Unconditional non-Gaussianity as a resource for quantum computation in optomechanical systems

Alessandro Ferraro

Outline

Quantum resource theories

Resource theory of quantum non-Gaussianity

 Unconditional non-Gaussianity for quantum computation in optomechanical systems

Outline

Quantum resource theories

Resource theory of quantum non-Gaussianity

Unconditional non-Gaussianity for quantum computation in optomechanical systems

Resource theories

State space	Free states
Allowed operations	Resources

State space	Free states
Allowed operations	Resources

State space \bigcirc	Free states
Allowed operations	Resources

Not all figures can be drawn, e.g. a square with the same area of a given circle

Not all figures can be drawn, e.g. a square with the same area of a given circle

The resource acts as a catalyst, allowing for new figures to be drawn.

Resource theories

	Quantum communication [Horodecki et al., RMP '09]	DV Quantum computation [Veitch et al., NJP'12; NJP'14] [Mari et al., PRL'12; Howard et al. PRL'17]
State space	Bipartite quantum systems	DV quantum register
Allowed operations	Local ops & classical comm (LOCC)	Stabilizer protocols (Clifford gates + basis prep/meas)
Free states	Separable states	Stabilizer states
Resources	(free) entangled states	(free) magic states

Resource theories

	Quantum communication	DV Quantum computation
	[Horodecki et al., RMP '09]	[Mari et al., PRL'12; Howard et al. PRL'17]
State space	Bipartite quantum systems	DV quantum register
Allowed operations	Local ops & classical comm (LOCC)	Stabilizer protocols (Clifford gates + basis prep/meas)
Free states	Separable states	Stabilizer states
Resources	(free) entangled states	(free) magic states

Primary goals: • Given a state, is it a (maximal) resource?

- Resource **quantification**: how useful is a resource?
- Resource **distillation**: how to obtain more resourceful states?
- State **conversion**: is it possible to convert a resource into another, and at which rate?

Resource theory of entanglement (mixed states)

- Is a state a state a (maximal) resource?
 Difficult to establish whether a state is entangled or not.
 The singlet state is maximally resourceful: any other state can be obtained via LOCC.
- Resource quantification: how useful is a resource?

Pure states : $E(|\psi\rangle^{AB}) = S(\rho^{A})$, with $S(\rho) = -Tr[\rho \log \rho]$ Mixed states : Entanglement of distillation, of formation, negativity, ...

• Resource distillation: how to obtain the singlet?

Distillation protocols

• State conversion: is it possible to convert a resource into another, and at which rate?

Outline

Quantum resource theories

Resource theory of quantum non-Gaussianity

Unconditional non-Gaussianity for quantum computation in optomechanical systems

Resource theory of quantum non-Gaussianity

State space	Free states
<section-header></section-header>	Resources

State space: continuous variables

Continuous variables (infinite dimension, canonical c.r., qumodes)

Gaussian states

Position and momentum operators

$$q_j = \frac{1}{\sqrt{2}}(b_j + b_j^{\dagger}) \qquad p_j = \frac{1}{i\sqrt{2}}(b_j - b_j^{\dagger}) \qquad [q_j, p_k] = i\delta_{j,k}$$

Wigner function

$$\mathcal{W}[\hat{O}](x,y) = \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{d} z_q \langle x+z|\hat{O}|x-z\rangle_q \, e^{-2iyz} \qquad q|x\rangle_q = x|x\rangle_q \;, \quad x \in \mathbb{R}$$

Resource theory of quantum non-Gaussianity

• Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)

Squeezing operator S(s)

Position and momentum eigenstates are infinitely squeezed states

Control phase (entangling gate)

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)

E.g.: composition with a squeezed state

 $|\psi
angle$ — $|\psi
angle\otimes {\sf S}({\sf s})|0
angle$ S(s)|0
angle —

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)
- Pure Gaussian measurements on subsystems (e.g., homodyne)

E.g.: homodyne measurements (position/momentum ideal projections)

$$|\psi\rangle - \hat{p} = m$$

E.g.: heterodyne measurements (coherent-state ideal projections)

$$|\psi\rangle$$
 (α)

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)
- Pure Gaussian measurements on subsystems (e.g., homodyne)
- Partial trace on subsystems

