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Purpose of this talk

• Certain things are strongly believed in computer science, specially in the
complexity theory (say P ≠ 𝑁𝑃). Such believes/confidence are dangerous for
cryptography.

• Purpose of the talk: Not to become religious and start trusting your
(quantum) protocols and devices; keep questioning!

• Declaration:

1. I’ll not talk much on security proofs. This talk will be more on physical
aspects. Specifically, on- what happens in reality, specially when devices
used are not perfect and noise is present?

2. A broader meaning of the word “unconditional” will be used.

3. The problem is deeper than the problems associated with SPS and SPD.



Let’s understand the difference between 
conditional and unconditional security via some 
examples
• Remote coin tossing: Alice and Bob wants to toss a coin, but Alice is at 

JIIT and Bob is at HRI, and they neither trust a third party (a common 
friend) nor they want to see each other.

• RSA and DH also provide conditional security.

Longer key corresponds to more difficult problem and we 

assume that Eve will take more time to break it and  the key 

will remain secure for longer time.
The assumption about Eve’s computational power makes the  

scheme conditionally secure. 





Implications of Shor's algorithm
• 1994- Peter Shor introduced a quantum algorithm that can be used to 

quickly factorize large numbers.

• Shor’s algorithm solve both prime factorization and discrete logarithm.

• RSA is based on the assumption that factoring large numbers is 
computationally intractable.

• Shor’s algorithm proves that RSA based cryptosystems are not secure if a 
scalable quantum computer can be built

Recent success stories of building relatively big quantum 
computers  is a serious threat to RSA and DH based systems. 
Further, in 2017,  D Wave processor factorised 200099; and Li et 
al., factorized 291311=> Li et al., used only 3 qubits. Panigrahi et 
al. claimed=>90L+



Krichoff's principle to QKD 
• A cryptosystem would remain secure even if everything about

the system, except the key is a public knowledge. Thus, it would
be impossible to break (unlock) the cryptogram without a key.
Once the key is secure the communication using that key will also
be secure.

 Alice and Bob may meet privately and share a key, but that 
may not be possible in every occasion. 

 When Alice and Bob cannot meet, we would require a 
mechanism for key distribution (KD).

 When a KD scheme is implemented using quantum resources, 
it is referred to as QKD.



What a QKD protocol is?

• A scheme for key amplification.

• A scheme that exploits uncertainty principle 
(noncommutativity leading to nocloing and inability to perform 
simultaneous measurement in the non-orthogonal bases), 
nonlocality, etc.

• It’s actually art of utilizing negative results of early quantum 
mechanics for a meaningful (positive) purpose.



BB84, B92, Ekert, GV,….What leads to security? 
Splitting of information into two or more pieces to 
ensure that Eve does not get access to “Special 
basis” 

Cartoons used in this talk

are from: Elements of

Quantum Computation

and Quantum

Communication, A

Pathak, CRC Press,

Boca Raton, USA,

(2013).



Some observations

Notes:

(1) Nocloning may be applicable for
orthogonal states, too.

(2) Conjugate coding is not essential for
quantum cryptography!

(3) Everything that can be done using
conjugate code can also be done with
orthogonal states based scheme, and
they are equivalent in noiseless
situation. Noise destroys the
equivalence.

• Orthogonal state based protocols:

QKD: GV, N09

1. P. Yadav, R. Srikanth and A. Pathak, “Two-step 
orthogonal-state-based protocol of quantum secure 
direct communication with the help of order-
rearrangement technique”, Quant. Info. Process. 
(2014).

2. C. Shukla, A. Pathak and R. Srikanth, “Beyond the
Goldenberg-Vaidman protocol: Secure and efficient
quantum communication using arbitrary, orthogonal,
multi-particle quantum states”, Int. J. Quant. Info., 10
(2012) 1241009.

3. C. Shukla and A. Pathak, “Orthogonal-state-based
secure direct quantum communication without actual
transmission of the message qubits”, Quant. Info.
Process 13 (2014) 2099-2113.

4. C. Shukla, N. Alam and A. Pathak, “Protocols of
quantum key agreement solely using Bell states and
Bell measurement”, Quant. Info. Process. 13 (2014)
2391-2405.

