
Anil Kumar

Department of Physics and NMR Research Centre

Indian Institute of Science, Bangalore-560012

Quantum Information Processing and Applications

Harish-Chandra Research Institute, Allahabad. 02 - 08 December 2018

Quantum Information Processing by NMR: 

A Status Report

1



Experimental Techniques for Quantum Computation:

1. Trapped Ions

4. Quantum Dots

3. Cavity Quantum 

Electrodynamics (QED)

6. NMR

Ion Trap:Ion Trap:

Linear Paul-Trap

~
16 MHz

1kV

1kV

http://heart-c704.uibk.ac.at/linear_paul_trap.html

Laser

Cooled

Ions

T ~ mK

Quantum Dots:Quantum Dots:

mm

ElectrodesDot

Circle

http://theorie5.physik.unibas.ch/qcomp/node3.html

http://news.uns.purdue.edu/html4ever/010917.Chang.quantum.html

7. Josephson junction/SQUID based qubits

8. Fullerence based ESR quantum computer

5. Cold Atoms

2. Polarized Photons         

Lasers
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1. Nuclear spins have small magnetic 

moments and behave as tiny quantum 

magnets.

2. When placed in a magnetic field 

(B0),  spin ½ nuclei orient either 

along the field (|0 state) or opposite 

to the field (|1 state) .

4. Spins  are coupled to other spins by indirect spin-spin (J) coupling, and 

controlled (C-NOT) operations can be performed using  J-coupling.                 

Multi-qubit gates

Nuclear Magnetic Resonance (NMR)

3. A transverse radio-frequency  field  (B1) tuned at the Larmor frequency of 

spins can cause transition from |0 to |1 (by a 1800 pulse = NOT  Gate ).          

Or put them in coherent superposition (by a 900 pulse = Hadamard Gate ).

Single qubit gates.

NUCLEAR SPINS ARE QUBITS

B1
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DSX 300

7.0 Tesla

AMX 400

9.4 Tesla

AV 500

11.7 Tesla

AV 700

16.5 Tesla

DRX 500

11.7 Tesla

NMR Research Centre, IISc
1 PPB

Field/ 

Frequency 

stability     

= 1:10 9
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Why NMR?

>  A major requirement of a quantum computer is that the 

coherence should last long.

> Nuclear spins in liquids retain coherence  ~ 100’s millisec  

and their longitudinal state for several seconds.

> A system of N coupled spins (each spin 1/2)  form an N 

qubit Quantum Computer.

>  Unitary Transform can be applied using R.F. Pulses    and 

J-evolution and various logical operations and quantum 

algorithms can be implemented.
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NMR sample has ~ 1018 spins.

Do we have 1018 qubits?

No - because, all the spins can’t be

individually addressed.

Spins having different Larmor frequencies can be addressed in 

the frequency domain  resulting-in  as many “qubits” as Larmor

frequencies,   each having ~1018 spins. (ensemble computing).

Progress so far

One needs un-equal couplings between the spins, yielding resolved

transitions in a multiplet, in order to encode information as qubits.

Addressability in NMR
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13CHFBr2

An example of a Hetero-nuclear three qubit

system.

1H =  500 MHz 13C = 125 MHz 19F = 470 MHz

13C

Br (spin 3/2) is a quadrupolar nucleus, is decoupled 

from the rest of the spin system and can be ignored.

JCH =   225 Hz

JCF = -311 Hz

JHF =     50 Hz

NMR Qubits

7



1 Qubit

00

0110

11

0

1

CHCl3

000

001010

011

100

101110

111

2 Qubits
3 Qubits

Homo-nuclear spins having different Chemical shifts 

(Larmor frequencies) also form multi-qubit systems



Pseudo-Pure States

Pure States:

Tr(ρ ) = Tr ( ρ2 ) = 1

For a diagonal density matrix, this condition requires 

that all energy levels except one have zero populations.

Such a state is difficult to prepare in NMR

We create a state in which all levels except one have 

EQUAL populations. Such a state mimics a pure state.

