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Experimental Techniques for Quantum Computation:

1 Trapoed lons 2. Polarized Photons 3. Cavity Quantum
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Nuclear Magnetic Resonance (NMR)

1. Nuclear spins have small magnetic
moments and behave as tiny quantum
magnets.

2. When placed in a magnetic field
(By), spin %2 nuclei orient either
along the field (|0) state) or opposite
to the field (|1) state) .

3. Atransverse radio-frequency field (B,) tuned at the Larmor frequency of
spins can cause transition from [0) to |1) ( ).
Or put them in coherent superposition ( ).

4. Spins are coupled to other spins by indirect spin-spin (J) coupling, and
controlled (C-NOT) operations can be performed using J-coupling.

NUCLEAR SPINS ARE QUBITS
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Why NMR?

> A major requirement of a quantum computer is that the
coherence should last long.

> Nuclear spins in liguids retain coherence ~ 100’s millisec
and their longitudinal state for several seconds.

> A system of N coupled spins (each spin 1/2) form an N
qubit Quantum Computer.

> Unitary Transform can be applied using R.F. Pulses and
J-evolution and various logical operations and guantum
algorithms can be implemented.



Addressability iIn NMR

NMR sample has ~ 1018 spins.

!

Do we have 108 qubits?

NO - because, all the spins can’t be
Individually addressed.

1 Progress so far

Spins having different Larmor frequencies can be addressed in
the frequency domain resulting-in as many “qubits” as Larmor
frequencies, each having ~10'8 spins. (ensemble computing).

!

One needs un-equal couplings between the spins, yielding resolved
transitions in a multiplet, in order to encode information as qubits.



NMR Quibits

An example of a Hetero-nuclear three qubit
system.

Jopy= 225 Hz

13 CH
CHFBr; Joe =-311 Hz
Jur = 50 Hz

'H = 500 MHz

Br (spin 3/2) is a quadrupolar nucleus, is decoupled
from the rest of the spin system and can be ignored.



Homo-nuclear spins having different Chemical shifts
(Larmor frequencies) also form multi-qubit systems

3 Qubits

2 Qubits
1 Qubit
CHCl,
1 11
0 10 01
00

111
011 110 101
010 001 100
000




Pure States:

Tr(p)=Tr(p*)=1

For a diagonal density matrix, this condition requires
that all energy levels except one have zero populations.

Such a state is difficult to prepare in NMR

Pseudo-Pure States

Under High Temperature Approximation

le/N((ﬂ"‘Ap) Here a=10° andU 1U1=1

We create a state in which all levels except one have
EQUAL populations. Such a state mimics a pure state.



Pseudo-Pure State

In a two-qubit Homo-nuclear system:
(Under High Field Approximation)

(i) Equilibrium:
p=10°+ Ap={2,1,1,0}

Ap ~ I tl, = {11 0,0, '1}
(i1) Pseudo-Pure
Ap ={4, 0,0, 0}

Ap ~ Izl-l_lzz +2 Izl|22
= £3/2,-1/2, -1/2, -1/2}




Preparation of Pseudo-Pure States

» Spatial Averaging Cory, Price, Havel, PNAS, 94, 1634 (1997)

» Logical Labeling  N. Gershenfeld et al, Science, 275, 350 (1997)
Kavita, Arvind, Anil Kumar, Phy. Rev. A 61, 042306 (2000)

« Temporal Averaging E. Knill et al., Phy. Rev. A57, 3348 (1998)
» Pairs of Pure States (POPS) B.M. Fung, Phys. Rev. A 63, 022304 (2001)

» Spatially Averaged Logical Labeling Technique (SALLT)

T. S. Mahesh and Anil Kumar, Phys. Rev. A 64, 012307 (2001)

* Using long lived Singlet States
S.S. Roy and T.S. Mahesh, Phys. Rev. A 82, 052302 (2010).



Spatial Averaging:

Most commonly used method

Cory, Price, Havel, PNAS, 94, 1634 (1997)
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Achievements of NMR - OIP

1/ 1. Preparation of 1/ 10. Quantum State Tomography
Pseudo-Pure States : :
‘/ x/ll. Geometric Phase in QC
2. Quantum Logic Gates
1/ 12. Adiabatic Algorithms

1/ 3. Deutsch-Jozsa Algorithm .
1/ 13. Bell-State discrimination

4. Grover’s Algorithm .
‘/ v sor 14. Error correction

1/ >- Hogg's algorithm 15. Teleportation

1/ 6. Berstein-Vazirani parity algorithm 16. Quantum Simulation 1/

v 7. Quantum Games 17. Quantum Cloning
y/ 8. Creation of EPR and GHZ states 18. Shor’s Algorithm
/9. Entanglement transfer /19. No-Hiding Theorem

>
v Also performed in our Lab. &']
¢

Maximum number of qubits achieved in our lab: 8
y >N

-
In other labs.: 12 qubits; .
Negrevergne, Mahesh, Cory, Laflamme et al., Phys. Rev. Letters, 96, 170501 (2006).




Our own contributions are distributed into
8 Ph.D. theses and nearly 40 Publications.

A few of these are briefly highlighted
In the following.



Some Selected Developments From Our Laboratory

(i) Multipartite quantum correlations reveal frustration in quantum Ising spin
systems: Experimental demonstration.

K. Rama Koteswara Rao, Hemant Katiyar, T. S. Mahesh, Aditi Sen(De), Ujjwal
Sen and Anil Kumar; Phys. Rev. A 88, 022312 (2013).

(ii) An NMR simulation of Mirror inversion propagator of an XY spin Chain.
K. R. Koteswara Rao, T.S. Mahesh and Anil Kumar, Phys. Rev. A 90, 012306
(2014).

