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Example: straightedge-and-compass constructions

[Cocke et al., Inf. & Comput. '16]

The resource acts as a catalyst, allowing for new figures to be drawn.
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Resources

Separable states

Quantum communication

Stabilizer states

DV Quantum computation

(free) magic states(free) entangled states

Allowed 
operations

Local ops & classical comm
(LOCC)

Stabilizer protocols
(Clifford gates + basis prep/meas)

[Veitch et al., NJP’12; NJP’14]

[Mari et al., PRL’12; Howard et al. PRL’17]
[Horodecki et al., RMP '09]

State space Bipartite quantum systems DV quantum register



  

Resource theories

Free states

Resources

Primary goals:

Separable states

Quantum communication

Stabilizer states

DV Quantum computation

(free) magic states(free) entangled states

● Given a state, is it a (maximal) resource?

● Resource quantification: how useful is a resource?

● Resource distillation: how to obtain more resourceful states?

● State conversion: is it possible to convert a resource into 
another, and at which rate?

Allowed 
operations

Local ops & classical comm
(LOCC)

Stabilizer protocols
(Clifford gates + basis prep/meas)

[Veitch et al., NJP’12; NJP’14]

[Mari et al., PRL’12; Howard et al. PRL’17]
[Horodecki et al., RMP '09]

State space Bipartite quantum systems DV quantum register



  

Resource theory of entanglement (mixed states)

● Is a state a state a (maximal) resource?

Difficult to establish whether a state is entangled or not.

The singlet state is maximally resourceful: any other state can be obtained via LOCC.

● Resource quantification: how useful is a resource?

● Resource distillation: how to obtain the singlet?

      Distillation 

      protocols

● State conversion: is it possible to convert a resource into another, and at which rate?

Bound entangled states cannot be LOCC converted into a singlet.
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State space: continuous variables 

Continuous variables
 (infinite dimension, canonical c.r., qumodes)

Quantum phase-space
(Wigner function)

Discrete variables
 (finite dimension, qubits)

Bloch sphere

           Spin                       Polarization   Light quadratures        trapped ion motion    



  

Gaussian states

Position and momentum operators

Wigner function

Gaussian states: 
Gaussian Wigner function
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Allowed operations: Gaussian protocols (GPs) 



  

Allowed operations: Gaussian protocols (GPs) 

● Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)



  

Squeezing operator S(s)

Position and momentum eigenstates are infinitely squeezed states

Control phase (entangling gate)
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E.g.: homodyne measurements
(position/momentum ideal projections)

E.g.: heterodyne measurements
(coherent-state ideal projections)
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E.g.: Mixing with Gaussian states

Coherent state Coherent state mixture Coherent state superposition 
(cat state)



  

Allowed operations: Gaussian protocols (GPs) 

● Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)

● Composition with pure Gaussian states (e.g., squeezed states)

● Pure Gaussian measurements on subsystems (e.g., homodyne)

● Partial trace on subsystems

● The above operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes in finite-size intervals (operational case)



  

E.g.: conditioning on momentum projections

(a) Ideal case:

(b) Operational case:

 



  

Allowed operations: Gaussian protocols (GPs) 

● Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)

● Composition with pure Gaussian states (e.g., squeezed states)

● Pure Gaussian measurements on subsystems (e.g., homodyne)

● Partial trace on subsystems

● The above operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes in finite-size intervals (operational case)

● Classical randomness does not generate a resource 
● Ideal GPs are unattainable practically (zero probability)
● Operational GPs have mixed outcome: 

 it is not possible to define a resource theory on pure states only

Note:  



  

Experimental realizations of Gaussian protocols

60 entangled
modes

Frequency encoding

Single crystal & freq comb 
[Chen et al., PRL (2014)]

500+ 
entangled partitions

Frequency encoding

Single crystal & freq comb 
[Roslund et al., 

Nat. Photonics (2014)]

Temporal encoding

Pulsed squeezed states  
[Yokoyama et al., 

Nat. Photonics (2013);
Yoshikawa et al., 

APL Photonics (2016)]

  106  entangled
modes
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Free states

1) Mixtures of Gaussian states (convex hull)

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

 resource theory of quantum non-Gaussianity  



  

Free states

1) Mixtures of Gaussian states (convex hull)

2) Positive Wigner function

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

 resource theory of quantum non-Gaussianity  

Closed under Gaussian protocols.

