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Motivation:

Quantum discord1 indicates the presence of quantumness even
in separable states.

Certain separable states which have quantumness may
improve certain information theoretic protocols if there is a
constraint on the possible local hidden variable models2.

From an operational perspective, nonlocal or steerable states
require augmenting preshared randomness with nonzero
communication cost3.

1) H. Ollivier, and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

2) T. K. C Bobby and T. Paterek, New J. Phys. 16, 093063 (2014).

3) B. F. Toner and D. Bacon, Phys. Rev. Lett. 91, 187904 (2003); A. B. Sainz, L. Aolita, N. Brunner, R. Gallego,

and P. Skrzypczyk, Phys. Rev. A 94, 012308 (2016).
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Motivation continued..

Now the question is

How to operationally characterize the quantumness
present in local or unsteerable correlations?
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Motivation continued..

Bowles et. al1 have shown that the statistics of all local
entangled states can be simulated by using only finite
shared randomness.

Donohue and Wolfe2 have demonstrated an interesting
feature of certain local boxes which they called
“superlocality”: there exist local boxes which can be
simulated by certain quantum systems of local dimension
lower than that of the shared classical randomness
needed to simulate them. That is, superlocality refers to
the dimensional advantage in simulating certain local boxes by
using quantum systems.

1) J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, Phys. Rev. Lett. 114, 120401 (2015).
2) J. M. Donohue, and E. Wolfe, Phys. Rev. A 92, 062120 (2015).
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Motivation continued..
Further it has been demonstrated1 that superlocality provides
an operational characterization of quantumness of
certain local correlations.

Now the question is:

Can the notion of ‘superlocality’ be generalized in
steering scenario (i.e. in one-sided device independent
scenario) to characterize quantumness of certain
unsteerable correlations?

Answer:

Yes.

1) C. Jebaratnam, S. Aravinda, and R. Srikanth, Phys. Rev. A 95, 032120 (2017).
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Steering Scenario:
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Steering Scenario:

The correlation P(ab|xy) is unsteerable from Alice to Bob iff

p(ab|xy) =
∑
λ

p(λ)p(a|x , λ)p(b|y , ρλ) ∀a, x , b, y , (1)

where
∑

λ p(λ) = 1, p(a|x , λ) denotes an arbitrary probability
distribution arising from local hidden variable (LHV) λ (λ occurs
with probability p(λ)); p(b|y , ρλ) denotes a quantum probability of
outcome b when measurement y is performed on local hidden state
(LHS) ρλ.
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Superunsteerability

Definition: Suppose Alice and Bob share a quantum state in
CdA ⊗ CdB and perform measurements which produce an
unsteerable bipartite box P(ab|xy) := {p(ab|xy)}a,x ,b,y . Then,
superunsteerability holds iff there is no decomposition of the box in
the form,

p(ab|xy) =

dλ−1∑
λ=0

p(λ)p(a|x , λ)p(b|y , ρλ) ∀a, x , b, y , (2)

with dimension of the shared randomness/hidden variable dλ ≤ dA.
Here p(b|y , ρλ) denotes a quantum probability of outcome b when
measurement y is performed on LHS ρλ in CdB .

9 / 30



Superunsteerability
• How to determine whether a given unsteerable correlation
is superunsteerable or not:

We have to consider the LHV-LHS model of the given correlation
with minimum dimension of the shared randomness.y

We have to check whether this minimum dimension is greater
than the local Hilbert space dimension of the shared quantum
system (reproducing the given unsteerable correlation) at Alice’s

side (untrusted party’s side who steers the other party).

• Quantumness in the form of non-zero quantum discord is
necessary for demonstrating superunsteerability.
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Results: Example 1 of superunsteerability

Consider the white noise-BB84 family given by:

PBB84(ab|xy) =
1 + (−1)a⊕b⊕x .yδx ,yV

4
, (3)

where 0 < V ≤ 1;

Quantum simulation: The white noise-BB84 family can be
produced when Alice and Bob perform appropriate measurements
on the 2⊗ 2 dimensional Werner state,

ρV = V |ψ−〉〈ψ−|+ 1− V

4
I2 ⊗ I2, (4)

where |ψ−〉 = 1√
2

(|01〉 − |10〉); 0 < V ≤ 1.
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Results: Example 1 of superunsteerability

Classical simulation: The white noise-BB84 family can be
simulated by a LHV-LHS model in the range 0 < V ≤ 1√

2
and the

minimum dimension of the hidden variable needed to
reproduce the correlation by LHV-LHS model is 4.

