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OUTLINE

 INTRODUCTION 
 Tasks/problems & possible applications.
 Non-locality test (without any inequality). 

 OUR WORKS: 
 Detection of true multipartite entanglement. 
 DI-Quantum Key Distribution with measurement inputs.
 Quantum Digital Signatures.
 DI Quantum Liar Detection & Byzantine Agreement. 
 DI Quantum Random Number Generator, etc.



Tasks/Problems

[A key feature, exists in 
quantum correlations.]



Problems:
 General witness for bi-separable & genuine entangled states.

 Non-classicality & monogamous characteristics of

 
  

Tasks/Problems cont...



Provides secure quantum protocols for various cryptographic & 
communication tasks. E.g., 

• Key distribution
• Digital signatures 
• Secret sharing
• Byzantine agreement 
• Random number generator
• Oblivious transfer
• Dining cryptographers
• Anonymous veto etc. 

Quantum algorithms & computation.

Quantum simulation & metrology, etc. 
 

Applications



Hardy’s Paradox [L. Hardy PRL 1992]

A B

This set of conditions cannot be satisfied by any Local-
Realistic (LR) Theory (Classical Theory).

P(a,b|X,Y) is the joint probability of 
getting the outcome (a,b) for the given 
input (X,Y).



HARDY’S PARADOX & QM

[Ref. G Kar, PLA 97].



HARDY STATE

By Gram-Schmidt orthogonalization procedure



PROBABILITY OF SUCCESS

For q=0.09 (max.), associated Hardy state      is device-
independent [Rabelo et al. PRL 2012].  



NON-LOCALITY TEST FOR GENUINE ENTANGLEMENT.

1 2 n

Again cannot be satisfied by any LR theory

That is, only genuine entangled states can satisfy. 
[Rahaman et al., Phys. Rev. A 2014] 



Proof: If  is     not a genuine entangled state then all joint 
probabilities can be expressed as, 



Following the same steps, we can show that R is fully 
factorized with the help of  

Thus the state representing the considered term is fully 
factorizable.

Such states admit local hidden variable models, and as such 
cannot satisfy the mentioned set of joint probability conditions 
for q’> 0.



For qubits system:                     



For qubits system:                     

Hardy state       is unique & genuinely entangled 
[Rahaman et al., Phys. Rev. A 2014]

           



Only genuine multiparty entangled states can satisfy
[S. S. Bhattacharya, A. Roy, A. Mukherjee & R. Rahaman, Phys. Rev. A, 92, 

012111 (2015)]

Relaxed Hardy type test for genuine multiparty 
entangled states 



KEY DISTRIBUTION PROTOCOL



Private key cryptography

M=10110010

E=11010001
C=01100011

X

D=11010001
M=10110010

MEVE

Difficulties in Private Key

C=01100011

• The key bits cannot be reused for any future protocol.
• Key bits must be delivered in advance, guarded 

assiduously until used.  



Public key cryptosystems-
• W. Diffie and M. Hellman (1976).
• R. Rivest,  A. Shamir and L. Adleman (1978) [RSA].

Possible attacks:

• If you able to factor n.
– Security based on computational hardness
– Can be broken by quantum computers!

Possible Solution:-
• Quantum cryptography

–  Security based on Laws of Physics



DI-QKD PROTOCOL [Rahaman et al. PRA 92, 062304 
(2015)]

BA

Alice Bob

Alice & Bob share many 
copies of Hardy State.

Measures own qubits in 
the basis chosen 
randomly from {U,D}.

BA

BA

BA



DI-QKD [Rahaman et al. PRA 2015 ]  CONT…

\  For (+,+) outcome local inputs are correlated 
[(U,U) or (D,D)].

For q=0.09 (max.), associated Hardy state         is device-
independent [Rabelo et al. PRL 2012].  

 Our QKD also DI in this case.  

Remember Hardy’s Paradox



DIGITAL SIGNATURES (DS) 
PROBLEM



Digital signature (DS) 

A C

BmA

mA=mB

mB

Verifiabl
eClassical DS schemes offer security relying on 

unproven computational assumptions 
[E.g., RSA, ElGamal  & Standard DSA signatures schemes].

o DS allows to send authentic message(s) from one sender 
to multiple recipients.

o In a DS the known sender cannot deny having sent the 
message.

o Also, the message was not altered in transit.



