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Introduction	


2-qubit pure states:!
!

Example: Teleportation 
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Maximally entangled Bell states are useful for QIP 



Three-qubit entangled states

 Generalized GHZ (GGHZ) states 

Maximal Slice (MS) States 

ψMS =
1
2
000 + c 111 +d 011{ }

ψGGHZ = a 000 +b 111



3 qubits can have bipartite or tripartite entanglement. 
 

Tripartite entanglement measure 

- V. Coffman, J. Kundu, and W. K. Wootters, PRA 61, 052306 (2000) 

τ ABC = τ A(BC ) − τ AB − τ AC3-tangle: 

Three-qubit entanglement



Three-qubit entangled states

 Generalized GHZ (GGHZ) states 

Maximal Slice (MS) States 

ψMS =
1
2
000 + c 111 +d 011{ }

ψGGHZ = a 000 +b 111

τ ABC = 4a
2b2

τ ABC =1−d
2



Each qubits measured along one of two spin directions on Bloch sphere	


Three-qubit Bell Inequality

Svetlichny’s inequality : If at most two of the qubits are nonlocally correlated,  
 	


G. Svetlichny, PRD 35, 3066 (1987) 

a, !a , b, !b , c, !c
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SABC = a bk + !b !k( )+ !a b !k − !b k( ) ≤ 4
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Three-qubit entanglement versus nonlocality
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S. G. et al., PRL 102, 250404 (2009) 



Controlled Teleportation

ψ U 

φ

φ

Alice 

Bob 

Classical bits 

Quantum channel 

Input state 

Classical bit 
Charlie 

Scenario: 
•  Charlie controls the teleportation of a qubit from Alice to Bob. 
•  Bob can only reconstruct the state Alice wants to teleport if Charlie 

participates in the process.  

A Karlsson and M. Bourennane, PRA 58, 4394, (1998)!
 M. Hillery, V. Buzek and A. Berthiaume, PRA 59, 1829 (1999)!



Perfect Controlled Teleportation
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Quantum channel 

T. Gao, F. L. Yan and Y. C. Li, EPL 84, 50001 (2008)!

ψGGHZ = a 000 +b 111 ✗ 

✓ ψMS =
1
2
000 + c 111 +d 011{ }



Perfect Controlled Teleportation
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Quantum channel 

ψMS =
1
2
000 + c 111 +d 011{ }

=
1
2
1+d( ) 0 + c 1"# $%⊗ Φ+ +

1
2
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Control Power

•  If Charlie does not participate, Alice can still make Bell measurements. 
•  Bob’s reduced state after Alice’s measurement is mixed. 
•  Non-conditioned fidelity of teleportation: 

C =1− f

f = ϕ ρ ϕ

Control Power 

Classical fidelity limit 

fcl =
2
3

Cmin =1− fcl =
1
3

Lower bound on control power 

S. Popescu, PRL 74, 1259 (1995) 



Control Power: MS States

φ = k0 0 + k1 1

Quantum channel 

Input state 

ψMS =
1
2
000 + c 111 +d 011{ }

Control Power 
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Teleportation fidelity without controller 



Perfect Controlled Teleportation

ψ U 

φ

φ

Alice 

Bob 

Classical bits 

Quantum channel 

Input state 

Classical bit 
Charlie 

Quantum channel 

ψGGHZ = a 000 +b 111 ✗ 
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Control power for teleporting equatorial states
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Control power for teleporting equatorial states

Θxz = a 0 Φ+ +b 1 Ψ−

Θxy = a 0 Φ+ +b 1 Φ−

Θxy = a 0 Φ+ +b 1 Ψ+

Quantum channels 
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Control power for teleporting equatorial states

Θxz = a 0 Φ+ +b 1 Ψ−

Θxy = a 0 Φ+ +b 1 Φ−

Θxy = a 0 Φ+ +b 1 Ψ+
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C =1−max(a2,b2 )

τ = 4a2b2 ≥ 8
9
⇒C ≥

1
3

Quantum channels 

X. Li and SG, PRA 90, 052305 (2014) !



Θxy = a 0 Φ+ +b 1 Ψ+

Control Power  
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Mismatched channel 