5. K. Thapliyal, R. D. Sharma and A. Pathak, Int. J. Quant.
Inf. 16, 1850047 (2018)



In  the absence of noise

Equivalence of GV and BB84 is not valid in noisy environment

BB84 subroutine = GV subroutine

In  noisy channels

BB84 subroutine ≠ GV subroutine

The variation of fidelity with
decoherence rate for the BB84
subroutine (smooth blue line)
and remaining all cases of GV
subroutine (dashed red line),
when subjected to Phase
Damping noise.

C. Shukla, A. Pathak and R. Srikanth, Int. J. Quant. Info., 10 (2012) 1241009; R. D. 
Sharma, K. Thapliyal, A. Pathak, A. K. Pan, and A. De. Quantum Inf. Process. 15

(2016) 1703–1718.

BB84 subroutine
GV subroutine

BB84 subroutine
GV subroutine:

   
Cluster 
state



Quantum cryptography utilizes quantum phenomena and 
that do happens in the laboratory and the limitations of the 
devices create windows for side channel attacks or hacking.

Imperfection of the devices leads to a possibility of hacking 
and probably puts a question mark on the claimed 
unconditional security.

Presence of noise provides an opportunity to Eve to hide 
behind the noise or to exploit it by replacing a lossy channel 
by a better channel, say a Markovian channel by a non-
Markovian channel.

“Quantum phenomena do not occur in a Hilbert space. 

They occur in a laboratory”-- Asher Peres



Quantum hacking and post-quantum cryptography 

H.-K. Lo, Nature Photonics 8, 595 (2014);
A. Shenoy-Hejamadi, A. Pathak, S. Radhakrishna. Quanta 6, 1 (2017).

1. Lattice-based cryptography

2. Code-based cryptography

3. Multivariate polynomial 

cryptography

4. Hash-based signatures

5. Secret-key cryptography, 

such as Advanced Encryption 

Standard (AES)

Note: Security provided by post-quantum cryptographic 
schemes are not unconditional.  



A bit of computing: We can solve problems of 

BQP complexity class

Shor’s Algorithm is dangerous for classical cryptography



Grover’s Algorithm

Quadratic saving does not do much harm to classical cryptographic protocols. Key size gets 
doubled and we have post-quantum schemes 



LD- Laser diode, DM- Dichroic mirror

NDF- Neutral-density-filter, SP- Spectrometer

TECC- Thermoelectric cooler controller

FSL- Femtosecond laser



How to prevent the
attack:
(1) An external strong

laser monitoring
unit can detect
Eve’s attempt.

(2) Random variations
in the LD
wavelength under
Alice’s control can
be a second
solution.

(3) Alice can insert a
circulator at the
end of his Box.

A simple attack on BB84 
subroutine



1. Eve may send a
bright light from the
quantum channel and
analyzing the back-
reflections she may
know Bob’s secret
basis choice with
more than 90%
probability (Even
when the number of
back-reflected
photons is not high).

An attack on Clavis2 which implements 
SARG04

Schematic of a Trojan-horse eavesdropper

N. Jain, et al. "Trojan-horse attacks threaten the security of practical quantum cryptography." New Journal of Physics
16, 123030 (2014).



Does Kirchoff’s principle implies that 
unconditional security of a QKD protocol (say, 
BB84) implies unconditional security for every 
other cryptographic tasks? 
•At least not in a direct manner.
•Look at the remote coin tossing scheme
•Alice and Bob cannot use QKD to pre-
generate a key.

•Similar problem exists in two party bit 
commitment & oblivious transfer.



Main concepts and practices that can be 
questioned in view of the claim of unconditional 
security
• Concept 1: Nocloning=> What about partial cloning? Imperfect cloning is

allowed. Usually, that would leave a trace and we can get a trace under a
broader class of measurement induced errors, but we need to consider it.

• Concept 2: Nonlocality leading to device independence=> Are the tests
performed to check quantum correlation loophole free? In most cases it’s
not.

• Concept 2.1: Complete device independence: 100% efficient detector is
required which does not seem realistic.

• Concept 2.2: Measurement device independent QKD: Protects from the
detector side channel attacks only. What about other device use? If we
assume that the other devices are not prone to side channel attacks, we are
imposing conditions and loosing the beauty of unconditional security in a
broader sense.