(iii) Quantum simulation of 3-spin Heisenberg XY Hamiltonian in presence of

DM interaction- entanglement preservation using initialization operator.
V.S. Manu and Anil Kumar, Phys. Rev. A 89, 052331 (2014).
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Quantum simulation of frustrated
Ising spins by NMR

K. Rama Koteswara Rao!, Hemant Katiyar?,
T.S. Mahesh3, Aditi Sen (De)?, Ujjwal Sen? and
Anil Kumar?:

Phys. Rev A 88, 022312 (2013).

LIndian Institute of Science, Bangalore
2 Harish-Chandra Research Institute, Allahabad
3 Indian Institute of Science Education and Research, Pune



A spin system is frustrated when the minimum of the system energy does
not correspond to the minimum of all local interactions. Frustration in

electronic spin systems leads to exotic materials such as spin glasses and

spin ice materials.

3-spin transverse Ising system

H =h(o1x+ 025+ 035x) +J(01,02;, + 02,03, + 01,03,)

J>h 1
If Jis negative —> Ferromagnetic
The system is non-frustrated T T
If J is positive —> Anti-ferromagnetic T

The system is frustrated l ?



Experiment 1. Using a hetero-nuclear spin system

'H
Sample
Br 13¢
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The system is initially prepared in the ground state of
H(t=0)= h(alx T 0, + 03x)

Piniiial 1S Prepared by first creating

Pinitiat = |=— =X =——1; a 3-qubit [000> PPS , using
1 spatial averaging, followed by a
|—) = —(|0) — |1)) Hadamard gate on each qubit.
V2

,‘]—[(t) = h(o'lx + Oyt GSx) + ](t) (GIZGZZ + 07,03, + 012032)

] is increased from Pinitial ] is increased from

0 0 -|Jmax| adiabatically 0 10 |J max| adiabatically

Non-frustrated Frustrated



Pulse Sequences for Frustration Study 3o <0 Jie Jiw S0
CF 1 YHC» YHF '

T pulses on C and H
Non-frustrated case (J<0) P

(a) ) - T effectively make them < 0O
H I ; H HH Hl

xiTI' 1Ti i X | /21 pulse
B 1 00y

J{I : : i}( I
oo a [ L e

| | | |
‘ k——kJgc ¢ kJcr 0 W Jgp —) ‘

loop 21 times

(b) Frustrated case (J>0)
X X k _ ﬂ
2M’
H !: "IT H Hm .! g is varied from0to 1
I : I ' .
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Results

1r —— Theory .
A Experiment
0.8} -
n, 0.6f 4 a A 1
o

0.4} -
0.2} -

ok . -

-6 -4 6

/h
Non-Frustrated Frustrated

While the trend was correct, the experimental results did not match well with
Theory, especially in the Non-Frustrated region. The RF In-homogeneity and
evolution during RF pulses were suspected to be the reasons.

We therefore used numerical optimization techniques which could take into
account these features.



Chemical Structure of trifluoroiodoethylene

Experiment 2 il
and Hamiltonian parameters

3 3
_ i T i J 5 R
}[NMR__vaiaz+ Z 2Jijoto), e
i=1 i<j,=1 5, |11860.8 | 69.9 | 474
3 3 F, 0 | -1283
1_i 1_i -
rf i=12 xTY i=12 y £ _17379)
A three qubit system \
|000) Pseudo-Pure State (PPS) is prepared Diagonal elements are the
chemical shifts (v;) and off-
from the equilibrium by using the spatial diagonal elements are the

scalar coupling constants (];;)
averaging method.

The initial state | —— —) is prepared from the |000) PPS by applying a g rotation with
respect to —y axis on all the three spins.

This rotation was realized by a numerically optimized amplitude and phase
modulated radio frequency (RF) pulse using GRadient Ascent Pulse Engineering

(GRAPE) technique?.

The experiments have been carried out at a temperature of 290 K on Bruker AV 500
MHz liquid state NMR spectrometers.

IN. Khaneja and S. J. Glaser et al., J. Magn. Reson. 172, 296 (2005).



» All the unitary operators corresponding to the adiabatic evolution are also

implemented by using GRAPE pulses.

» The length of these pulses ranges between 2ms (for first
data point) to 30 ms (the last (21) data point). 11/2 rotation using GRAPE

> Robust against RF field in-homogeneity. 3 °
=
: e e @)% |
» The average Hilbert-Schmidt fidelity is o
greater than 0.995 E I |
—8 “*'\ L 1 1
0 100 200 300 400 500 600
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E 1 K rl T PH“ T T T I T | . -
‘.E/ . 'ﬂM ‘}[‘1' rh (|
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control fields of the GRAPE 5  CJUANT\ M Wik L ol AN\l AN W ) WAL gl Ve B W
v - —llh [ 'w hiiys ] | Iy " n f I '
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-1.5C L I 1 | ! =
y rotation of all the spins and = (] 5 10 jé 15( o 20 25 30
H me (I
combined unitary operators (C) FrllJStrated Reglm . . .
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which implements the last ste = b T AT [ T N T Wl .
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Multipartite quantum correlations

>

(a) NON-FRUSTRATED FRUSTRATED
< > <
Entanglement TV - Z — — =Theory
SCOFG US|ng 0.8 @ 5 * Experiment.
deviation 08|

1 Initial State:
1 Equal Coherent
| Superposition

Density matrix

-
-
-
-

| State. Fidelity = .99

Non-frustrated
regime: Higher
correlations

Ground State

GHZ State (J >y

(1000> - [111>)2

Fidelity = .984

(b)

- == Theory —mixed state

initial state

Quantum Discord
Score using full o

= = =Theory — pure state

*  Experiment — mixed state

Ideal operations on exp

density matrix .

e

L

Frustrated
regime:
Lower
correlations

Koteswara Rao etal. Phys. RevA 88, 022312 (2013).