ρ = 1/N ( α1 + Δρ )

Under High Temperature Approximation

Here  α = 105  and U 1 U-1 = 1
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Pseudo-Pure State

In a two-qubit Homo-nuclear system: 
(Under High Field Approximation)

(i) Equilibrium:

ρ =  105 +  Δρ = {2, 1, 1, 0}

Δρ ~  Iz1+Iz2   =  { 1, 0, 0, -1}

(ii) Pseudo-Pure

Δρ = {4, 0, 0, 0}

0
 11

1
 10

2
 00

1
 01

0
 11

0
 10

4
 00

0
 01Δρ ~  Iz1+Iz2 + 2 Iz1Iz2

=  { 3/2, -1/2, -1/2, -1/2}
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• Spatial Averaging

• Logical Labeling

• Temporal Averaging

• Pairs of Pure States (POPS)

• Spatially Averaged Logical Labeling  Technique (SALLT)

Cory, Price, Havel,  PNAS, 94, 1634 (1997)

E. Knill et al., Phy. Rev. A57, 3348 (1998)

N. Gershenfeld et al, Science, 275, 350 (1997)

Kavita, Arvind, Anil Kumar, Phy. Rev. A 61, 042306 (2000)

B.M. Fung, Phys. Rev. A 63, 022304 (2001)

T. S. Mahesh and Anil Kumar, Phys. Rev. A 64, 012307 (2001)

Preparation of Pseudo-Pure States

Using long lived Singlet States

S.S. Roy and T.S. Mahesh, Phys. Rev. A 82, 052302 (2010).

•
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Spatial Averaging: Cory, Price, Havel,  PNAS, 94, 1634 (1997)

(p/3)
X

(2)
(p/4)

X

(1)

p

1/2J

2 4 5 61 3

Gx

(p/4)
Y

(1)

I1z + I2z + 2I1zI2z = 1/2 

3  0  0  0

0 -1  0  0

0  0 -1  0

0  0  0 -1

Pseudo-pure 

state

I1z = 1/2

1 0  0  0

0  1  0  0

0  0 -1  0

0  0  0 -1

I2z = 1/2

1  0  0  0

0 -1  0  0

0  0  1  0

0  0  0 -1

2I1z I2z = 1/2

1 0  0  0

0 -1  0  0

0  0 -1  0

0  0  0  1

Eq.= I1z+I2z 
I1z + I2z + 2I1zI2z
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Most commonly used method

Gradient Pulses 

make this a non-

unitary operation



1. Preparation of

Pseudo-Pure States

2. Quantum Logic Gates

3. Deutsch-Jozsa Algorithm

4. Grover’s Algorithm

5. Hogg’s algorithm

6. Berstein-Vazirani parity algorithm

7. Quantum  Games

8. Creation of EPR and GHZ states 

9. Entanglement transfer

Achievements of NMR - QIP







10. Quantum State Tomography

11. Geometric Phase in QC

12. Adiabatic Algorithms

13.  Bell-State discrimination

14. Error correction 

15. Teleportation

16. Quantum Simulation

17. Quantum Cloning

18. Shor’s Algorithm

19.  No-Hiding Theorem



















Maximum number of qubits achieved in our lab:  8

 Also performed in our Lab.



In other labs.: 12 qubits; 

Negrevergne, Mahesh, Cory, Laflamme et al., Phys. Rev. Letters, 96, 170501 (2006).


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Our own contributions are distributed into 

8 Ph.D. theses and nearly 40 Publications.

A few of these are briefly highlighted 

in the following.



Some Selected Developments From Our Laboratory

(i) Multipartite quantum correlations reveal frustration in quantum Ising spin 
systems: Experimental demonstration.
K. Rama Koteswara Rao, Hemant Katiyar, T. S. Mahesh, Aditi Sen(De), Ujjwal
Sen and Anil Kumar; Phys. Rev. A 88, 022312 (2013).

(ii)  An NMR simulation of Mirror inversion propagator of an XY spin Chain. 
K. R. Koteswara Rao, T.S. Mahesh and Anil Kumar, Phys. Rev. A 90, 012306 
(2014).

(iii) Quantum simulation of 3-spin Heisenberg XY Hamiltonian in presence of 
DM interaction- entanglement preservation using initialization operator.
V.S. Manu and Anil Kumar,  Phys. Rev. A 89, 052331 (2014).
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Quantum simulation of frustrated 

Ising spins by NMR

K. Rama Koteswara Rao1, Hemant Katiyar3, 

T.S. Mahesh3, Aditi Sen (De)2, Ujjwal Sen2 and 

Anil Kumar1:

Phys. Rev A 88 , 022312 (2013).

1 Indian Institute of Science, Bangalore
2 Harish-Chandra Research Institute, Allahabad
3 Indian Institute of Science Education and Research, Pune



A spin system is frustrated when the minimum of the system energy does

not correspond to the minimum of all local interactions. Frustration in

electronic spin systems leads to exotic materials such as spin glasses and

spin ice materials.