Control power in mismatched channels
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Control Power  
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C =1−a2 − 1
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A partially entangled channel that ensures control
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N-qubit control power
•  Alice wants to teleport an N-qubit state to Bob. There are M controllers. 
•  To compute the mth controller’s power, let Alice and other controllers 

perform their measurements 
•  Then tracing over the mth controller’s state we obtain Bob’s reduced state 
•  Nonconditioned fidelity: 

C =1− f

f = ϕ ρ ϕ

Control power 

Classical fidelity limit 

fcl =
2

2N +1

Cmin =1− fcl =
2N −1
2N +1

Lower bound on control power of mth controller 

P. Badziag et al., PRA 62, 012311 (2000) 



Assessing N-qubit control schemes

2-GHZ scheme 

•  Input: 2-qubit state 
•  Quantum channel: 2 GHZ states 
•  Alice performs 2 Bell measurements 
•  Charlie performs 1 Bell measurement  

C =1− f = 3
5

Control power 

Cmin =
2N −1
2N +1

=
3
5

F. G. Deng, et al., PRA 72, 022338 (2005) 



Assessing N-qubit control schemes

N-GHZ scheme with m controllers  

•  Input: N-qubit state 
•  Quantum channel: N (m+2)-qubit GHZ states. Each controller owns N qubits 
•  Alice performs N Bell measurements 
•  Each controller performs single qubit measurements  

C =
2N −1
2N +1

Control power of each controller 

Cmin =
2N −1
2N +1

X. H. Li, et al., J. Phys. B 39, 1975 (2006) 



Assessing N-qubit control schemes

Bell-GHZ scheme with m controllers  

•  Input: N-qubit state 
•  Quantum channel: Bell-GHZ superpositions. Each controller owns 1 qubit 
•  Each controller performs single qubit measurements  

C =
2N −2N−1

2N +1

Control power of each controller 

Cmin =
2N −1
2N +1

C. P. Yang and S. Han, Phys. Lett. A 343, 267 (2005)  
C. P. Yang, S. I. Chu, and S. Han, PRA 70, 022329 (2004). 



Assessing N-qubit control schemes

Bell-GHZ II scheme with m controllers  

•  Input: N-qubit state 
•  Quantum channel: Bell pairs, GHZ states. Each controller owns 1 qubit 
•  Each controller performs single qubit measurements  

C ≤
1
2

Control power of each controller 

Cmin =
2N −1
2N +1

Z. X. Man, Y.J. Xia,and N.B. An, PRA 75, 052306 (2007). 
Z. X. Man, Y.J. Xia,and N.B. An, J. Phys. B 40,1767 (2007). 



Resources required for N-qubit control

Suppose a controller, Charlie has N-1 qubits from a maximally entangled channel. 
Then 

ρB =
1
2N−1

ϕ ϕ +
1
2N−1

ϕ i ϕ i →
i=1

2N−1−1

∑ f > 1
2N−1

Each controller should have at least N qubits 

Control power of each controller 

C <
2N−1 −1
2N−1

Cmin =
2N −1
2N +1

X. Li and SG, PRA 91, 012320 (2015) !



N-qudit control power
•  Alice wants to teleport an N-qudit state to Bob. There are M controllers. 
•  To compute the mth controller’s power, let Alice and other controllers 

perform their measurements 
•  Then tracing over the mth controller’s state we obtain Bob’s reduced state 
•  Nonconditioned fidelity: 

C =1− f

f = ϕ ρ ϕ

Control power 

Classical fidelity limit 

fcl =
2

dN +1

Cmin =1− fcl =
dN −1
dN +1

Lower bound on control power of mth controller 

X. Li and SG, PRA 91, 012320 (2015) !



Summary
 
•  In controlled teleportation both teleportation and control are important. 

•  Control power is a quantitative way to measure the controller’s authority in 
controlled communication tasks. 

•  Certain partially entangled states can provide adequate control power for 
teleporting single qubits. In specific cases, partially entangled channels 
outperform maximally entangled channels. 

•  Control power can be used to assess N-qubit controlled teleportation 
schemes with m controllers. 

 
•  Each controller must possess at least N qubits to retain sufficient control. 

•  Control power can be generalized to assess N-qudit control schemes. 