QUANTUM DIGITAL 
SIGNATURES(QDS) PROTOCOL



Existing QDS schemes

o In 2001, Gottesman & Chuang, arXiv:quant-ph/0105032.

o Experimental demonstration with coherent states:

(i) E. Andersson et. al., PRA 2006.

(ii) P. J. Clarke et. al., Nature Com. 2012.

o QDS schemes without Quantum Memory:

(i) V. Dunjko et. al., PRL 2014.

(ii) R. J. Collins et. al., PRL 2014.



THREE QUBITS HARDY PARADOX

1 2 3

Again cannot be satisfied by any LR 
theory

0/1 0/1 0/1



For 3-qubits system: Dim.(H)=2x2x2=8.

Let us assign: 

Hardy state | is unique & genuinely 
entangled

[ Rahaman et al., Phys. Rev. A 2014].

Hardy 
state 



Probability of success q= 0.0181938.  

3-QUBIT HARDY STATE

Hardy State:  

Device Independent Hardy Test (3-qubit):- 

For q= 0.0181938, state is equivalent to 



• S1. Distribution of resources: ‘A’ prepares and shares a 
large number of 3-qubits Hardy state        with B and C.

Quantum digital signatures protocol



(iii) A sends the list of runs to B 
& C when

(iv) B sends the list of runs to C 
when  

After successful distribution of qubits they share N-copies of Hardy 
State
S2. Actions: (i) A measures all his qubits in the message basis he want to 
convey.  [U for m=0 and  D for m=1]. 

They discards the runs when 
A gets outcome 1.  

P(000|UUU)=q
P(00|UD)=0
P(111|DDD)=0

(ii) B(C) measures all his qubits in 
random basis U/D.



C can also easily 
verify B’s claim with 
help of Hardy’s 
conditions.

P(000|UUU)=q
P(00|UD)=0
P(111|DDD)=0

P(00|DD)>0
P(00|UU)>0
P(00|DU)=0
P(00|UD)=0

B can easily figure out the 
message basis [m] of A with 
help of Hardy’s conditions.



LIAR DETECTION (LD) 
PROBLEM



Liar Detection 

A

C

B

mAB

mAC

mBC

‘C’ receives a message from A in two different paths:

(i) Directly from A  [message mAC ]
(ii) Via B [message mBC]

If mAC  mBC 
either A or C 

is a liar.No Classical Solution.
 

Quantum solution exists: A. Cabello, PRL 
2002, PRA 2003.













Byzantine Agreement (BA) 



Generals of the Byzantine Army communicating with each other 

The generals must reach a consensus among themselves whether 
to attack or retreat based on the messages exchanged.

But some generals can be traitors; they may send conflicting 
messages to the other generals.

A
C

B

mCB

mBC

If mCB= mBC, all are loyal.

mC

mB



Byzantine Agreement

The solution to the problem must allow 
• (i) all the loyal generals to agree upon a 

common plan of action. 
• (ii) if the commanding general (A) is loyal then 

all the loyal generals must obey the order 
(s)he sends.

• No Classical solution [Fitzi et. al. CRYPTO 2001]



QUANTUM RANDOM NUMBER 
GENERATION



A B

0/10/1

Randomness of a measurement’s outcomes:

Randomness of the measurement 
outcomes (a,b)  for the inputs (x,y) 
estimated by the min-entropy function 
[R. Koenig et al., IEEE Trans. Inf. Theory, 09]

U0 & D1

Device-independent Case: Used semidefinite programming (SDP)



Maximal randomness can reach up to 1.35 if the corresponding 
Hardy probability obtains its maximal value.

A lower bound on min-entropy 
as a function of Hardy’s parameter 



Maximal randomness can reach up to 1.58 for =0.333. 

Noisy Case: A lower bound on min-entropy                    
as a function noise parameter .

SDP Scheme



Maximal randomness can reach up to 1.56 when Cabello 
parameter (p) reaches its maximal value 0.10784.  

Cabello scenario: A lower bound on min-entropy                    

SDP Scheme



Maximal randomness can reach up to 0.68. Other existing 
protocols can generate a maximum 0.23 bit randomness. 

SDP Scheme

Semi-Device Independent scenario                



CONCLUSIONS  

o Proposed generalized Hardy type test for detection of 
multiparty entanglement.

o Based on Hardy correlations, we have proposed Device-
Independent quantum protocols for  
 Key Distribution.
 Liar Detection & Byzantine Agreement
 Random Number Generator 
 Quantum Digital Signatures etc.
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