the eigenvalues λnj lie in the interval [−2, 2].
Furthermore, the symplectic spectrum of A + sB is a continuous function of s
and hence the entropy S(A + sB) is a continuous function of s in [−2, 2]. Thus

lim
n→∞

1
n

S(Σn) =

∫ 2

−2
S(A + sB)Lh−1( ds)

=

∫ 1

0
S(A + h(s)B) ds.
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Entanglement property

A = λI2

Bj = B = b
[

1 0
0 −1

]
j = 1, 2, · · · ,

where λ and b are positive scalars with λ > 1
2 . We start with two elementary

lemmas. Let

Σ =


λI2 p1B p2B · · · · · ·
p1B λI2 p1B p2B · · ·
p2B p1B λI2 p1B · · ·

...
...

...
. . . . . .

 (16)

Lemma

The infinite block matrix Σ in (16) is a stationary G-chain of order one if

b < 1
2

(
λ2 − 1

4

) 1
2 .
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Entanglement property

Lemma

Let λ > 1
2 , c > 0. Then the matrix

Γ =


λ 0 c 0
0 λ 0 −c
c 0 λ 0
0 −c 0 λ


is the covariance matrix of an entangled 2-mode Gaussian state if

λ− 1
2
< c <

(
λ2 − 1

4

) 1
2

.

Proposition

Let 1
2 < λ < 5

6 , λ− 1
2 < b <

√
λ2 − 1

4 . Suppose pjb > λ− 1
2 for some j.

Then the 2-mode Gaussian state ρ({1, j}) determined by the stationary
G-chain Σ defined by (16) is entangled.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015 20 / 21



Entanglement property

Lemma

Let λ > 1
2 , c > 0. Then the matrix

Γ =


λ 0 c 0
0 λ 0 −c
c 0 λ 0
0 −c 0 λ


is the covariance matrix of an entangled 2-mode Gaussian state if

λ− 1
2
< c <

(
λ2 − 1

4

) 1
2

.

Proposition

Let 1
2 < λ < 5

6 , λ− 1
2 < b <

√
λ2 − 1

4 . Suppose pjb > λ− 1
2 for some j.

Then the 2-mode Gaussian state ρ({1, j}) determined by the stationary
G-chain Σ defined by (16) is entangled.

Ritabrata Sengupta (ISID) Gaussian chains December 7, 2015 20 / 21



Entanglement property

Open problem
Find out what happens if the covariance matrix is a general block Toeplitz
matrix.

Thank you!!!

Funding
I thank ISI Delhi and NBHM for supporting my research work.
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