Conclusion

» The ground state of the 3-spin transverse Ising spin system has been simulated
experimentally in both the frustrated and non-frustrated regimes using Nuclear

Magnetic Resonance.

» To analyze the experimental ground state of this spin system, we used two different
multipartite quantum correlation measures which are defined through the monogamy
considerations of (i) negativity and of (ii) quantum discord. These two measures have
similar behavior in both the regimes although the corresponding bipartite quantum

correlations are defined through widely different approaches.

» The frustrated regime exhibits higher multipartite quantum correlations compared to
the non-frustrated regime and the experimental data agrees with the theoretically

predicted ones.



(ii) An NMR simulation of Mirror inversion propagator of
an XY spin Chain.

K. R. Koteswara Rao, T.S. Mahesh and Anil Kumar, Phys. Rev. A 90, 012306 (2014).

In the last decade, there have been many interesting proposals in using spin
chains to efficiently transfer quantum information between different parts of a
guantum information processor.

Albanese et al have shown that mirror inversion of quantum states with respect
to the center of an XY spin chain can be achieved by modulating its coupling
strengths along the length of the chain. The advantage of this protocol is that
non-trivial entangled states of multiple qubits can be transferred from one end
of the chain to the other end.

26



Mirror Inversion of quantum states in an XY spin chain*®

exp(—itgHxy) [P Ps) ... [Yy) = elP)py_q)...1¢1)
N—1]
Hyy = —i(a,’éa,i“ + ololtl J; = [i(N — D]*/?
Xy ; 5 yOy

The above XY spin chain Hamiltonian generates the mirror image of any
input state up to a phase difference.

Entangled states of multiple qubits can be transferred from one end of the
chain to the other end

*Albanese et al., Phys. Rev. Lett. 93, 230502 (2004)
*P Karbach, and J Stolze et al., Phys. Rev. A 72, 030301(R) (2005) 27



NMR Hamiltonian of a weakly coupled spin system

A
— VA Z 7z
Hie =7 ) viof + 5 ) Jyy oo

i i<j
Control Hamiltonian

Hie(t) = x(6) Y ol +¥(0) ) o

Simulation
T
Uxy(3) = exp(—iFHxy) = Ugim = T exp !_if dt (Hine + Hie(t))
0

where T is the Dyson time-ordering operator
In practice

Usim = U Uz Uy
Here, U; = exp|—i Atj (Hine + Hp(t)))]

where H,¢(t;) is constantin each step,and 3,72 At;=T.

28



Simulation
Usim = U Uz - Uy
1) GRAPE algorithm
* Restricted to small number of spins
* Takes a lot of time to find a pulse sequence for arbitrary U
2) An algorithm by A Ajoy et al. Phys. Rev. A 85, 030303(R) (2012)

Product-decomposes any arbitrary U into a chosen operator basis.
i.e., U =[], exp(—i@y Dy),whereD, € B
» Here, we use a combination of these two algorithms to simulate the unitary
evolution of the XY spin chain

» Specifically, we first product-decompose ny(g) into the Pauli operator

basis, and then the resulting unitaries are implemented with GRAPE
technique

Ashok Ajoy, KRK Rao, Anil Kumar and P Rungta, Phys. Rev A (R), 85, 030303 (2012)



Product-decomposition of Uy (g) into the Pauli operator basis
4-spin chain
Uxy (%) = exp(iF o 0fofai) exp(if o) 0fo% 0} ) exp(if 05 0F) exp(if 05 03 )
5-spin chain

Uxy(%) = exp(iF of0f0fafal ) exp(i§ 0y 0fcfof o) exp(if 0500y )

X exp(ig o) 6o )exp(z oi‘a; a; o)

In the experiments, each of these decomposed operators are simulated
using GRAPE technique

The number of operators in the decomposition
increases only linearly with the number of spins (N).



Experiment

Molecular structure and Hamiltonian parameters

1 2 3 4 5
-6743 1532 -26 55 116

Director

\
AR

The dipolar couplings of the spin system
get scaled down by the order parameter
(~ 0.1) of the liquid-crystal medium.

50 106 -7.6 54
-3680 1270 277
29 1556

a A~ W N =

6029

5-spin system

The diagonal elements are v; and the off-
diagonal elementsare (/;; + 2D;;) in Hz

The sample 1-bromo-2,4,5-trifluorobenzene is partially oriented in a liquid-
crystal medium MBBA

The Hamiltonian of the spin system in the doubly rotating frame:

T
Hint = —ﬂz vioi + 5 ZUU +2Dyj) o of

l <j

31



Coherence Transfer:
Mirror Inversion of a 5-spin initial state
0'5X
o1 Uxy(1/2) > 020%0%0%0%  Anti-phase w.rt. other spins

Spectra of Fluorine spins Proton spins
W -
<
=
=
o
£
T
X
| ‘ _— . e e Os
H Anti-
, , , , , , , , , , phase
-7 -6 -5 3 4 6 7 —1 0 1 W.I.t.
6% %o%0%a% Frequency (kHz) other
spins

K R K Rao, TS Mahesh, and A Kumar, Phys. Rev. A, 90, 012306 (2014). 32



Coherence Transfer:
Spin 2 (in- phase) magnetization transferred to spin 4 (anti-phase w.r.t. other spins)