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)
- Pure Gaussian measurements on subsystems (e.g., homodyne)
- Partial trace on subsystems
- The above operations conditioned on classical randomness

E.g.: Mixing with Gaussian states

Coherent state

Coherent state mixture

 $|\alpha\rangle$

$$\frac{1}{2}|\alpha\rangle\langle\alpha|+\frac{1}{2}|\alpha'\rangle\langle\alpha'|$$

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)
- Pure Gaussian measurements on subsystems (e.g., homodyne)
- Partial trace on subsystems
- The above operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes in finite-size intervals (operational case)

E.g.: conditioning on momentum projections

(a) Ideal case:

$$\mathsf{m}= ilde{\mathsf{m}}$$

(b) Operational case: $\mathbf{m} \in [\mathbf{m} - \delta, \mathbf{m} + \delta]$

- Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)
- Composition with pure Gaussian states (e.g., squeezed states)
- Pure Gaussian measurements on subsystems (e.g., homodyne)
- Partial trace on subsystems
- The above operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes in finite-size intervals (operational case)

Note:

- Classical randomness does not generate a resource
- Ideal GPs are unattainable practically (zero probability)
- Operational GPs have mixed outcome: it is not possible to define a resource theory on pure states only
Experimental realizations of Gaussian protocols

60 entangled modes

Frequency encoding

Single crystal & freq comb [Chen et al., PRL (2014)]

500+ entangled partitions

Frequency encoding

Single crystal & freq comb [Roslund et al., Nat. Photonics (2014)]

10⁶ entangled modes

Temporal encoding

Pulsed squeezed states [Yokoyama et al., Nat. Photonics (2013); Yoshikawa et al., APL Photonics (2016)]

Resource theory of quantum non-Gaussianity

Free states

1) Mixtures of Gaussian states (convex hull)

$$\mathcal{G} = \left\{ \rho \in \mathcal{S} \left(\mathcal{H} \right) \mid \rho = \int d\lambda \, \mathbf{p} \left(\lambda \right) \left| \psi_{\mathsf{G}} \left(\lambda \right) \right\rangle \langle \psi_{\mathsf{G}} \left(\lambda \right) \right| \right\}$$

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

resource theory of quantum non-Gaussianity

Free states

1) Mixtures of Gaussian states (convex hull)

$$\mathcal{G} = \left\{ \rho \in \mathcal{S} \left(\mathcal{H} \right) \mid \rho = \int d\lambda \, \mathbf{p} \left(\lambda \right) \left| \psi_{\mathsf{G}} \left(\lambda \right) \right\rangle \langle \psi_{\mathsf{G}} \left(\lambda \right) \right| \right\}$$

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

resource theory of quantum non-Gaussianity

2) Positive Wigner function

$$\mathcal{W}_{+} = \{ \rho \in \mathcal{S} \left(\mathcal{H} \right) \mid \mathsf{W}_{\rho} \left(\mathsf{r} \right) \ge \mathsf{0} \}$$

Closed under Gaussian protocols. Note $:\mathcal{G}\subset\mathcal{W}_+$

States outside this set are called Wigner-negative states:

resource theory of Wigner negativity

Resource theory of quantum non-Gaussianity

Resources

Example: cubic-phase state

$$|\phi\rangle = |\gamma, \mathbf{s}\rangle = \Gamma(\gamma)\mathsf{S}(\mathbf{s})|\mathbf{0}\rangle = e^{i\gamma(\mathbf{b}+\mathbf{b}^{\dagger})^{3}}e^{-\frac{\mathbf{s}}{2}\left(\mathbf{b}^{2}-\mathbf{b}^{\dagger^{2}}\right)}|\mathbf{0}\rangle$$

Cubic-phase state

Cubic-phase gate

The (ideal) cubic-phase state allows to deterministically implement a cubic-phase gate via an (ideal) Gaussian protocol

The (ideal) cubic-phase state allows to deterministically implement a cubic-phase gate via an (ideal) Gaussian protocol

Theorem

Multimode Gaussian unitaries + any non-Gaussian unitary = Arbitrary multimode unitary transformation = universal CV quantum computation

[Braunstein & Lloyd, PRL '99]

Also: non-Gaussian states + Gaussian protocols & quantum supremacy

[Douce et al., PRL '17; Douce et al., arXiv:1806.06618]

Resource theory of quantum non-Gaussianity

[Albarelli, Genoni, Paris, AF, PRA ('18); see also Takagi, Zhuang, PRA ('18).]