Little more on partial cloning and its 
connection to quantum cryptography

1996: Buzek and Hillery (PRA 54, 1844 (1996)) introduced the Universal
Quantum Cloning Machine which can clone any arbitrary 𝑑-dimensional

quantum state with fidelity F=
1

2
+

1

1+𝑑

This expression leads to a question what is the optimal value of 𝒅 in
QKD?

1998: Duan and Guo [PRL 80, 4999 (1998)] invented the Probabilistic
Quantum Cloning Machine where a quantum state, randomly chosen from a
certain set, can be probabilistically cloned with positive cloning efficiencies
iff all the states in the set are linearly independent.

2000: Bruß, Cinchetti, et al [PRA 62, 012302 (2000)] invented best state
dependent quantum cloning machine known as the “phase covariant,”
quantum cloning machine.



Little more on partial cloning and its 
connection to quantum cryptography

• 2002: N. J. Cerf, et al. [PRL 88, 127902 (2002)], and in 2004 Durt
et al., [PRA 69, 032313 (2004).] considered different qudit-based
quantum cryptographic schemes and computed the upper bound
on the error rate that ensures unconditional security against a
cloning-based individual attack

• 2012: A. Ferenczi and N. Lutkenhaus [PRA 85, 052310 (2012)]
have investigate the connection between the optimal collective
eavesdropping attack and the optimal cloning attack where the
eavesdropper employs an optimal cloner to attack the quantum
key distribution (QKD) protocol for discrete variable protocols
in d-dimensional Hilbert spaces.



Even device independent schemes can be attacked

• A critical weakness of device-independent protocols that rely on public
communication between secure laboratories -- Untrusted devices may
record their inputs and outputs and reveal information about them via
publicly discussed outputs during later runs. Reusing devices thus
compromises the security of a protocol and risks leaking secret data.

Barrett, Jonathan, Roger Colbeck, and Adrian Kent. "Memory attacks on device-independent quantum 
cryptography." Physical Review Letters 110 (2013) 010503.

Composability issue is in general present in all protocols beyond QKD.



Usual practices followed in designing new 
protocols
• Usual practice 1: We often write- Alice and Bob compare the result of

measurements on the verification (decoy) qubits and compute error
rate. If the error is found to be smaller than the tolerable limit, we
move to the next step, otherwise we discard the protocol (or go back
to first step).

Question: Do we really know a tight bound on tolerable error rate for
any arbitrary attack?

No! In most cases tolerable error rate is computed for a set of attacks.
Are we assuming that Eve will perform only one of those attacks?

Is that a compromise with the claim of unconditional security?



Usual practices followed in designing new 
protocols

• Usual practice 1: We often write- After receiving an authentic
acknowledgement or receipt from Bob, Alice discloses …..

• In such statements and to start the protocol you need a kind of
authentication which in turn requires a pre-shared key.

How can that be done in a public key crypto system?

Often Hash function is used for authentication but is not
unconditionally secure. Only our confidence is high on them.

Note: Trust and confidence is dangerous for cryptography.



Quantum cryptography is not all about QKD: Are these protocol 
unconditionally secure

Entangled & nonclassical states, PRA, 93 (2016) 022107, 93 (2016) 012340, 
91 (2015) 042309, 90 (2014) 013808, 89 (2014) 033812, 89 (2014) 033628, 
87 (2013) 022325, Ann. Phys. 366 (2016) 148, 362 (2015) 261



Quantum 
Conference

Many facets of secure direct quantum communication

Secure Quantum
Communication

QKA QSDC DSQC

QKD

Don’t send meaningful information
Semi-honest Alice & Bob

Quantum 
Dialogue

Related problem: Socialist Millionaire Problem , auction, ecommerce, voting 

HQSS=HQIS+QKD QSS=QKA+QKD

Other relevant problems: HQSS, HDQSS, C-QSDC, C-DSQC, Crypto-Switch, etc.

It’s restricted to 
this project



In the schemes of controlled quantum 
communication, what happens if Alice and Bob are 
not semi-honest?

• A semi-honest user is one who follows the protocol honestly, but tries 
to get more information (more than what he is authorized to receive) 
or prior information or to cheat.

• All schemes of controlled-teleportation (does not require security), 
controlled-QSDC, controlled-DSQC, controlled-QKD assumes that 
Alice and Bob are semi-honest. 

• Is not it a strong assumption, which essentially weakens 
unconditional security? 