2
o5 T2 | ot ototos0

Spectra of Fluorine spins Proton spins

| T
L
o
=
-
a
E
e e e
i e B e S LR
7 6 5 3 4 6 7 1 0 ]

Frequency (kHz)
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Quantum State Transfer:

Uxy(mt/2)

Mirror Inversion of a 4-spin pseudo-pure initial states

11000)(1000]|

o I Theory

01 2 3 456 7 8 9101112131415

I Experiment

01 2 3 456 7 8 9101112131415

1

0.5

0

0.5

0.25

> [0001){0001]

I ~ Theory

01 2 3 456 7 8 9101112131415

i I Experiment |

01 2 3 456 7 8 9101112131415

Diagonal part of the deviation density matrices (traceless)
The x-axis represents the standard computational basis in decimal form

11010)(1010]

Theory

01 2 3 456 7 8 9 101112131415

I Experiment

01 2 3 456 7 8 9101112131415

U 2
xv(m/2) 10101)(0101|
T T T T T T T T T T

41 05

0

0.5}"
0.25}

I Theory

01 2 34567 8 9101112131415

Experiment ]

01 2 3 456 7 8 9101112131415
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3. Use of Genetic Algorithm for Quantum Simulation of
Dzyaloshinsky-Moriya (DM) interaction in presence of
Heisenberg XY interaction. Entanglement preservation.



The Genetic Algorithm

_ John Holland
Charles Darwin 1866

1809-1882

Directed search algorithms based on the
\mechanics of biological evolution

Developed by John Holland, University of
\Michigan (1970's)




Genetic Algorithm

“Genetic Algorithms are good at taking large, potentially
huge, search spaces and navigating them, looking for
optimal combinations of things, solutions one might not
otherwise find in a lifetime”

Here we apply Genetic Algorithm to Quantum Information Processing

In the first part (a) we have used GA for

Quantum Logic Gates (operator optimization)
and
Quantum State preparation (state-to-state optimization)

V.S. Manu et al. Phys. Rev. A 86, 022324 (2012)



Representation Scheme

Representation scheme is the method used for encoding the
solution of the problem to individual genetic evolution. Designing a
good genetic representation is a hard problem in evolutionary
computation. Defining proper representation scheme is the first
step in GA Optimization.

In our representation scheme we have selected the gene as a
combination of

(i) an array of pulses, which are applied to each channel with
amplitude (8) and phase (),

(i) An arbitrary delay (d).

It can be shown that the repeated application of above gene forms
the most general pulse sequence in NMR



The Individual, which represents a valid solution can be
represented as a matrix of size (n+1)x2m. Here ‘m’ is the

number of genes in each individual and ‘n’ is the number
of channels (or spins/qubits).

011 P11 Om1 ©Pm
612 @12 Om1 Om
an (pln . . an (pmn
dq 0 dm 0

So the problem is to find an optimized matrix, in which the
optimality condition is imposed by a “Fitness Function”



Fithness function

In operator optimization

GA tries to reach a preferred target Unitary Operator (U,,,) from an
initial random guess pulse sequence operator (U,,).

Maximizing the Fitness function

F,u, =Trace (Upul XU )

In State-to-State optimization

I:pul = Trace{ U pul (pin) UpuI 1) ptar T}



0 Two-qubit Homonuclear case

0

Br\/ - . .
o Single qubit rotation
do e Non-Selective /94, 712 02 (o)
(Hard) Pulses \
o J12 o applied in the g
) 75 centre _ 1B
| - (7] ~ |
e ey M
JU 0,=2m @,=m,
J _ O =m/2, Q= /2
0 =500 Hz, J=3.56 Hz JUL
H = 27T 6 (Ilz - 122) + 277 \J12 (|12|22) 28'0 2(%0 24'0 ’l"z ) \-22‘0 -2'40 -éGO [HZ
Hamiltonian used ¢ =1 ¢, =0
O=m/2, =12
H=H,=2m6(I}—12) U
M

T T T T T T T T
280 980 240 Hz 220 -240 -260 Hz

Simulated usingJ =0



Controlled- NOT:

1 0 0 O 45, 120(55)  (45+180), (180)y5 . (45+90), 45, The phase of  pulse (y or x)
0O 1 0 0 decides the operation type (C-
0 0 0 1 NOT or C-NOT) and + in first
0 0 1 0 . Ll | and third delays decides the
. 1 . _ : Control Qubit.
g Tl 7] —> s T
0.5 0.5 - 0.5 0.5 0.5
0 0 0 0 0
-0.5 sl e -0.5 -0.5 )
1234 1234 1234 1234 1234

Equilibrium  C-NOT(1,2) C-NOT(2,1) c-NOT(1.2) C-NOT (2.1)




Pseudo Pure State (PPS) creation

{150) (0) (135) (112+180) (157.5 + 45) {22.5) {0)
” ” ” ” I ” ” All unfilled rectangles represent 90° pulse
u 4 L . . Ll The filled rectangle is 180°pulse.
; A ; i A Phases are given on the top of each pulse.
| 1 1 1 | 1
o it g T v
(O) 10 1 11
00 7 !
0.5 00 05 0.5
5 0— ™ —— 0 . —
1234 1234 1234 resd
100
A99.99’
Fldellty w.r.t. to J/O %'99.9&
) 99.97 1
99.96 ! ) ' '
0 0.02 0.04 0.06 0.08 0.1

i



Bell state creation: From Equilibrium (No need of PPS)

Bell states are maximally entangled two qubit states.