If J is negative          Ferromagnetic

If J is positive          Anti-ferromagnetic

The system is frustrated 

3-spin transverse Ising system

The system is non-frustrated 



Sample

Equilibrium spectra

Experiment 1:  Using a hetero-nuclear spin system

Pulse sequence to prepare PPS (using only the nearest neighbour couplings)

1H

13C

19F

Gz

Tomography 

of 010   PPS



Non-frustrated Frustrated

ρinitial is prepared by first creating 

a 3-qubit |000> PPS , using 

spatial averaging, followed by a 

Hadamard gate on each qubit.



Pulse Sequences for Frustration Study

Non-frustrated case (J<0)

Frustrated case (J>0)

JCF < 0 , JHC, JHF >0.

π pulses on C and H 

effectively make them < 0
π π

π π

π π



Results

While the trend was correct, the experimental results did not match well with 

Theory, especially in the Non-Frustrated region. The RF In-homogeneity and 

evolution during RF pulses were suspected to be the reasons.

We therefore used numerical optimization techniques which could take into 

account these features.

Non-Frustrated Frustrated



Chemical Structure of trifluoroiodoethylene 

and Hamiltonian parameters

This rotation was realized by a numerically optimized amplitude and phase

modulated radio frequency (RF) pulse using GRadient Ascent Pulse Engineering

(GRAPE) technique1.

1N. Khaneja and S. J. Glaser et al., J. Magn. Reson. 172, 296 (2005).

Experiment 2

A three qubit system

The experiments have been carried out at a temperature of 290 K on Bruker AV 500 

MHz liquid state NMR spectrometers.



➢ All the unitary operators corresponding to the adiabatic evolution are also 

implemented by using GRAPE pulses.

➢ The length of these pulses ranges between 2ms (for first 

data point) to 30 ms (the last  (21) data point).

➢ Robust against RF field in-homogeneity.

➢ The average Hilbert-Schmidt fidelity is 

greater than 0.995

(a)

(b) Non-Frustrated Regime

(c) Frustrated Regime

π/2 rotation using GRAPE

21 steps in 30 ms



Multipartite quantum correlations

Non-frustrated 
regime: Higher 

correlations

Frustrated 
regime:
Lower 

correlations

Entanglement 

Score using 

deviation 

Density matrix

Quantum Discord 

Score using full 

density matrix

Ground State

GHZ State  (J >> h)                 

- <000׀) 2√/(<111׀

Fidelity = .984

Initial State:

Equal Coherent 

Superposition 

State. Fidelity = .99

Koteswara Rao et al. Phys. Rev A 88 , 022312 (2013).



➢ The ground state of the 3-spin transverse Ising spin system has been simulated

experimentally in both the frustrated and non-frustrated regimes using Nuclear

Magnetic Resonance.

Conclusion

➢ To analyze the experimental ground state of this spin system, we used two different

multipartite quantum correlation measures which are defined through the monogamy

considerations of (i) negativity and of (ii) quantum discord. These two measures have

similar behavior in both the regimes although the corresponding bipartite quantum

correlations are defined through widely different approaches.

➢ The frustrated regime exhibits higher multipartite quantum correlations compared to

the non-frustrated regime and the experimental data agrees with the theoretically

predicted ones.



(ii) An NMR simulation of Mirror inversion propagator of 
an XY spin Chain. 

K. R. Koteswara Rao, T.S. Mahesh and Anil Kumar, Phys. Rev. A 90, 012306 (2014).

In the last decade, there have been many interesting proposals in using spin

chains to efficiently transfer quantum information between different parts of a

quantum information processor.

Albanese et al have shown that mirror inversion of quantum states with respect

to the center of an XY spin chain can be achieved by modulating its coupling

strengths along the length of the chain. The advantage of this protocol is that

non-trivial entangled states of multiple qubits can be transferred from one end

of the chain to the other end.