There exists no maximally resourceful state

No resource state can be transformed via GPs into any other state (in particular, any other pure states)

$\left(\right)$	Proof
	Operational GPs
	Output: • mixed
	• pure: Gaussian unitaries on n CVs have finite dimension (of the affine symplectic group $\mathrm{ISp}(2n,\mathbb{R}):2n^2+3n$)
	Ideal GPs Ideal GPs that map pure inputs into pure outputs are a subset of (non necessarily positive) linearly bounded super-operators that map Gaussian states into themselves. The latter have finite dimension.

Therefore

- No natural unit of QnG exists
- No natural state to distill into or to dilute from
- The cubic-phase state is "sort of" maximally resourceful

Monotones

A Quantum-non-Gaussianity (resp. Wigner Negativity) monotone is a functional from the set of quantum states to non-negative real numbers $\mathcal{M}: \mathcal{S}(\mathcal{H}) \rightarrow [0, \infty)$ which satisfies the following properties:

1.
$$\mathcal{M}(\rho) = 0 \quad \forall \rho \in \mathcal{G} \text{ (resp. } \mathcal{W}_+\text{).}$$

- 2. Monotonicity under deterministic Gaussian protocols For any trace-preserving GP Λ_{DGP} the monotone must not increase: $\mathcal{M}(\rho) \geq \mathcal{M}(\Lambda_{DGP}(\rho)).$
- 3. Monotonicity on average under probabilistic Gaussian protocols Given a trace-preserving GP Λ_{DGP} we can express its action in terms of free Kraus operators, we require that the monotone must not increase on average:
 - (a) Ideal case: $\Lambda_{\text{DGP}}(\rho) = \int d\lambda p(\lambda|\rho) \sigma_{\lambda}$, where $\sigma_{\lambda} = \frac{1}{p(\lambda|\rho)} \mathsf{K}_{\lambda} \rho \mathsf{K}_{\lambda}^{\dagger}$. We require that $\mathcal{M}(\rho) \ge \int d\lambda p(\lambda|\rho) \mathcal{M}(\sigma_{\lambda})$.
 - (b) Operational case: $\Lambda_{DGP}(\rho) = \sum_{i} p_{i|\rho} \sigma_{i}$, where $\sigma_{i} = \frac{1}{p_{i|\rho}} K_{i} \rho K_{i}^{\dagger}$. We require that $\mathcal{M}(\rho) \ge \sum_{i} p_{i|\rho} \mathcal{M}(\sigma_{i})$

A computable monotone: CV-mana (AKA, Wigner Logarithmic Negativity)

The negative volume of the Wigner function is a good candidate:

$$\mathcal{N}[
ho] = \int \mathrm{d}\mathbf{r} |\mathsf{W}_{
ho}(\mathbf{r})| - 1$$

[A Kenfack, K Życzkowski, J Opt B ('04)]

Define the CV-mana as:

$$\mathsf{M}\left(\rho\right) = \log\left(\int \mathrm{d}\mathbf{r} \, \left|\mathsf{W}_{\rho}\left(\mathbf{r}\right)\right|\right)$$

The CV-mana is an additive & computable monotone!

Note: not a faithful for Quantum non-Gaussianity

[J Park et al., arXiv:1809.02999]

Examples

Cubic-phase state

The resourcefulness depends on one effective parameter

$$\mathcal{M}\left(\left|\gamma,\mathsf{r}\right\rangle\right)=\mathcal{M}\left(\left|\mathsf{e}^{3\mathsf{r}}\gamma,\mathsf{0}\right\rangle\right)=\mathsf{f}\left(\mathsf{e}^{3\mathsf{r}}\gamma\right)$$

and it is boosted by the (initial) squeezing

Photon-added and -subtracted states

$$\mathcal{M}\left[|\alpha, \mathbf{r}\rangle_{\mathsf{add}}\right] = \mathcal{M}\left[\mathsf{N}_{\mathsf{add}}^{-1/2}\left(\cosh|\mathbf{r}||1\rangle + \alpha^*|0\rangle\right)\right]$$
$$\mathcal{M}\left[|\alpha, \mathbf{r}\rangle_{\mathsf{sub}}\right] = \mathcal{M}\left[\mathsf{N}_{\mathsf{sub}}^{-1/2}\left(\mathsf{e}^{\mathsf{i}\psi}\sinh|\mathbf{r}||1\rangle + \alpha|0\rangle\right)\right]$$