Sﬁﬁ ﬁ ﬁ TIT/B i ﬁs ﬁ TT ﬁ ﬁl ~Qon+poy O O5m/8 3m/4 9/485 1/8
vZ
i L ; ; T ; ; 1 _ 0 5m/8 m/4 9/485 1/86
| i ‘ i i i i ‘; i | \E(|01) [10))
(P e d M L —— (L —— L ——e 4, > 1 o0ys 11y 3/t 9m/8 3m/4 1/165 0
vZ
All blank pulses are 90° pulses. Filled pulse is a 180° pulse. L qopy—jazy) 37/* 97/8 m/4¢ 1/165 0
Phases and delays Optimized for best fidelity. 2
WHL N, The Singlet Bell State
2_;:0 24‘10 Hz -2I40 —2‘50 -2’60 Hz } ‘
Experimental Fidelity > 99.5 %
1
Shortest Pulse Sequence for creation b T, =1125
of Bell States directly from Equilibrium T=87¢  Hos '
19 E
V.S. Manu et al. Ph T=11.2s i
. . YS. Rev. A 86, 022324 (2012) S 0g 5 10 15 20

Time (S)



(b) Quantum Simulation of Dzyaloshinsky-Moriya (DM)
Interaction (H,,,) In presence of Heisenberg XY interaction
(Hy) for study of Entanglement Dynamics



» Anisotropic antisymmetric exchange interaction arising from spin-orbit coupling.

»Proposed by Dzyaloshinski to explain the weak ferromagnetism of
antiferromagnetic crystals (Fe,05;, MnCO;).

Hpy = P (01402- — 01-024)

of a Hamiltonian H requires unitary operator

decomposition (UOD) of its evolution operator, (U = et) in terms of
experimentally preferable unitaries.

Using Genetic Algorithm optimization, we numerically evaluate the most generic
UOD for DM interaction in the presence of Heisenberg XY interaction.

1. 1. Dzyaloshinsky, J. Phys & Chem of Solids, 4, 241 (1958).
2. T. Moriya, Phys. Rev. Letters, 4, 228 (1960).



The Hamiltonian
H(J,D) = J(012024 + 01y02y) + D(01202y — 01,022)

J J

Heisenberg XY interaction DM interaction
Evolution Operator:  U(D, J,t) = exp(—iH(J, D) x t)

vy=D/J T=Jxt

U(ﬁ/a T) — 8511}7(-’5[((7133(72:5 + C"ly‘j}y) + ﬁ!’(glﬁ:JEy — leg2$)] 'T)

The UOD is performed for Y =0 - oo;
Y =0 -> pure Hyy interaction and Y = oo -> pure Hp,, interaction.

Decomposing the U in terms of Single Qubit Rotations (SQR) and ZZ- evolutions.

SQR by Hard pulse R™(0,0) = exp(—i0/2 x [Cosp 0y + Sing a,y])

ZZ evolutions by Delays U,,(8) = exp(—i § o70?)



B. DecompositionforY=1- oo
Y=1/Y WhenY>1 > Y <1

U'(Y',7") = exp(—i[y (01202: + 01y02y)+ (012025 — 014022)] T'),

U!(F}'{fﬂ’rf) — RI(E E)RQ(%?QS)UZZ(
1

6 = [0.09812 exp(—2.427) 4+ 0.4023 exp(0.5524)],

01 = —0+ 3.142,

02 = 0 — [1.242 exp(—0.9617+) + 0.3546 exp(—0.1145)],
03 = 1.259 exp(—0.957v) + 3.479 exp(—0.00877),

04 = 1.256 exp(—0.9597) + 1.912 exp(—0.0166~),

So we have a complete decomposition for Y =1 - oo, which means all arbitrary amounts
of DM and XY interaction can be simulated.

Using above decomposition, we studied entanglement preservation in a two-qubit system.

3Phys. Rev. A, 69 012313 (2009)



Entanglement Preservation

Hou et al. * demonstrated a mechanism for entanglement preservation using H(J,D). They
showed that preservation of initial entanglement is performed by free evolution interrupted
with a certain operator O, which makes the state to go back to its initial state.

concurrence

OU(")/,T)OU(’}/,T)EI O:I1 X 02, C :max(O,zmax{\/E}Z\/E

i
W; are eigen values of the operator
1 pSp*S, where S=0,, & 0y,
We experimentally demonstrated this with an initial Bell state: E(|01) —110))

Without Operator O With Operator O o
|],;H:215.1H7.
z Thg ¢ ¢ ¢ ¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ C|/3C{“CI
o Cl
& A\, * 7/ o 8
b o ’ ¢ =
g 0.6 N ke ; ® 08
= ) o5 5 [ : s 4 ..
% ol 3 ML 1 A Similar to
8 Theoretical o Experimental = N . Qu antum
02}  emoem =033 » 0.6 - i 2 ;
— 508 . Zeno Effect
0 i 2 3 o ; 2 3
T T
Entanglement (concurrence) Entanglement (concurrence) is preserved during
oscillates during Evolution. Evolution. This confirms the Entanglement

preservation method of Hou et al.?

Manu et al. Phys. Rev. A 89, 052331 (2014). *Hou et al. Annals of Physics, 327 292 (20129



Pause
Do | still have some time?
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IBM recently (last Year) released a 5-qubit (and a 10-qubit) Superconductivity
based Quantum Computer (Quantum Experience) and placed it on the cloud
for use of one-and-all (free of cost).

My 2017 Summer students™ used the 5-qubit computer and verified
Three of our NMR experiments which we had done earlier, namely

1. Non-destructive discrimination of Bell States.

Jharana Rani Samal, Manu Gupta, P.K. Panigrahi and Anil Kumar, J.Phys. B, 43, 095508
(2010)

2. Non-destructive discrimination of arbitrary set of orthogonal quantum States by phase
estimation.
V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information
Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings; 1384,229-240 (2011).