---------------------------------------------------------------------
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Mirror Inversion of quantum states in an XY spin chain*

• Entangled states of multiple qubits can be transferred from one end of the 
chain to the other end

J1 J2 JN-1
NN-1321

*Albanese et al., Phys. Rev. Lett. 93, 230502 (2004)
*P Karbach, and J Stolze et al., Phys. Rev. A 72, 030301(R) (2005)

• The above XY spin chain Hamiltonian generates the mirror image of any 
input state up to a phase difference.
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NMR Hamiltonian of a weakly coupled spin system

Control Hamiltonian

Simulation

In practice
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1) GRAPE algorithm

2) An algorithm by          A Ajoy et al. Phys. Rev. A 85, 030303(R) (2012)

➢ Here, we use a combination of these two algorithms to simulate the unitary 
evolution of the XY spin chain

Simulation

29Ashok Ajoy, KRK Rao, Anil Kumar and P Rungta, Phys. Rev A (R), 85, 030303 (2012)



4-spin chain

5-spin chain

In the experiments, each of these decomposed operators are simulated 

using GRAPE technique

The number of operators in the decomposition 
increases only linearly with the number of spins (N).
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Molecular structure and Hamiltonian parameters

The dipolar couplings of the spin system
get scaled down by the order parameter
(~ 0.1) of the liquid-crystal medium.

The sample 1-bromo-2,4,5-trifluorobenzene is partially oriented in a liquid-
crystal medium MBBA

The Hamiltonian of the spin system in the doubly rotating frame:

5-spin system

Experiment
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Coherence Transfer:
Mirror Inversion of a 5-spin initial state

Spectra of Fluorine spins Proton spins

K R K Rao, T S Mahesh, and A Kumar,  Phys. Rev. A , 90, 012306 (2014).

Eq.

σ1
x

σ5
x

Anti-

phase 

w.r.t. 

other 

spins

Anti-phase w.r.t. other spins

σ5
x
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Coherence Transfer:
Spin 2 (in- phase) magnetization transferred to spin 4 (anti-phase w.r.t. other spins)

Spectra of Fluorine spins Proton spins
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Quantum State Transfer: 
Mirror Inversion of a 4-spin pseudo-pure initial states

Diagonal part of the deviation density matrices (traceless)
The x-axis represents the standard computational basis in decimal form
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3. Use of Genetic Algorithm for Quantum Simulation of 

Dzyaloshinsky-Moriya (DM) interaction in presence of 

Heisenberg XY interaction. Entanglement preservation.



The Genetic Algorithm

Directed search algorithms based on the 
mechanics of biological evolution

Developed by John Holland, University of 
Michigan (1970’s)

John Holland
Charles Darwin 1866

1809-1882



“Genetic Algorithms are good at taking large, potentially 

huge, search spaces and navigating them, looking for 

optimal combinations of things, solutions one might not 

otherwise find in a lifetime”

Genetic Algorithm

Here we apply Genetic Algorithm to Quantum Information Processing

In the first part (a) we have used GA for

Quantum Logic  Gates  (operator optimization)

and

Quantum State preparation (state-to-state optimization)

V.S. Manu et al. Phys. Rev. A 86, 022324 (2012)



Representation Scheme

Representation scheme is the method used for encoding the 

solution of the problem to individual genetic evolution. Designing a 

good genetic representation is a hard problem in evolutionary 

computation. Defining proper representation scheme is the first 

step in GA Optimization.

In our representation scheme we have selected the gene as a 

combination of

(i) an array of pulses, which are applied to each channel with 

amplitude (θ) and phase (φ),

(ii) An arbitrary delay (d).

It can be shown that the repeated application of above gene forms 

the most general pulse sequence in NMR



The Individual, which represents a valid solution can be 

represented as a matrix of size (n+1)x2m. Here ‘m’ is the 

number of genes in each individual and ‘n’ is the number 

of channels (or spins/qubits).

So the problem is to find an optimized matrix, in which the 

optimality condition is imposed by a “Fitness Function”



Fitness function

In operator optimization

GA tries to reach a preferred target Unitary Operator (Utar) from an 

initial random guess pulse sequence operator (Upul).

Maximizing the Fitness function 

Fpul   = Trace (Upul Χ Utar )

In State-to-State optimization

Fpul = Trace { U pul (ρin) Upul
(-1) ρtar

† }



Two-qubit Homonuclear case

H = 2π δ (I1z – 12z) + 2π J12 (I1zI2z)

Single qubit rotation 

δ = 500 Hz,  J= 3.56 Hz

φ1 = 2π, φ2 = π, 

Θ = π/2, φ = π/2

φ1 = π, φ2 = 0

Θ = π/2, φ = π/2 

π/2 π/2

Simulated using J = 0

Hamiltonian used

Non-Selective 

(Hard) Pulses 

applied in the 

centre



Controlled- NOT: 

Equilibrium

00

01 10

11

1

-1

00

00

01 10

11

1

-1

0

0

00

01 10

11

1

-1 0

0

00

01 10

11
1

-1

0

0
00

01 10

11
1

-1

0

0



Pseudo Pure State (PPS) creation

All unfilled rectangles represent 900 pulse

The filled rectangle is 1800 pulse. 