States outside this set are called Wigner-negative states:

            resource theory of Wigner negativity
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Resources

Example: cubic-phase state

In which sense it is a resource?

Cubic-phase 
gate

Cubic-phase 
state



  

The (ideal) cubic-phase state allows to 
deterministically implement a cubic-phase gate 
via an (ideal) Gaussian protocol



  

The (ideal) cubic-phase state allows to 
deterministically implement a cubic-phase gate 
via an (ideal) Gaussian protocol

Theorem

Multimode Gaussian unitaries + any non-Gaussian unitary 
=

Arbitrary multimode unitary transformation 
=

universal CV quantum computation [Braunstein & Lloyd, PRL '99]

Also: non-Gaussian states + Gaussian protocols & quantum supremacy 

[Douce et al., PRL '17; Douce et al., arXiv:1806.06618]



  

Resource theory of quantum non-Gaussianity 

State space Free states

Resources

[Albarelli, Genoni, Paris, AF, PRA (’18);

see also Takagi, Zhuang, PRA (’18).]

Allowed operations



  

There exists no maximally resourceful state

No resource state can be transformed via GPs into any other state 
(in particular, any other pure states) 

Operational GPs

Output: ● mixed

● pure:         

Ideal GPs

Ideal GPs that map pure inputs into pure outputs are a subset of 
(non necessarily positive) linearly bounded super-operators that map 
Gaussian states into themselves. The latter have finite dimension. 

Therefore  
● No natural unit of QnG exists 
● No natural state to distill into or to dilute from
● The cubic-phase state is “sort of” maximally resourceful

Proof



  

Monotones



  

A computable monotone: CV-mana
(AKA, Wigner Logarithmic Negativity)

The negative volume of the Wigner function is a good candidate:

Define the CV-mana as: 

The CV-mana is an additive & computable monotone!

Note: not a faithful for Quantum non-Gaussianity 

[A Kenfack, K Życzkowski, J Opt B (’04)]

[J Park et al., arXiv:1809.02999]



  

Examples

The resourcefulness depends on one effective parameter

and it is boosted by the (initial) squeezing

Cubic-phase state

Photon-added and -subtracted states



  

Resourcefulness comparison (fixed energy)

Fock states are the most resourceful



  

Resource concentration protocols

k original copies 
m output states

Probability of success: p

GP



  

Resource concentration protocols

k original copies 
m output states

Probability of success: p

GP

Using the monotonicity on average (any monotone):

Using the CV-mana additivity:

Bound to assess the efficiency of a concentration protocol.



  

Concentrating the resourcefulness of 
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Concentrating the resourcefulness of 
two single-photon states

efficiencygain



  

Concentrating the resourcefulness of 
two single-photon states

efficiency

gain The homodyne-based 
concentration protocol performs 

better (optimal working point)



  

Resource theory of quantum non-Gaussianity 

State space Free states

ResourcesAllowed operations

● Is there a maximally resourceful state? No, but the cubic state is asymptotically 

     maximal resourceful.
● Resource quantification: computable CV mana.
● Resource distillation: bounds to assess the efficiency of protocols. 
● State conversion: is it possible to convert a resource into another, and at which rate?

[Albarelli, Genoni, Paris, AF, PRA 98 052350 (’18)]
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Confined/massive continuous variables

Driven-dissipative
Opto-mechanics

[Aspelmeyer et al, RMP '13]

               Radiation-pressure interaction

Driven-dissipative
Electro-mechanics



  

Confined/massive continuous variables

Linear + Quadratic radiation-pressure interaction

Why interesting? Beyond Gaussian dynamics

Driven-dissipative
Opto-mechanics

[Aspelmeyer et al, RMP '13]

Driven-dissipative
Electro-mechanics



  

Exploiting the dissipative dynamics for state engineering

 
System A

 
System B

Number of quanta

Engineered mode



  

 
System A

 
System B

Number of quanta

Reservoir 
(vacuum)

Exploiting the dissipative dynamics for state engineering



  

The vacuum of f can be highly non-trivial



  

The vacuum of f can be highly non-trivial

Squeezed states Cubic-phase states Cat-like states          
 

[Brunelli et al., PRA (’18)]

[Houhou, Moore, Bose, AF, 

arXiv:1809.09733]



  

Hamiltonian engineering in optomechanics

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]
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Hamiltonian engineering in optomechanics