At most as resourceful as the Fock state |1
angle

Resourcefulness comparison (fixed energy)

Fock states are the most resourceful

Resource concentration protocols

Resource concentration protocols

Using the monotonicity on average (any monotone):

$$\mathcal{M}\left(\rho^{\otimes \mathsf{k}}\right) \geq \mathsf{p}\mathcal{M}\left(\sigma^{\otimes \mathsf{m}}\right)$$

Using the CV-mana additivity:

$$\frac{\mathsf{p} \, \mathsf{m}}{\mathsf{k}} \frac{\mathsf{M}\left(\sigma\right)}{\mathsf{M}\left(\rho\right)} \leq 1$$

Bound to assess the efficiency of a concentration protocol.

gain
$$\epsilon[\Lambda] = \frac{\mathsf{M}(\sigma) - \mathsf{M}(\varrho)}{\mathsf{M}(\varrho)}$$

efficiency
$$\eta[\Lambda] = p \frac{m\mathsf{M}(\sigma)}{k\mathsf{M}(\varrho)} \le 1$$

The homodyne-based concentration protocol performs better (optimal working point)

Resource theory of quantum non-Gaussianity

- Is there a maximally resourceful state? No, but the cubic state is asymptotically maximal resourceful.
- Resource quantification: computable CV mana.
- Resource distillation: bounds to assess the efficiency of protocols.
- State **conversion**: is it possible to convert a resource into another, and at which rate?

Outline

Quantum resource theories

Resource theory of quantum non-Gaussianity

 Unconditional non-Gaussianity for quantum computation in optomechanical systems

Confined/massive continuous variables

Two DoF : radiation (\hat{a}) – mechanics (\hat{b})

[[]Aspelmeyer et al, RMP '13]

Radiation-pressure interaction

$${\cal H}~pprox~\omega({\hat q}){\hat a}^{\dagger}{\hat a}~pprox~\left(\omega_{
m c}+\omega'{\hat q}~
ight){\hat a}^{\dagger}{\hat a}$$

Confined/massive continuous variables

Two DoF : radiation (\hat{a}) – mechanics (\hat{b})


```
[Aspelmeyer et al, RMP '13]
```

Linear + Quadratic radiation-pressure interaction

$$egin{array}{lll} \mathcal{H} &pprox \ \omega(\hat{\mathsf{q}}) \hat{\mathsf{a}}^{\dagger} \hat{\mathsf{a}} &pprox \ \left(\omega_{\mathsf{c}} + \omega' \hat{\mathsf{q}} + rac{1}{2} \omega'' \hat{\mathsf{q}}^2
ight) \hat{\mathsf{a}}^{\dagger} \hat{\mathsf{a}} \end{array}$$

Why interesting? Beyond Gaussian dynamics

Exploiting the dissipative dynamics for state engineering

Exploiting the dissipative dynamics for state engineering

The vacuum of *f* can be highly non-trivial

$$\mathsf{f}=\mathsf{g}_1\mathsf{b}+\mathsf{g}_2\mathsf{b}^\dagger+\mathsf{g}_3\mathsf{b}^2+\mathsf{g}_4\mathsf{b}^{\dagger^2}+\mathsf{g}_5\left[\mathsf{b},\mathsf{b}^\dagger\right]_+\qquad \mathsf{g}_1,\ldots,\mathsf{g}_5\in\mathbb{C}$$

The vacuum of *f* can be highly non-trivial

$$\begin{split} f &= g_1 b + g_2 b^\dagger + g_3 b^2 + g_4 b^{\dagger^2} + g_5 \left[b, b^\dagger \right]_+ \qquad g_1, \ldots, g_5 \in \mathbb{C} \end{split}$$
 properly setting g_j

Squeezed states

0

2

-2

2

0

-2

-4

-4

-2

-4

Cat-like states

[Houhou, Moore, Bose, AF, arXiv:1809.09733]

0

2

[Brunelli et al., PRA ('18)]