Phases are given on the top of each pulse.

Fidelity w.r.t. to J/δ

00
01 10 11



0

0

0

0

Bell state creation: From Equilibrium (No need of PPS)

Bell states are maximally entangled two  qubit states.

The Singlet Bell State

Experimental Fidelity > 99.5 %

Shortest Pulse Sequence for creation 

of Bell States directly from Equilibrium

All blank pulses are 900 pulses. Filled pulse is a 1800 pulse.

Phases and delays Optimized for best fidelity.

T1=8.7 s

Ts=11.2 s
V.S. Manu et al.  Phys. Rev. A 86, 022324 (2012)



(b) Quantum Simulation of Dzyaloshinsky-Moriya (DM) 

interaction (HDM) in presence of Heisenberg XY interaction 

(HXY) for study of Entanglement Dynamics



DM Interaction1,2

➢Anisotropic antisymmetric exchange interaction arising from spin-orbit coupling. 
➢Proposed by Dzyaloshinski to explain the weak ferromagnetism of 
antiferromagnetic crystals (Fe2O3, MnCO3).

Quantum simulation of a Hamiltonian H requires unitary operator 
decomposition (UOD) of its evolution operator, (U = e-iHt) in terms of 
experimentally preferable unitaries.

Using Genetic Algorithm optimization, we numerically evaluate the most generic 
UOD for DM interaction in the presence of Heisenberg XY interaction.

1. I. Dzyaloshinsky, J. Phys & Chem of Solids, 4, 241 (1958).

2. T. Moriya, Phys. Rev. Letters, 4, 228 (1960).



Decomposing the U in terms of Single Qubit Rotations  (SQR) and ZZ- evolutions.

SQR by Hard pulse

ZZ evolutions by Delays 

The Hamiltonian

Heisenberg XY interaction DM interaction 

Evolution Operator:  



2

When ϒ > 1   ->   ϒ’  <  1 

3Phys. Rev. A, 69 012313 (2009)

ϒ’ = 1/ ϒ

Using above decomposition, we studied entanglement preservation in a two-qubit system.



Hou et al. 1 demonstrated a mechanism for entanglement preservation using H(J,D). They
showed that preservation of initial entanglement is performed by free evolution interrupted
with a certain operator O, which makes the state to go back to its initial state.

1Hou et al.  Annals of Physics, 327 292 (2012)

Entanglement Preservation 

Without Operator O With Operator  O

concurrence

µi are eigen values of the operator 
ρSρ*S, where S= σ1y ⊗ σ2y

Entanglement (concurrence) 

oscillates during Evolution.
Entanglement (concurrence) is preserved during 

Evolution. This confirms the Entanglement 

preservation method of Hou et al.1

Manu et al. Phys. Rev. A 89, 052331 (2014).

Similar to 

Quantum 

Zeno Effect

49
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Pause
Do I still have some time?
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IBM recently (last Year) released a 5-qubit (and a 10-qubit) Superconductivity 
based Quantum Computer (Quantum Experience) and placed it on the cloud 
for use of one-and-all (free of cost).

My 2017 Summer students* used the 5-qubit computer and verified 
Three of our NMR experiments which we had done earlier, namely

1. Non-destructive discrimination of Bell States.

Jharana Rani Samal, Manu Gupta, P.K. Panigrahi and Anil Kumar, J.Phys. B, 43, 095508 

(2010)

2. Non-destructive discrimination of arbitrary set of orthogonal quantum States by phase 

estimation.

V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information 

Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings;    1384, 229-240 (2011).

3. Experimental Test of Quantum  of No-Hiding theorem.

Jharana Rani Samal, Arun K. Pati and Anil Kumar,

Phys. Rev. Letters, 106, 080401 (25 Feb., 2011)

1. Ayan Majumdar, IISER-Mohali

2. Santanu Mohapatra, IIT Khrgpur

3. Porvika Bala, NIT, Trichy



Hardware of the IBM quantum 

computer

❑ http://research.ibm.com/ibm-q/learn/what-is-quantum-computing/



❖ Superconducting coaxial lines

❑ https://www.youtube.com/watch?v=S52rxZG-zi0



IBM Quantum Experience ibmqx2 device

❖ Coupling map = {0: [1, 2], 1: [2], 3: [2, 4], 4: 

[2]} where, a: [b] means a CNOT with qubit 

a as control and b as target can be 

implemented.