3.  Experimental Test of Quantum of No-Hiding theorem.
Jharana Rani Samal, Arun K. Pati and Anil Kumar,
Phys. Rev. Letters, 106, 080401 (25 Feb., 2011)

1. Ayan Majumdar, IISER-Mohali
2. Santanu Mohapatra, 11T Khrgpur
3. Porvika Bala, NIT, Trichy 51



Hardware of the IBM quantum
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TO ABSOLUTE TERC

Attenuation is applied
at each stage in
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order 1o protect
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Nnoise during the
process of sending
control and readout
signals

to the processor.

QUEBIT SIGNAL
AMPLIFIER
One of two
amplifying
stagoes s cooled
to atempoerature
of 4 Kolwvin

Inside Look:
Quantum Computer

Harnessing the power of a guantum processor

FeQUITeS MAIINIANINng CcoNsStant TeMPeratures roear

absolute zero. Here's a look at how a dilution m—
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nents, exploits the Mmixing properties of two helium — . . —cr
isotopes 1o create such an environmeent.
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In order to Mmini- - nents down to a tem-
mire encergy los= 3 perature of 1S MK —
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between the firss
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4 315 samiLaEL vItes
amplifying stages
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superconductors
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1 http://research.ibm.com is-quantum-com




In order to mini-
mize energy loss,
the coaxial lines
that direct signals
between the first
and second
amplifying stages
are made out of
superconductors.

¢ Superconducting coaxial lines

] https: outube.com/watch?v=S52rxZG-zio
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0’0

Fridge Temperature
0.0174 Kelvin

IBM Quantum Experience ibmqgx2 devi

Coupling map ={0: [1, 2], 1: [2], 3: [2, 4], 4:
[2]} where, a: [b] means a CNOT with qubit
a as control and b as target can be
implemented.

The connectivity is provided by two
coplanar waveguide (CPW) resonators
with resonances around 6.0 GHz (coupling
Q2, Q3 and Q4) and 6.5 GHz (coupling QO,
Q1 and Q2). Each qubit has a dedicated
CPW for control and readout. This picture

shows the chip layout.
co p lay



IBM Q experience

Composer
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Your Quantum Results

© Bell state Be” State

Quantum State: Quantum Sphere

Quantum State: Computation Basis

Number of shots 100
0.510 P 0.490

Probability of finding the system in state 11 Probability of finding the system in state 00

Quantum Circuit

the w??—n—é—m
circuit for Bell| =~ =3
state <ol %

(100 > +]11>)

Exocuted o bun B, 2077 45608 Paa Nusnbor of shots: 200
Rosults datec Jun 82017 £506 09 P Seod: 222943306




0502 0.497
I Number of shots 8192 I
(:505 0.495
e Number of shots 4000 0255
0.508 0.492

I Number of shots 400 I
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** Recently this experiment was also implemented in IBM quantum
experience by

¢ Mitali Sisodia, Abhishek Shukla, Anirban Pathak,
arXiv:1705.00670 [quant-ph])



https://arxiv.org/find/quant-ph/1/au:+Sisodia_M/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Shukla_A/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Pathak_A/0/1/0/all/0/1
https://arxiv.org/abs/1705.00670
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** This protocol already ve
<* Manu V S & Anil Kumar, AIP Conf. Proc. 1384,229-



are,
|1>=75(|00>+]10>)
|b2 >=\/%([01>+|11>)
|b5>=7(lo1> - [11>)
|4>=7(l00> - [11>)

¢ Possible orthogonal states

ancilla
qubit

states | Ancilla-1 | Ancilla-2
|y | |02 |0
D> | |02 1=
s> | 1> 0>
|by> | |12 |12

qlo] (o)

qlil o

ql2] )

al31 0 —n

2
Cof

|¢1} U1

< Fidelity: NMR =7.2%, ibmgx2 = 2.0 %

Instrument Average absolute deviation | Maximum absolute deviation
MNMR 4.0% 7.2%
IBM guantum experience | 0.3750% 2%




\

+ Has now been implemented by new version of IDMJX2
by Santanu Mohapatra in my lab.




Experimental Result for the No-Hiding Theorem. H

Br B¢ Br
C |2245 |
F_|497]3109] 1op
H C
Input State
(a) IH 19F 13C

Each point in this l
figure is a point on the S 1 1
Bloch sphere and

represents a pure state
325 experiments have

been performed by -
varying 0 and ¢in - - : :
ryStSpS of 15° ¢ 180 e -l§a>27° 360 180 S y 'mo-m’ 340 150 o 'mﬁ-m' 360

Out&gt State

The state y is

. completely
5 = 1 g ‘ 477 transferred from
24 ' 4l first qubit to the
| s 4 L~ mS % third qubit
® = e amo ¥ il o s 20 o Sl TR - L
e L) p

S = Integral of real part of the signal for each spin

Jharana Rani Samal, Arun K. Pati and Anil Kumar,
Phys. Rev. Letters, 106, 080401 (25 Feb., 2011).



/ - \ A
U IMPLEMENTING IT IN IBM QUANTUM
COMPUTER D,

O In order to implement the above pulse sequences in this quantum computer,
We need to convert these into quantum gates.