Quantum Protocols for online shopping or e-
commerce are essentially CDSQC protocol



Examples of controlled cryptographic schemes
• Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., & Pathak, A. (2014). The

quantum cryptographic switch. Quantum information processing, 13(1), 59-70.

• Thapliyal, K., & Pathak, A. (2015). Applications of quantum cryptographic switch:
various tasks related to controlled quantum communication can be performed
using Bell states and permutation of particles. Quantum Information Processing,
14(7), 2599-2616.

• Thapliyal, K., Pathak, A., & Banerjee, S. (2017). Quantum cryptography over non-
Markovian channels. Quantum Information Processing, 16(5), 115.

• Shukla, C., Thapliyal, K., & Pathak, A. (2017). Semi-quantum communication:
protocols for key agreement, controlled secure direct communication and
dialogue. Quantum Information Processing, 16(12), 295.

• Thapliyal, K., & Pathak, A. (2018). Quantum e-commerce: A comparative study of
possible protocols for online shopping and other tasks related to e-commerce.
arXiv preprint arXiv:1807.08199.

Quantum Protocols for online shopping or e-commerce are essentially CDSQC protocol



1. Bob prepares large number of copies of a Bell state
He keeps the first photon of each qubit with himself as home
photon and encodes her secret message 00, 01, 10 and 11 by
applying unitary operations U0,U1,U2 and U3 respectively on the
second qubit. Without loss of generality, we may assume that
U0 = I, U1 = X, U2 = iY and U3 = Z.

2. Bob then sends the second qubit (travel qubit) to Alice and
confirms that Alice has received a qubit.

3. Alice encodes her secret message by using the same set of
encoding operations as was used by Bob and sends back the
travel qubit to Bob. After receiving the encoded travel qubit
Bob measures it in Bell Basis.

4. Bob decodes Alice's bits and announces his Bell basis
measurement result. Alice uses that result to decode Bob's bits.

.
2

1001 
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QUANTUM DIALOGUE: BA AN PROTOCOL

Nguyen, Ba An. "Quantum dialogue." Physics Letters A 328.1 

(2004): 6-10.



• If we have a mutually orthogonal set of n-qubit states

and a set of m-qubit unitary operators

forms a group under multiplication then it would be sufficient to

construct a quantum dialogue protocol of Ba-An-type using this

set of quantum states and this group of unitary operators.
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SUFFICIENT CONDITION FOR QUANTUM DIALOGUE

Rearrangement of order of the particles and insertion of 
decoy photons make the protocol unconditionally secure. 

C. Shukla, V. Kothari, A. Banerjee and A. Pathak, Phys. Lett. A, 

377 (2013) 518.
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Example: G2 is the group of order 16. Pauli 
Operators I X iY Z

I I X iY Z

X X I Z iY

iY iY Z I X

Z Z iY X I
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HOW TO FORM GROUPS OF UNITARY OPERATORS?

A. Banerjee, C. Shukla, K. Thapliyal, A. Pathak, P. K. Panigrahi, Quantum Inf. 
Process. 14, 2599-2616 (2016) 



Asymmetric quantum dialogue in noisy environment, A. Banerjee, C. Shukla, K. 
Thapliyal, A. Pathak, P. K. Panigrahi, Quantum Inf. Process. 14, 2599-2616 (2016) 



Asymmetric quantum dialogue in noisy environment, A. Banerjee, C. Shukla, K. 
Thapliyal, A. Pathak, P. K. Panigrahi, Quantum Inf. Process. 14, 2599-2616 (2016) 



Two novel multiparty quantum communication schemes where prior
generation of key is not required are proposed. However, these schemes
naturally reduce to the schemes for multiparty key distribution if the
parties send random bits instead of meaningful messages.