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

- Linearizing over the mean fields

- Resolved sideband regime

- Weak coupling

- Rotating wave approximation

Driving the first two side-bands
and the central frequency:

5-tone drive



  

Squeezed state 
by dissipation

The system is dissipatively driven to a unique and squeezed steady state

2 tones



  

Electro-mechanical experimental implementations 
  

[Woolman et al., 

Science (2015)]

[Lei et al., PRL (2016)] 

[Pirkkallainen et al., 

PRL 115, 243601 (2015)]

Driving the first mechanical sidebands with two tones

[Lecocq et al., 

PRX 5, 041037 (2015)]



  

Cubic-phase state 
by dissipation

The system is unconditionally driven to a cubic-phase steady state

Cubic-phase 
gate

Cubic-phase 
state

5 tones



  

Effect of mechanical noise

[Houhou, Moore, Bose, AF, arXiv:1809.09733]



  

 A cubic-phase state enables the cubic-phase gate

It enables 
universal QC

Gate teleportation:
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protocol



  

 A cubic-phase state enables the cubic-phase gate

Gate teleportation:

Cubic-phase 
state

Resource state

Non-Gaussian
Two-mode

Cluster state



  

Unconditional generation of the 
non-Gaussian two-mode cluster state

Two-step Hamiltonian engineering:



  

 Cubic-phase gate teleportation via dissipation



  

Unconditional generation of a 
universal multi-mode non-Gaussian cluster state

This resource state 
+

 (local) Gaussian protocols 

universal measurement-based 
CV quantum computation

=



  

Cavity-optomechanics setup with multiple mechanical oscillators and L+Q coupling:

1) Generation of cluster states for computation

2) Quantum tomography of the resource

3) Arbitrary Gaussian computation

4) Unconditional non-Gaussian states generation

5) Unconditional measurement-based computation

2N-tone
drive

Opto-mechanics

Continuous-Variable 
Quantum Computation

[Houhou, Aissaoui, AF, PRA '15]

[Moore, Tufarelli, Paternostro, AF, PRA '16]

[Moore, Houhou, AF, PRA '17]

[Brunelli, Houhou, Moore, Nunnenkamp,

[Houhou, Moore, Bose, AF, arXiv:1809.09733]

 Paternostro, AF, PRA ‘18]



  

O. Houhou (Medea)

D. Moore (Olomuc)

P. McConnell

M. Paternostro

QnG Resource theory

Unconditional quantum

 computation in optomechanics

F. Albarelli (Warwick)

M. Genoni, M. Paris (Milan)

M. Brunelli, A. Nunnenkamp 

(Cambridge)

S. Bose (UCL)



  

Models of computation

Measurement-Based 
Quantum Computation (MBQC)

 
Circuit-Based 

Quantum Computation

Lloyd & Braunstein 
PRL (1999)

Menicucci et al.
PRL (2006)

Gottesman, Kitaev, Preskill 
PRA (2001)

 Lund, Ralph, Haselgrove, 
PRL (2008)

Menicucci
PRL (2014)

Continuous 
Variables

Fault tolerant
(with finite energy)



  

Implementation - Hamiltonian switching   



  

Implementation - Hamiltonian switching   

For the case of linear coupling: Gaussian cluster state     [Houhou, Aissaoui, AF, PRA '15]



  

 Prepare each node in zero-momentum  
 eigenstate

 

  

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 
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Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 

CV cluster state
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Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 

q

p

p

q

p
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       Gaussian computation 

   



  

q

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 

q

p

p

q

p

q

 Prepare each node in zero-momentum  
 eigenstate

 Entangle connected nodes with 

 
 Measure each node locally 

       Quadrature measurements: 
       Gaussian computation 

       Non-Gaussian measurements: 
       Universal computation 

Np

N

q

N



  

Non-Gaussian measurements can be substituted
by non-Gaussian states

Cubic-phase 
gate

Cubic-phase 
state

It enables 
universal QC

Gate teleportation:



  



  

Effects of mechanical noise

with                     :

Consider mechanical noise at temperature     and damping rate     :



  

 The higher the target squeezing the less the tolerable noise
 The larger the target graph the less the tolerable noise
 Working regime:



  

Experimental feasibility

[Teufel et al., Nature (2011)]



  

High fidelities can be reached 
even in the presence of mechanical noise



  

The Shuffle

Fock-like cat-like

[Brunelli, Houhou, Moore, Nunnenkamp,
 Paternostro, AF arXiv:1804.00014]
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