❖ The connectivity is provided by two 

coplanar waveguide (CPW) resonators 

with resonances around 6.0 GHz (coupling 

Q2, Q3 and Q4) and 6.5 GHz (coupling Q0, 

Q1 and Q2). Each qubit has a dedicated 

CPW for control and readout. This picture 

shows the chip layout.

❑ This device went online January 24th, 2017

New version

NEW
NEW



Quantum score  

-------->
time progresses from 

left to right

 To get 

low error 

in result, 

you can 

increase 

the 

number of 

shots(expe

riments) 

from here

Quantum  gates

Measurement  

operator

 qubits

freq. of qubit

relaxation time

decoherence 

time

Quantum Gates

Measurement Operator

No. of Shots



Example

the                      

circuit for  Bell  

state 
1

2
(|00 > +|11> )

Probability of finding the system in state 11 Probability of finding the system in state 00

0.510 0.490

Number of shots 100



Bell State



Number of shots 8192

Number of shots 400Number of shots 4000

Number of shots 400

0.508

0.505

0.502

0.492

0.495

0.497

Fidelity improves as the number of shots is increased.



❖ Recently this experiment was also implemented in IBM quantum 

experience  by 

❖Mitali Sisodia, Abhishek Shukla, Anirban Pathak, 
arXiv:1705.00670 [quant-ph])

Nondestructive discrimination of Bell states using phase &  

parity checking circuit

❖This experiment already verified  by 

NMR 
NMR Fidelity 4.0%

https://arxiv.org/find/quant-ph/1/au:+Sisodia_M/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Shukla_A/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Pathak_A/0/1/0/all/0/1
https://arxiv.org/abs/1705.00670


❖ High Fidelity = 0.9%

❑Measurement in x-basis

Ayan used  the New version of the ibmqx2 device,  had fewer gates, and got high 

Fidelity (0.9%)



Nondestructive  discrimination of arbitrary set of 

orthogonal quantum states 

❖ This  protocol already verified by a NMR  

❖Manu V S & Anil Kumar, AIP Conf. Proc. 1384,229-240(2011).



Also Verified here by using the New 

version of the ibmqx2 device (Ayan)
❖ Possible orthogonal states 

are,

|ф𝟏>=
𝟏

𝟐
(|00>+|10>)

|ф𝟐>=
𝟏

𝟐
(|01>+|11>)

|ф𝟑>=
𝟏

𝟐
(|01> - |11>)

|ф𝟒>=
𝟏

𝟐
(|00> - |11>)

❖ Fidelity:  NMR = 7.2%, ibmqx2 = 2.0 %



Experimental Test of Quantum  of No-Hiding theorem by NMR . 
Jharana Rani Samal, Arun K. Pati and Anil Kumar,

Phys. Rev. Letters, 106, 080401 (25 Feb., 2011)

 Has now been implemented by new version of ibmqx2
by Santanu Mohapatra in my lab.



Experimental Result for the No-Hiding Theorem. 

325 experiments have 

been performed by 

varying  θ and  φ in 

steps of 15o 

Jharana Rani Samal, Arun K. Pati and Anil Kumar,

Phys. Rev. Letters, 106, 080401 (25 Feb., 2011).

Input State

Output State

s

s

S = Integral of real part of the signal for each spin

Each point in this 

figure is a point on the 

Bloch sphere and 

represents a pure state

The state ψ is 

completely 

transferred from 

first qubit to the 

third qubit



IMPLEMENTING IT IN IBM QUANTUM 
COMPUTER

In order to implement the above pulse sequences in this quantum computer,

We need to convert these into quantum gates.