Quantum Conference: Another member in the 
family of two-way quantum communication



Scheme A: multiparty QSDC-type scheme

This scheme can be viewed as the generalization of ping-pong
protocol to a multiparty scenario, where multiple senders can
simultaneously send their information to a receiver. In a similar way,
if all the senderswish to send and receive the same amount of
information, then all of them can also choose to prepare their initial
state |𝜓〉 independently and send it to all other parties in a sequential
manner. Subsequently, all of them may follow the scheme described
below to perform N simultaneous multiparty QSDC protocols. Let
us consider a case, where (N − 1) parties send their message to N th

party. This can be thought of as a multiparty QSDC. Suppose all the
parties decide to encode or communicate k-bit classical messages. In
this case, each user would require a subgroup of operators to encode
his message with at least 2𝑘 operators. In other words, each party
would need at least a subgroup gi of order 2𝑘 of a group G. Here,
we would like to propose one such multiparty QSDC scheme.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



• Step 1 First party Alice be given one subgroup gA = {A1, A2, .
. . , A2k } to encode her k- bit information. Similarly, other
parties (say Bob and Charlie) can encode using subgroups gB

={ B1, B2, . . , B2k}, and gC = {C1,C2, . . ,C2k}, and so on for
(N − 1)th party Diana, whose encoding operations are gD ={
D1, D2, . . , D2k }.

• Step 2 Nathan (the Nth party) prepares an n-qubit entangled
state |𝜓〉 (with n ≥(N − 1) k).It is noteworthy that maximum
information that can be encoded on the (N − 1) k-qubit
quantum channel is (N − 1) k bits and here (N − 1) parties are
sending k bits each. In other words, after encoding operation
of all the (N − 1) parties, the quantum states should be one of
the 2(N−1)k possible orthogonal states.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



• Step 3  Nathan sends m qubits (m < n) of the entangled state 
|𝜓〉 to Alice in a secure manner,2 who applies one of the 
operations Ai (which is an element of the subgroup of 
operators available with her) on the travel qubits to encode 
her message. This will transform the initial state to 𝜓𝐴 =
𝐴𝑖 𝜓 . Subsequently, Alice sends all these encoded qubits to 
the next user Bob.

• Step 4 Bob encodes his message which will transform the 
quantum state to 𝜓𝐵 = 𝐵𝑗𝐴𝑖 𝜓 Finally, he also sends the 
encoded qubits to Charlie in a secure manner.

• Step 5 Charlie would follow the same strategy as followed 
by Alice and Bob. In the end, Diana receives all the encoded 
travel qubits, and she also performs the operation 
corresponding to her message to transform the state into 

𝜓𝑖,𝑗,𝑘,…𝑙 = 𝐷𝑙 …𝐶𝑘, 𝐵𝑗, 𝐴𝑖|𝜓〉 She returns all the travel 

qubits to Nathan.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



• Step 5.6 Nathan can extract the information sent by all (N − 1)
parties by measuring the final state using an appropriate basis
set. It may be noted that Nathan can decode messages sent by
all (N − 1) parties, if and only if the set of all the encoding
operations gives orthogonal states after their application on the
quantum state, i.e., {|𝜓𝑖,𝑗,𝑘,…𝑙

′ 〉} are orthogonal for all {i, j, k,…,

l ∈ 1, . . . 2𝑘}. In other words, after the encoding operation of
all the (N − 1) parties the quantum states should be a part of a

basis set with 2 𝑁−1 𝑘orthogonal states for unique decoding of
all possible encoding operations.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



Scheme B: multiparty QD-type scheme

• The scheme which will be followed by a prescription to
obtain the set of operations for Nth party, assuming a
working scheme designed for the multiparty QSDC scheme.
This scheme is a generalized QD scheme. In analogy of the
Ba-An-type QD scheme, we will need the set of encoding
operations for the Nth party (Nathan).

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



• Step 1 Same as that of Step 1 of Scheme A with a simple
modification that provides Nathan a subgroup gN = {N1, N2, .
. . , N2k} , which enables him to encode a k-bit message at a
later stage. The mathematical structure of this subgroup will
be discussed after the implementation procedure.

• Step 2 Same as Step 2 of Scheme A.

• Step 3 Same as Step 3 of Scheme A.

• Step 4 Same as Step 4 of Scheme A.

• Step 5 Same as Step 5 of Scheme A.