We already know that U=[m/2] _32 [1/2] _1x [11/2] Uy /2] 2 [Tr/Z]

So, the sequence of quantum gates for the randomization

S+HS+HX
3\ 11 1 1

_I_
Hl(SlH1X1H3X3H1H151H1X1H1X1CN0T13H353H3X3H3

Formulas used:
1.[m/2] _=H, [m/2] =H X

n/Z]Z—S [7/2] __=S st
=21 e, /2] 5. CNOT |, 1T/2] [1'r/2 1T/2 n/\)

4.<p_x:[n/2] e, m/2], 0 Q ® @
5 \



wnardole  For 0=m/2 and g=0, | Y>=(|0>+|1>)//2

| %
O .*)U

aql1] o)

al2] o

Measuring
3rd qubit

Quantum State: Computation Basis Probabilities
Of the 3™ qubit

8129 state Q Extraction of s
5 503:5:3/ 497 vh A

Local unitary

Number of shots = Operation for




ato) o~k Measuring 1°
al11 o And 2" qubi
X basis

Extracting the Bell state

ql2] o)

Quantum State: Computation Basis

Bell state

Number of shots = 8192
/ ¥
0,503 0.49 A

N AGQ7
Wi




* Thanks to the IBM for developing such a
wonderful experimental setup and making
It available to one and all



Summary

NMR is continuing to provide a test bed
for many quantum Phenomenon and
Quantum Algorithms.
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Non-destructive discrimination of
Bell States

Bell States are Maximally Entangled 2-qubit states.
There are 4 Bell States namely

07> = (j00> + [L1>)N2 |97 = (00> - [11>)A2
> = (01> +[10>)V2 s

01> - [10>)V2



Protocol for Non-destructive Discrimination of Bell States

Manu Gupta and P. Panigrahi (quant-ph/0504183v);
Int. J. of Quantum Information 5, 627 (2007)

Theory

Jharana Rani Samal*, Manu Gupta, P. Panigrahi and Anil Kumar,
J. Phys. B, 43, 095508 (2010).

Experimental verification by NMR




£y
w1/

T

i
R

Fd Y
Ny

¥ Panigrahi Circuit

Needs two Ancilla Qubits

Jharana Circuits

Needs one Ancilla but two
measurements

Phase Measurement

Parity Measurement



Bell State | 1° Measurement | 2™ Measurement




NMR Pulse Sequence for Discrimination of Bell States

. using one Ancilla Qubit
Br B¢ Br
ot
(a) Preparation of PPS (b) Preparation of (c) Encoding phase and parity information I'lil]
Bell state eadout
CNOTy - (NOT
45x 45 T\ V| 3y y |
30 00 I
T N LIL} | | o
3 : 1 I : :, I :_: :
379 Wy 45t : | N | ) Y
[ I |1 i 3
L’F] l : L ]
T I I Il
Il I [ ro I
I I I
VX

1
I—

1

1
—

— 1

ok |

) _‘ i|i‘| [ %
| “
— = — ' | — —>
HC

Unr Unr aate Unc Urc gate

f
4

Fig. 2
For Parity measurement the Hadamard gates are removed and the CNOT Gates are
reversed Jharana et al, J.Phys. B., 43, 095508 (2010)



O >

Created Bell States

(@)

(100> + |11>),4 10>

(100> - [113), 0>

©

(d)

(101> + [10>) 42 [0>¢

(101> - [10>),4¢ 0>

1=000>; 7 =|110>; 3 =010>; 5 = [100>
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7>

\

ly™>

Population Spectra of 13C

Phase Parity
(a)
T T 1 | I T
200 0 —200 Wz 200 0 —-200 Wz
o
(b) ‘
T T T T T T v T
200 0 —200 Hz 200 0 —200 Mz
b
(c)
T T T 1 1 T
200 0 —200 Hz 200 0 —200 Hz
i i
(d)
T T T T T T M T M
200 0 —200 Hz 200 0 —200 Hz




Tomograph of the real part of the Density matrix confirming the
Phase and Parity measurement.

(i) Phase Measurement (ii) Parity Measurement

) (e)

© =

@ (h)

were..Jharnaet al J.Phys.B 43, 095508 (2010)



Non-Destructive Discrimination of Arbitrary set of
Orthogonal Quantum states by NMR using Quantum

Phase Estimation.

For this algorithm, the states need not have definite PARITY (and
can even be in a coherent superposition state).

This algorithm is thus more general than the just described Bell-State
Discrimination

V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information
Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings; 1384, 229-240 (2011).



For a given eigen-vector |@> of a Unitary Operator U, Phase Estimation Circuit,
can be used for finding the eigen-value of |¢>.

Conversely, with defined eigen-values, the Phase Estimation can be used for
discriminating eigenvectors.

By logically defining the operators with preferred eigen-values, the
discrimination, as shown here, can be done with certainty.

Quantum Phase Estimation

»Suppose a unitary operation U has a eigen vector |u> with eigen
value e'¢
» The goal of the Phase Estimation Algorithm is to estimate ¢.

As the state Is the eigen-state, the evolution under the Hamiltonian
during phase estimation will preserve the state.



Finding the n Operators Ul

Let M, be the diagonal matrix formed by eigen-value
array {e'}; of U,

And
Vis the matrix formed by the column vectors {|¢,>},
U=VixM xV

Forming Eigen-value arrays

1. Eigen-value arrays { e'} should contain equal number of +1 and -1

2. 18t eigen value array can have any order of +1 and -1.

3. 2"d onwards should also contain equal number of +1 and -1, but  should
not be equal to earlier arrays or their complements.