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

$$\mathcal{H} = \omega_{c}a^{\dagger}a + \Omega b^{\dagger}b + G_{L}a^{\dagger}a(b^{\dagger}+b) + G_{Q}a^{\dagger}a(b^{\dagger}+b)^{2}$$

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

 $\mathcal{H} = \omega_{c} a^{\dagger} a + \Omega b^{\dagger} b + G_{L} a^{\dagger} a (b^{\dagger} + b) + G_{Q} a^{\dagger} a (b^{\dagger} + b)^{2} + \epsilon(t) a^{\dagger} + \epsilon^{*}(t) a$

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

$$\mathcal{H} = \omega_{c} a^{\dagger} a + \Omega b^{\dagger} b + G_{L} a^{\dagger} a (b^{\dagger} + b) + G_{Q} a^{\dagger} a (b^{\dagger} + b)^{2} + \epsilon(t) a^{\dagger} + \epsilon^{*}(t) a^{\dagger}$$

Driving the first two side-bands and the central frequency:

$$egin{aligned} \Delta_1 &= -\Omega & \Delta_2 &= \Omega \ \Delta_3 &= -2\Omega & \Delta_4 &= 2\Omega \ & \Delta_5 &= 0 \end{aligned}$$

Inspired by linear schemes [Clerk, Hartmann, Marquardt, Meystre, Vitali,...]

$$\mathcal{H} = \omega_{c}a^{\dagger}a + \Omega b^{\dagger}b + G_{L}a^{\dagger}a(b^{\dagger} + b) + G_{Q}a^{\dagger}a(b^{\dagger} + b)^{2} + \epsilon(t)a^{\dagger} + \epsilon^{*}(t)a$$

Driving the first two side-bands and the central frequency:

$$egin{array}{lll} \Delta_1 = -\Omega & \Delta_2 = \Omega \ \Delta_3 = -2\Omega & \Delta_4 = 2\Omega \ \Delta_5 = 0 \end{array}$$

- Linearizing over the mean fields
- Resolved sideband regime
- Weak coupling
- Rotating wave approximation

Squeezed state by dissipation

Setting $g_3 = g_4 = g_5 = 0$:

$$f = g_1 b + g_2 b^{\dagger} = \cosh(s)b + e^{i\psi}\sinh(s)b^{\dagger}$$

$$|\psi\rangle = S_{\psi}(s)|0\rangle = e^{\frac{s}{2}\left(e^{-i\psi}b^2 - e^{i\psi}b^{\dagger^2}\right)}|0\rangle$$

The system is dissipatively driven to a unique and squeezed steady state

Electro-mechanical experimental implementations

Driving the first mechanical sidebands with two tones

$$H = g a^{\dagger}f + g^{*}af^{\dagger}, \quad f = g_{1}b + g_{2}b^{\dagger}$$

[Woolman et al., Science (2015)] [Lei et al., PRL (2016)]

[Pirkkallainen et al., PRL 115, 243601 (2015)] [Lecocq et al., PRX 5, 041037 (2015)]

Cubic-phase state by dissipation

$$f = g_{1}b + g_{2}b^{\dagger} + g_{3}b^{2} + g_{4}b^{\dagger^{2}} + g_{5}\left[b, b^{\dagger}\right]_{+}$$

Setting :
$$g_2 = -tanh(s)g_1$$

 $g_3 = g_4 = g_5 = -\frac{3i}{2\sqrt{2}}\gamma \left[1 + tanh(s)\right]g_1$
 \downarrow
 $|\phi\rangle = |\gamma, s\rangle = \Gamma(\gamma)S(s)|0\rangle = e^{i\gamma(b+b^{\dagger})^3}e^{-\frac{s}{2}\left(b^2 - b^{\dagger^2}\right)}|0\rangle$
Cubic-phase gate

The system is unconditionally driven to a cubic-phase steady state

Effect of mechanical noise

Considering thermal noise:

 $\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} &= -i[H,\rho] + \kappa D[a]\rho + \gamma_m(\bar{n}+1)D[b]\rho + \gamma_m\bar{n}D[b^{\dagger}]\rho\\ D[A]\rho &= A\rho A^{\dagger} - \frac{1}{2}\left[A^{\dagger}A,\rho\right]_+ \end{aligned}$