• Step 6 Nathan applies unitary operation Nm to encode his

secret and the resulting state would be 𝜓𝑖,𝑗,𝑘…𝑙,𝑚
′′ =

𝑁𝑚,𝐷𝑙 …𝐶𝑘, 𝐵𝑗, 𝐴𝑖|𝜓〉.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



• Step 7 Nathan measures |𝜓𝑖,𝑗,𝑘,..𝑙,𝑚
′′ 〉 using the appropriate

basis as was done in Step 1.6 of Scheme A and announces
the measurement outcome. Now, with the information of the
initial state, final state and one’s own encoding, all parties
can extract the information of all other parties. It is to be
noted that the information can be extracted only if the set of
all the encoding operations gives orthogonal states after their
application on the quantum state, i.e., all the elements of
{|𝜓𝑖,𝑗,𝑘,..𝑙,𝑚

′′ 〉} are required to be mutually orthogonal for

𝑖, 𝑗, 𝑘, . . 𝑙, 𝑚 ∈ {1,… .2𝑘 }. In other words, after the encoding
operation of all the N parties the set of all possible quantum

states should form a 2 𝑁−1 𝑘 dimensional basis set.

A. Banerjee, K. Thapliyal, C. Shukla, A. Pathak, Quant. Infor. Process. 17, 161 (2018).



Is QD of Ba An type (and its variants) is  (are) 
unconditionally secure in its original form 
• No there is a problem of information leakage!



Kak’s protocol and Noise

S. Kak, Foundations of Physics Letters 19.3 (2006) 293-296.
K. Thapliyal and A. Pathak, Quantum Inf. Process. 17 (2018) 229. 

The rotation operator (Ui) do 
not commute with Kraus 
operators in general. Thus, 
three stage scheme fails in 
noise.



Quantum Computation Vs Communication

• Quantum computation: We compute a function f(x,y,z,…)
for various values of the variables x, y, z,… (Recall: What is
done in Deutsch, DJ and Grover algorithm) using quantum
resources.

• Note: Every gate and circuit computes a function, which
maps an input state to an output state according to a rule.

• Communication: Involves transmission of the state, but
may include computation of functions, too (cf. application
of Pauli gates in teleportation or dense coding or in DLL
protocol and RSA Scheme based on complexity of
computation).

• Not to infer much from statements like- “Quantum
communication is ready for use, but quantum computing
is far away.



The paper that first claimed that quantum cryptography is 
not omnipotent

Boundary between computation and communication is very weak.



What is one-sided two-party computation?

• Alice and Bob have secret inputs  

respectively.

• An ideal one-sided two-party secure computation: Alice helps Bob to 
compute a prescribed function 

in such a way that, at the end of the protocol, (a) Bob

learns f (i, j) unambiguously, (b) Alice learns nothing 

about j or f (i, j), and (c)  Bob knows nothing about i

more than what logically follows from the values of j 

and f (i, j).

},,,2,1{ and},,2,1{ njni  

   pjif ,,2,1, 

We will call these conditions as condition (a), (b) and (c). 



Lo’s results and arguments 1

• Three conditions for security- (a), (b), and (c) are incompatible in the
sense that if (a) and (b) are satisfied, then a cheating strategy can be
designed that would allow Bob to learn the values of f (i, j) for all j’s,
thus violating security requirement (c).

Lo’s work and subsequent works implied impossibility of 2 
party secure computation, but did not tell much about 

secure multi-party computation (SMC) 



Special cases of one-sided two-party 
computation?

• Socialist millionaire problem: 

Compute (i) f(i.j)=1 if i=j and else f(I,j)=0

or,     (ii) f(i.j)=1 if i>j and else f(I,j)=0

or,    (iii) f(i.j)=1 if i>j and else f(I,j)=0

• Quantum private comparison (QPC) is a  special case 
of socialist millionaire problem

The task is to check equality of private   

information: (i) f(i.j)=1 if i=j and else f(I,j)=0

A more general case of two-party secure computation 
is SMC.



The notion of secure multiparty 
computation (SMC)
• One of the most important branches of classical and

quantum cryptography is SMC.

• SMC is a primitive for distributed computation. It
enables the distributed computing of correct output
of a function in a situation, where the inputs are given
by a group of mutually distrustful users.

• A SMC is required to be fair, and secure. Specifically, it
should not leak the secret inputs of the individual
players.

• In all the existing protocols of SMC, it is assumed that
some of the users follow the protocol honestly (which
implies that some of the users are semi-honest).

A. C. Yao, In Foundations of Computer Science. SFCS’08. 23rd IEEE Annual 
Symposium 160 (1982).



Id Quantique’s 2007 success story



First protocol of quantum voting: Hillery’s
protocol or HZBB06 protocol

Step 1: An honest (non-cheating) authority Charlie prepares an
entangled state

where N is the number of voters. Ex.