We already know that U=[π/𝟐] 𝟑
−𝒛

[π/𝟐] 𝟏
−𝒙

𝑼𝟏𝟐 [π/𝟐]
𝟏
𝒙
𝑼𝟏𝟑 [π/𝟐]

𝟏
−𝒙
[π/𝟐] 𝟏

−𝒛

Formulas used:

1. [π/𝟐]
−𝒚

=H, [π/𝟐]
𝒚

=H X

2.[π/𝟐]
𝒛
=S, [π/𝟐]

−𝒛
=S

+

3. φ
𝒙

=[π/𝟐]
−𝒚

φ
𝒛
[π/𝟐]

𝒚

4. φ
−𝒙

=[π/𝟐]
−𝒚

φ
−𝒛
[π/𝟐]

𝒚

So, the sequence of quantum gates for the randomization 

operator  U is:

S
+

𝟑
𝐇
𝟏
S
+

𝟏
H
𝟏
X
𝟏

[H
𝟐
X
𝟐
𝐇
𝟏
𝐇
𝟏
S
+

𝟏
H
𝟏
X
𝟏
H
𝟏
X
𝟏
CNOT

𝟏𝟐
H
𝟐
S

H
𝟏
(S

𝟏
H
𝟏
X
𝟏
H
𝟑
X
𝟑
H
𝟏
H
𝟏
S
+

𝟏
H
𝟏
X
𝟏
H
𝟏
X
𝟏
CNOT

𝟏𝟑
H
𝟑
S
+

𝟑
H
𝟑
X
𝟑
H
𝟑
)(

5.   C𝑵𝑶𝑻
𝟏𝟐

=[π/𝟐] 𝟏
−𝒚

[π/𝟐] 𝟏
𝒙
[π/𝟐] 𝟏

𝒚
[π/𝟐] 𝟐

−𝒚



For θ=π/2 and ø=0, |ψ>=(|0>+|1>)/ 2

Measuring 

3rd qubit

Probabilities

Of the 3rd qubit

state

Initial state

Number of shots = 

8129

Local unitary

Operation for 

Extraction of state

0.503
0.497



Extracting the Bell state

Bell state

Measuring 1st

And 2nd qubits in 

X basis

Number of shots = 8192

0.503 0.497



• Thanks to the IBM for developing such a 
wonderful experimental setup and making 
it available to one and all
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Summary

NMR is continuing to provide a test bed 
for many quantum Phenomenon and 
Quantum Algorithms.
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Non-destructive discrimination of 

Bell States

Bell States are Maximally Entangled 2-qubit states. 

There are 4 Bell States namely

|Φ
+

> = (|00> + |11>)/√2 |Φ-> = (|00> - |11>)/√2

|ψ+> = (|01> + |10>) √2 |ψ-> = (|01> - |10>)√2



Protocol for Non-destructive Discrimination of Bell States

Jharana Rani Samal*, Manu Gupta, P. Panigrahi and Anil Kumar, 

J. Phys. B, 43, 095508 (2010).

Manu Gupta and P. Panigrahi (quant-ph/0504183v); 

Int. J. of Quantum Information 5, 627 (2007)

Theory

Experimental verification by NMR



Panigrahi Circuit

Jharana Circuits

Phase Measurement

Parity Measurement

Needs two Ancilla Qubits

Needs one Ancilla but two 

measurements





NMR Pulse Sequence for Discrimination of Bell States 

using one Ancilla Qubit

Jharana et al, J.Phys. B., 43, 095508 (2010)

For Parity measurement the Hadamard gates are removed and the CNOT Gates are 

reversed



Created Bell States

(|00> + |11>)HF |0>C
(|00> - |11>)HF |0>C

(|01> + |10>)HF |0>C (|01> - |10>)HF |0>C

1 = |000>; 7 = |110>; 3 = |010>; 5 = |100>

|Φ
+

>
|Φ-

>

|ψ+> |ψ->



Population Spectra of   13C

|Φ+>

|Φ->

|ψ+>

|ψ->



Tomograph of the real part of the Density matrix confirming the 

Phase and Parity measurement.

Jharna et al J.Phys.B 43, 095508 (2010)



Non-Destructive Discrimination of Arbitrary set of 
Orthogonal Quantum states by NMR using Quantum 

Phase Estimation.

For this algorithm, the states need not have definite PARITY (and 

can even be in a coherent superposition state).

This algorithm is thus more general than the just described Bell-State 

Discrimination.

V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information 

Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings;    1384, 229-240 (2011).



For a given eigen-vector |φ> of a Unitary Operator U, Phase Estimation Circuit, 

can be used for finding the eigen-value of  |φ>.

Conversely, with defined eigen-values, the Phase Estimation can be used for 

discriminating eigenvectors.

By logically defining the operators with preferred eigen-values, the 

discrimination, as shown here, can be done with certainty. 