- target state: $e^{i\gamma(b+b^{\dagger})^{3}}e^{\frac{-s}{2}(b^{2}-b^{\dagger}^{2})}|0\rangle$
- cubicity: $\gamma pprox$ 0.07
- squeezing: $s \approx 0.58$ (5dB)

[Houhou, Moore, Bose, AF, arXiv:1809.09733]

Unconditional generation of the non-Gaussian two-mode cluster state

Two-step Hamiltonian engineering:

$$\begin{split} H_{1} &= \frac{g}{2} a^{\dagger} \left[\left(s_{1} + \frac{1}{s_{1}} \right) b_{1} - \left(s_{1} - \frac{1}{s_{1}} \right) b_{1}^{\dagger} - i s_{1} \left(b_{2} + b_{2}^{\dagger} \right) \right. \\ &\left. - \frac{3 i \gamma_{1} s_{1}}{\sqrt{2}} \left(b_{1} + b_{1}^{\dagger} \right)^{2} \right] + \text{H.c.} \\ H_{2} &= \frac{g}{2} a^{\dagger} \left[-i s_{2} \left(b_{1} + b_{1}^{\dagger} \right) + \left(s_{2} + \frac{1}{s_{2}} \right) b_{2} - \left(s_{2} - \frac{1}{s_{2}} \right) b_{2}^{\dagger} \\ &\left. - \frac{3 i \gamma_{2} s_{2}}{\sqrt{2}} \left(b_{2} + b_{2}^{\dagger} \right)^{2} \right] + \text{H.c.} \end{split}$$

Cubic-phase gate teleportation via dissipation

Unconditional generation of a universal multi-mode non-Gaussian cluster state

 $|\gamma, s, A\rangle = E(A)\Gamma(\gamma)S(s)|0\rangle$

 $S(s) = \bigotimes_{j=1}^{N} S_j(s_j)$ $\Gamma(\gamma) = \bigotimes_{j=1}^{N} \Gamma_j(\gamma_j)$ $E(A) = e^{\frac{i}{2}q^{\top}Aq}$

This resource state + = universal CV qua

universal measurement-based CV quantum computation

Cavity-optomechanics setup with multiple mechanical oscillators and L+Q coupling:

1) Generation of cluster states for computation

[Houhou, Aissaoui, AF, PRA '15]

2) Quantum tomography of the resource

[Moore, Tufarelli, Paternostro, AF, PRA '16]

3) Arbitrary Gaussian computation

[Moore, Houhou, AF, PRA '17]

4) Unconditional non-Gaussian states generation

[Brunelli, Houhou, Moore, Nunnenkamp, Paternostro, AF, PRA '18]

5) Unconditional measurement-based computation [Houhou, Moore, Bose, AF, arXiv:1809.09733]

QnG Resource theory

Unconditional quantum

computation in optomechanics

European Commission

- O. Houhou (Medea)
- D. Moore (Olomuc)
 - P. McConnell

M. Paternostro

F. Albarelli (Warwick) M. Genoni, M. Paris (Milan) M. Brunelli, A. Nunnenkamp (Cambridge) S. Bose (UCL)

Models of computation

Implementation - Hamiltonian switching

Λ/

N independent oscillators (b_j) interacting with one damped oscillator (a)

$$\mathcal{H} = g \ a^{\dagger} \sum_{j=1}^{N} \left(g_1^{(j)} b_j + g_2^{(j)} b_j^{\dagger} + g_3^{(j)} b_j^2 + g_4^{(j)} b_j^{\dagger^2} + g_5^{(j)} [b_j, b_j^{\dagger}]_+ \right) + \text{H.c.}$$

Objective: prepare the state $|\gamma, s, A\rangle = E(A)\Gamma(\gamma)S(s)|0\rangle$

Implementation - Hamiltonian switching

Λ/

N independent oscillators (b_j) interacting with one damped oscillator (a)

$$\mathcal{H} = g \ a^{\dagger} \sum_{j=1}^{N} \left(g_1^{(j)} b_j + g_2^{(j)} b_j^{\dagger} + g_3^{(j)} b_j^2 + g_4^{(j)} b_j^{\dagger^2} + g_5^{(j)} [b_j, b_j^{\dagger}]_+ \right) + \text{H.c.}$$

Objective: prepare the state $|\gamma, s, A\rangle = E(A)\Gamma(\gamma)S(s)|0\rangle$ Method: *N*-step preparation protocol:

at step k we implement $E(A)\Gamma(\gamma)S(s) \ b_k \left(E(A)\Gamma(\gamma)S(s)\right)^{\mathsf{T}} \equiv \hat{f}_k$ The new Hamiltonian: $\mathcal{H}_k \equiv g \ a^{\dagger}\hat{f}_k + \text{H.c.}$ The dynamics obeys: $\frac{\mathrm{d}\rho}{\mathrm{d}t} = -i[\mathcal{H}_k, \rho] + \kappa D[a]\rho$.