Step 2: Charlie keeps one of the qunits (say the second one) and
sends the first one to the first voter (say Alice1), who registers her
“no” vote by applying Identity operator (thus doing nothing) and
“yes” vote by applying

where + denotes a modulo N addition.
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M. Hillery, et al. Physics Letters A 349.1-4 (2006): 75-81.



Hillery’s (HZBB06) protocol

Step 3: After registering her vote Alice1 sends the qunit to
Alice2 who registers her vote by using the same encoding
strategy as was adopted by Alice1, and sends the qunit to
Alice3, and the process continues until AliceN casts her
vote. Finally, AliceN sends the qunit to Charlie.

Step 4: Charlie measures her qunits in computational
basis to obtain a quantum state from where he
easily obtains the number of “yes” votes s. If s>N/2, then
the “yes” option wins and if s<N/2, then the “no” option
wins.

,jsj 



Limitations of HZBB06 protocol and 
possible ways to circumvent them

Limitation 1 (collusion of voters reveals the voting pattern): If
two voters (Alicei and Alicej) collude, then they can find out how
many “yes” votes have been casted by the voters who casted their
votes between them. Specifically, Alicei can measure the qunit
available with her to obtain the state of the ballot as a quantum state
|k〉 and subsequently, Alicej can measure the quantum state again and
by comparing their results, easily obtain the number of “yes” votes
casted by the voters who voted between them.

Note: This drawback was mentioned in the original HZBB06 paper.

Hillery et al., (Phys. Lett. A 349, 75-81 (2006)) claimed: This
collusion attack would lead to a random result of the voting as the
measurement of Alicei would destroy the entanglement and the state
of Charlie's qunit would randomly collapse to one of the state |j〉
completely unknown to colluding voters.



Collusion of voters controlling the final outcome of the voting: If two 
voters Alicei and Alicej such that                collude, then they can control 
the final result. As in the previous colluding attack, Alicei measures her 
qunit first and informs the result |m+l> Alicej via secure channel. Now, 
if the colluding parties wish option “no” (“yes”) to win then Alicej

would replace the qunit received by her by |m+l>|m+l+j-i>). As              
we must have               above replacement strategy ensures that the 
option favoured by the colluding voters Alicei and Alicej such that              
would always win. 

Limitation 2 of HZBB06 protocol
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Most recent protocol of quantum voting: TZL
protocol (Tian, J.-H., Zhang, J.-H., Li, Y.-P.: A
Voting Protocol Based on the Controlled Quantum
Operation Teleportation. Int. J. Theor. Phys. 57.10
(2018): 3200-3206.

• Underlying assumptions: There exists zero knowledge 
quantum authentication method for quantum ID 
cards, etc. 

Kishore Thapliyal, Rishi Dutt Sharma, and Anirban Pathak. International Journal of 
Quantum Information 15.01 (2017): 1750007.



Expected properties of a binary voting scheme
Security:

1. The vote value remains secret until the tally is made,

2. Votes are receipt-free,

3. Voters are anonymous.

Assumptions: Let's make the following assumptions about quantum
voting:

1. Anonymity (who made the vote) and secrecy (of the value of the
vote) is ensured using nonlocal resources (entanglement).

2. Only the tally person has access to the whole quantum system at the
beginning and at the end of the voting.

3. The number of binary votes per voter is restricted by the use of a
local subsystem to record the vote that has a state-space dimension of
2. (A binary vote represents a voter choosing 1 or 0.)

4. The tally is the number of 1 votes.



No-go theorem for a binary voting scheme

• Task in hand: Given the above definition of security and
assumptions, it is impossible to ensure the security of quantum
voting by purely physical means. In other words there is an
incompatibility between the security and the assumptions.

• In order to accommodate Assumptions 1 and 2 let the quantum
voting system be a distributed system where each voter has
access to one unique part, and let the tally person have access to
the whole system only after all votes have been cast.

• Let the whole quantum voting system after the nth vote be
represented by the pure state |ψ(n)>. To analyze the action of
one particular voter, divide the whole system into two parts
where one is the local subsystem X of that voter and the other
is the remainder R of the voting system (comprising the
subsystems of all other voters). We can repeat this subdivision
for each voter (i) independently.