Two Qubit Case

Consider a set
1 1
{S(Tl'z‘\/_lz)}z 7—21(I00)+ I01>),1¢—§(I10>+ |11)),
7 (110)—]11)), 7 (|00) — |01))

A complete set of orthogonal States, which are not Bell states.
They have the 15t qubit in state |[0> or 1> and the 2"d qubit in a superposed State ( 0>+ 1>)

U, and U, can be shown as,

0100 01 0 0
(10 0 0 (10 0o o) .. 3
Us=10 0 0 1)’ Y>"{o 0 0o -1 ©)

0010 00 -1 0

Experimental implementation of this case is performed here by NMR

Quantum state Discrimination Using NMR 82



For the operators U, and U, described in Egn. (3)

Controlled — U, = e ‘1 Controlled — U, = e H2

In terms of NMR Product Operators The Hamiltonians are given by
w (4 /[
— (=5 — g1 _ 3 173
H,= (41 o1 = 51 +mIL)
Hy = (31— 21} —m 213+ 2m ILIZLS).
Since various terms in H, and H, commute each other, we can write,

Y LT 1 1T 3 .
T =it —iT 13
Controlled — U, = e'* x e 22 x e”'2* x e'™zlx,

T T 1 . .
etzl % e—lilz X eurl}l% X 8121?1%1%1:%

Controlled — U,

Quantum state Discrimination Using NMR
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<]

13C ﬂ |_|
x Y x X R -
19F
s S |4 TR |
(a)Controlled-Uy
Xy X X X X X X X X X
X X X -y x x y x o x o yT x X
-y X X ‘ X X | & X 1 X X P 4
| | - - 1
. 123, > | o RR s e | =i GQL =g o it |5 By

(b)Controlled-Us
Thin pulses are n/2 and broad pulses are & pulses. Phase of pulses on top
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Non-destructive Discrimination of two-qubit orthonormal

states.
Original Circuit
Needing 2-ancilla (@)  AncillaQubits
qubits 0) = =
o) ——fF- 4R

{1} Y, U, {19:)}
Split Circuit needing 1-
ancilla qubit

(b) _ (c) _ |
Ancilla Qubit -1 Ancilla Qubit -2
0) alpn gu Ll S 0) —{n}-—HHi-1
{lo:)} Y, {l2:) } Y,
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Results for Ancilla measurements
() 91 (42) ¢ (i3) O3 (tv) @4

e | et

;¢ ¥ ¥ ¥

T % T T T T T - o T = = pY—

o = © = = Hz 200

& ) 1 1
S S M—]ﬁ
T Y JLJL ‘ s JL“*‘J g ¥
T 2 T T T ¥ T T T T ks T T T T
- H= 20¢3 3 H= H= =0 E

A, = -vesignal = |1> state.
A, = +vesignal = |0> state.

2> (1/N2) (]10> - |11>)

)
[+]
[e]
b
0
Q
O
[
N |
04
Q
0
B
I
4]
o
N

A, > +vesignal - |0> state.
A, = +vesignal = |0> state.

= (1/2) (]00> + [01>)

A4
A4 :
i A, = -vesignal = |1> state.
A, > +vesignal 0> state. A, > -vesignal 2 |1> state.

A, > -vesignal - |1> state.
> (1A2) (] 10> + |11>) > (1~2) (] 00> - | 01>)

Complete density matrix tomography has done to

1. Show the state is preserved 2. Compute fidelity of the experiment.
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Initial State After First Experiment  After Second Experiment

() [0)(—5(l00) +101)))  [0)(5(l00) +[01)))  [0)(-5(l00) + |01)))

(i) 10)(Z5(110) +]11)))  [0)(L(110) +[11)))  [1)(L5(|10) + [11)))
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Conclusions of the State Discrimination

> A general scalable method for quantum state
discrimination using quantum phase estimation
algorithm is discussed, and experimentally
implemented for a two qubit case by NMR.

» As the direct measurements are performed only on
the ancilla, the discriminated states are preserved.

V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information

Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings; 1384, 229-240
(2011).
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No-Hiding Theorem

S.L. Braunstein & A.K. Pati, Phys.Rev.Lett. 98, 080502 (2007).

Any physical process that bleaches out the original information is called
“Hiding”. If we start with a pure state, this bleaching process will yield a
“mixed state” and hence the bleaching process in Non-Unitary”. However, in
an enlarged Hilbert space, this process can be represented as a “unitary”. The
No-Hiding Theorem demonstrates that the initial pure state, after the bleaching
process, resides in the ancilla qubits from which, under local unitary
operations, is completely transformed to one of the ancilla qubits.



Quantum Circuit for Test of No-Hiding Theorem using State
Randomization (operator U).
H represents Hadamard Gate and dot and circle represent

CNOT gates.
x |
4 | [
0} H U :L H j / >
— 8 )

After randomization the state |y> Is transferred to the second
Ancilla qubit proving the No-Hiding Theorem.

(S.L. Braunstein, A.K. Pati, PRL 98, 080502 (2007).



NMR Pulse sequence for the Proof of No-Hiding Theorem
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Experimental Result for the No-Hiding Theorem. H

Br B¢ Br
C |2245 |
F_|497]3109] 1op
H C
Input State
(a) IH 19F 13C

Each point in this l
figure is a point on the S 1 1
Bloch sphere and

represents a pure state
325 experiments have

been performed by -
varying 0 and ¢in - - : :
ryStSpS of 15° ¢ 180 e -l§a>27° 360 180 S y 'mo-m’ 340 150 o 'mﬁ-m' 360

Out&gt State

The state y is

. completely
5 = 1 g ‘ 477 transferred from
24 ' 4l first qubit to the
| s 4 L~ mS % third qubit
® = e amo ¥ il o s 20 o Sl TR - L
e L) p

S = Integral of real part of the signal for each spin

Jharana Rani Samal, Arun K. Pati and Anil Kumar,
Phys. Rev. Letters, 106, 080401 (25 Feb., 2011).