Quantum Phase Estimation

➢Suppose a unitary operation U has a eigen vector |u> with eigen 

value e-iφ.

➢ The goal of the Phase Estimation Algorithm is to estimate φ.

As the state is the eigen-state,  the evolution under the Hamiltonian 

during phase estimation  will preserve the state.



Finding the n Operators Uj

Let Mj be the diagonal matrix formed by eigen-value  

array  {ei}j of Uj.

And

V is the matrix formed by the column vectors   {|φk>},  

Uj = V-1 × Mj × V

Forming Eigen-value arrays

1. Eigen-value arrays { ei } should contain equal number of +1 and -1

2. 1st eigen value array can have any order of +1 and -1.

3. 2nd onwards should also contain equal number of +1 and -1, but    should 

not be equal to earlier arrays or their complements.
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U1 and U2 can be shown as,

Experimental  implementation of this case is performed here by NMR 

……… (3)

Two Qubit Case

A complete set of orthogonal States, which are not Bell states.

They have the 1st qubit in state |0> or 1> and the 2nd qubit in a superposed State ( 0> ± 1>)

Consider a set
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For the operators  U1 and U2 described in Eqn. (3)

Since various terms in H1 and H2 commute each other, we can write,

In terms of NMR Product Operators The Hamiltonians are given by
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Thin pulses are π/2 and broad pulses are π pulses. Phase of pulses on top
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Non-destructive Discrimination of two-qubit orthonormal 
states.

Quantum state Discrimination Using NMR

Original Circuit

Needing 2-ancilla 

qubits

Split Circuit needing 1-

ancilla qubit
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A1   → +ve signal → |0> state.

A2   → +ve signal → |0> state.

➔ (1/√2) (|00> + |01>)

A1   → +ve signal → |0> state.

A2   → -ve signal  → |1> state.

➔ (1/√2) (|10> + |11>)

A1   → -ve signal  → |1> state.

A2   → +ve signal → |0> state.

➔ (1/√2) (|10> - |11>)

A1   → -ve signal → |1> state.

A2   → -ve signal → |1> state.

➔ (1/√2) (|00> - |01>)

Results for Ancilla measurements

Complete density matrix tomography has done to

1.  Show the state is preserved                   2.  Compute fidelity of the experiment.

φ1 φ2 φ3 φ4
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Conclusions of the State Discrimination

➢ A general scalable method for quantum state
discrimination using quantum phase estimation
algorithm is discussed, and experimentally
implemented for a two qubit case by NMR.

➢ As the direct measurements are performed only on
the ancilla, the discriminated states are preserved.

88Quantum state Discrimination Using NMR

V.S. Manu and Anil Kumar (75 years of Entanglement, Foundations and Information 

Theoretic Applications, Koltata Jan., 2011, AIP conf. Proceedings;    1384, 229-240 

(2011).



No-Hiding Theorem

S.L. Braunstein & A.K. Pati, Phys.Rev.Lett. 98, 080502 (2007).

Any physical process that bleaches out the original information is called 

“Hiding”. If we start with a pure state, this bleaching process will yield a 

“mixed state” and hence the bleaching process in Non-Unitary”. However, in 

an enlarged Hilbert space,  this process can be represented as a “unitary”.  The 

No-Hiding Theorem demonstrates that the initial pure state, after the bleaching 

process,  resides in the ancilla qubits from which, under local unitary 

operations, is completely transformed to one of the ancilla qubits.



Quantum Circuit for Test of No-Hiding Theorem using State 

Randomization (operator U). 

H represents Hadamard Gate and dot and circle represent 

CNOT gates.

After randomization the state |ψ> is transferred to the second 

Ancilla qubit proving the No-Hiding Theorem.

(S.L. Braunstein, A.K. Pati, PRL 98, 080502 (2007).



NMR Pulse sequence for the Proof of No-Hiding Theorem

The initial State  ψ is 

prepared  for different 

values of θ and φ

Jharana et al



Experimental Result for the No-Hiding Theorem. 

325 experiments have 

been performed by 

varying  θ and  φ in 

steps of 15o 

Jharana Rani Samal, Arun K. Pati and Anil Kumar,

Phys. Rev. Letters, 106, 080401 (25 Feb., 2011).

Input State

Output State

s

s

S = Integral of real part of the signal for each spin

Each point in this 

figure is a point on the 

Bloch sphere and 

represents a pure state

The state ψ is 

completely 

transferred from 

first qubit to the 

third qubit