No-go theorem for a binary voting scheme
• Let the Schmidt decomposition for this bipartite system be

• Here ci(n) are the (non-negative real) Schmidt coefficients and
{|Xi(n)> : i N} and {|Ri(n)> : i N} represent orthonormal sets of
states for the local subsystem X and the remainder R of the voting
system, respectively.

• Consider the set of states throughout the voting process:

• If the nth voter votes 1, the tally must increase and so |ψ(n)> must be
orthogonal to |ψ(n-1)> in order that the vote value be determined
unambiguously. However, if the nth voter votes 0, the tally does not
change and so |ψ(n)> could be collinear with |ψ(n-1)>.
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No-go theorem for a binary voting scheme
• Let Q be the local unitary operation (operating on a 2

dimensional space ) performed by the nth voter on his/her local
subsystem X to record a 1 vote.

• Assume that a 0 vote is recorded by applying the identity
operator.

• When nth voter votes 1:

• When nth voter votes 0:

• Suppose each voter is assigned a 2 dimensional subsystem.

• Orthonormality ensures
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No-go theorem for a binary voting scheme

• These equations are satisfied by

• The task of the tally person is to determine the number of times the
operator Q has been applied in the final state.

• If there are N voters and m votes of 1 in total, then the dimension of
the subspace needed to contain {|ψ(n)> : n = 1; 2; …N} is m + 1 (the
extra dimension is for the initial state |ψ(0)> ). The actual state
space has a dimension of 2N, being the tensor product of N 2-
dimensional state spaces. The task of tallying the votes is
determining the value of m. It is convenient to label the final state
|ψ(N)> after the last voter has voted in terms of the number of 1
votes it has. There are NCm ways in which the N voters can cast m
votes of 1. These represent the redundancy in a count of m votes
(and provide anonymity of the voter). Let |ψ(N,m,k)> be the kth way
in which N voters have cast m votes of 1.
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No-go theorem for a binary voting scheme
• We can construct an Hermitian tally operator  T of the following 

form

where m is a NCm-rank projection operator that projects onto the 
subspace {|ψ(N,m,k)>:k=1,2,…, NCm}

• The expectation value for the final voting state |ψ(N,m,k)> is

gives the tally m (i.e. the number of 1 votes) without revealing the 
way in which the individual voters voted (represented by the value 
of k).
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No-go theorem for a binary voting scheme

• The value of j and, thus the way in which all voters voted, could
subsequently be found by determining the expectation value of
the corresponding spy operator

• That is

• Thus the way in which the voters have voted is not
unconditionally secure because the voters need to trust the Tally
person not to make a measurement of Sm. Hence the
Assumptions are incompatible with the definition of Security.
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In this formalism, only Tallyman can apply Spy operator as only 
he/she has access. We have obtained that allowing each voter a 

higher dimensional space to encode his information do not provide 
any advantage against Tallyman.



K. Thapliyal, A. Pathak, S. Banerjee, Quant. Infor. Process. 16, 115 (2017)

The effect of a change in the coupling strength on the fidelity is

illustrated here with a set of plots for damping and dephasing non-

Markovian noise in (a) and (b), respectively. Specifically, the

parameter of the coupling strength Γ/γ varies from 0.001 to 0.03 in

steps of 0.001 in both the plots.

Dephasing: Decrease in 
coupling leads to 
Markovian case

Weak 
coupling

Dissipative: revival 
observed



V. Sharma, K. Thapliyal, A. Pathak, S. Banerjee, Quant. Infor. Process. 15 (2016) 4681.
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Noise is important

Cartoons used in this talk are from: Elements of Quantum Computation and Quantum 
Communication, A Pathak, CRC Press, Boca Raton, USA, (2013).

We performed 
proof of 
principle 

experiment 
using IBM and 

fidelity was 
low: QINP 16 

(2017) 292; PLA 
381 (2017) 

3860.
QPT also show 

low gate 
fidelity

arXiv:1805.071
85 



Decoherence the villain: Why a scalable quantum computer is not 
expected in near future?

Note 1: In D-wave’s quantum computer (one of which is purchased by 

NASA and Google) all qubits cannot be addressed  independently. 

Note 2: You can play with IBM quantum experience and verify it.



We are still hopeful



THANK YOU
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