After *N* steps, the system reaches the target state.

For the case of linear coupling: Gaussian cluster state [Houhou, Aissaoui, AF, PRA '15]

CV cluster state: the universal resource for computation

 Prepare each node in zero-momentum eigenstate

CV cluster state: the universal resource for computation

 Prepare each node in zero-momentum eigenstate

Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

CV cluster state: the universal resource for computation

- Prepare each node in zero-momentum eigenstate
- Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

CV cluster state

CV cluster state: the universal resource for computation

- Prepare each node in zero-momentum eigenstate
- Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

Measure each node locally

Quadrature measurements: Gaussian computation

CV cluster state: the universal resource for computation

- Prepare each node in zero-momentum eigenstate
- Entangle connected nodes with

$$\mathsf{CZ}_{\mathsf{j}\mathsf{k}} \equiv \exp[\mathsf{i}\mathsf{q}_{\mathsf{j}}\otimes\mathsf{q}_{\mathsf{k}}]$$

Measure each node locally

Quadrature measurements: Gaussian computation

Non-Gaussian measurements: Universal computation

Non-Gaussian measurements can be substituted by non-Gaussian states

Parameter	Set 1	Set 2
	(realistic)	(close to ideal)
η	0.99	1
$\frac{\gamma}{2\pi}$	8 Hz	0 Hz
$\frac{\kappa}{2\pi}$	$0.33 \mathrm{~MHz}$	$0.1 \mathrm{~MHz}$
au	0.01κ	0
αg	$0.35 \mathrm{MHz}$	$0.35 \mathrm{~MHz}$
Т	1 mK	0 K
$r_{\rm post-meas}$	10 dB	20 dB
$r_{\rm cluster}$	3 dB	3 dB

Effects of mechanical noise

Consider mechanical noise at temperature T_i and damping rate γ_j :

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -\mathrm{i}[\mathsf{H},\rho] + \kappa(\mathsf{a}\rho\mathsf{a}^{\dagger} - \frac{1}{2}\mathsf{a}^{\dagger}\mathsf{a}\rho - \frac{1}{2}\rho\mathsf{a}^{\dagger}\mathsf{a}) + \mathcal{L}_{1} + \mathcal{L}_{2}$$

with $\gamma_{\rm j}\;,\kappa\ll\Omega_{\rm j}$:

$$\begin{split} \mathcal{L}_{1} &= \sum_{j=1}^{N} \gamma_{j} (n_{j}+1) \left(b_{j} \rho b_{j}^{\dagger} - \frac{1}{2} b_{j}^{\dagger} b_{j} \rho - \frac{1}{2} \rho b_{j}^{\dagger} b_{j} \right) \\ \mathcal{L}_{2} &= \sum_{j=1}^{N} \gamma_{j} n_{j} \left(b_{j}^{\dagger} \rho b_{j} - \frac{1}{2} b_{j} b_{j}^{\dagger} \rho - \frac{1}{2} \rho b_{j} b_{j}^{\dagger} \right) \\ n_{j} &= \left(\exp \frac{\hbar \Omega_{j}}{\mathsf{K}_{\mathsf{B}} \mathsf{T}_{j}} - 1 \right)^{-1} \end{split}$$

- The higher the target squeezing the less the tolerable noise
- The larger the target graph the less the tolerable noise
- Working regime:

 $\gamma_{j} \ll \kappa \ll \Omega_{j}~~{\rm and}~{\rm low}~~\mathsf{T}_{j}$

Experimental feasibility

High fidelities can be reached even in the presence of mechanical noise

 $s_1=s_2\equiv 5{
m dB}$ $\gamma_1=$ 0, γ_2pprox 0.04

The Shuffle