• Hence, the white noise-BB84 family demonstrates
superunsteerablity for 0 < V ≤ 1√

2
.
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Results: Example 1 of superunsteerability

Hence, super-unsteerable white noise-BB84 family (0 < V ≤ 1√
2

)

certifies quantumness of

i) 2⊗ 2 dimensional resource producing it (e.g., two-qubit Werner
state), or

ii) 3⊗ 2 dimensional resource producing it (e.g., the state
V |ψ−〉〈ψ−|+ 1−V

2 |2〉〈2| ⊗ I2)
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Results: Example 2 of superunsteerability

Consider the correlation given by:

P(ab|xy) =

XXXXXXXX(x,y)
(a,b)
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(5)

where each row and column corresponds to a fixed measurement

setting (xy) and a fixed outcome (ab) respectively.
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Results: Example 2 of superunsteerability

Quantum simulation: This correlation (5) can be produced when
Alice and Bob perform appropriate measurements on the 2⊗ 2
dimensional state,

ρ =
1

2

(
|00〉〈00|+ |+ +〉〈+ + |

)
, (6)

where, |0〉 and |+〉 are the eigenstates of the operators σz and σx
respectively corresponding to the eigenvalue +1.
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Results: Example 2 of superunsteerability

Classical simulation: The aforementioned correlation (5) can be
simulated using a LHV-LHS model and the minimum dimension
of the hidden variable needed to reproduce the correlation by
LHV-LHS model is 3.

• Hence, the aforementioned correlation (5) demonstrates
superunsteerablity.

• Hence, the aforementioned superunsteerable correlation (5)
certifies quantumness of 2⊗ 2 dimensional resource producing it
(e.g., the state (6)).
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Results: Superunsteerability

The present study classifies any bipartite states in the 2− 2− 2
experimental scenario (involving 2 parties, 2 measurement settings
per party, 2 outcomes per measurement setting) into three types:

(i) States which do not demonstrate superunsteerability. The
states having zero discord belong to this class.

(ii) Non-zero discord states which demonstrate superunsteerability
with unsteerable boxes having minimum hidden variable dimension
3.

(iii) Non-zero discord states which demonstrate superunsteerability
with unsteerable boxes having minimum hidden variable dimension
4.
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What is next?

Now the question is

How to generalize the notion “superunsteerability” for
tripartite unsteerable correlation?
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Bi-unsteerability of tripartite correlation in one-sided
device independent scenario
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Bi-unsteerability

The tripartite correlation P(abc|xyz) is called bi-unsteerable across
the bipartite cut A− BC (i.e., from Alice to Bob-Charlie) iff

p(abc|xyz) =
∑
λ

p(λ)p(a|x , λ)p(bc|y , z , ρBCλ ) ∀a, x , b, y , c , z ,

(7)
with

∑
λ p(λ) = 1. Here P(bc|y , z , ρBCλ ) denotes an arbitrary

quantum probability of obtaining the outcomes b and c , when
measurements y and z are performed by Bob and Charlie
respectively on the shared bipartite LHS ρBCλ .
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Super-bi-unsteerability

Definition: Suppose Alice, Bob and Charlie share a tripartite
quantum state ρABC in CdA ⊗ CdB ⊗ CdC producing a correlation
box P(abc|xyz) which is bi-unsteerable from Alice to Bob-Charlie.
Then super-bi-unsteerability from Alice to Bob-Charlie holds iff
there is no decomposition of the form:

p(abc|xyz) =

dλ−1∑
λ=0

p(λ)p(a|x , λ)p(bc|y , z , ρBCλ ) ∀a, x , b, y , c , z ,

(8)
where dλ ≤ dA. Here P(bc|y , z , ρBCλ ) denotes a quantum
probability of the outcomes b and c , when measurements By and
Cz are performed by Bob and Charlie respectively on the shared
bipartite LHS ρBCλ in CdB ⊗ CdC .
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Genuine Super-bi-unsteerability: Motivation

• It has been demonstrated that bipartite quantum discord is
necessary for demonstrating bipartite superunsteerability1.

• In the tripartite scenario, genuine tripartite quantum discord2

was defined in order to quantify the genuine quantumness of
tripartite quantum states.

• Zhao et. al.3 has shown that any tripartite state has non-zero
genuine tripartite discord iff it has non-zero bipartite discord across
all possible bipartitions.

1) D. Das, B. Bhattacharya, C. Datta, A. Roy, C. Jebaratnam, A. S. Majumdar, and R. Srikanth, Phys. Rev. A 97,

062335 (2018).

2) G. L. Giorgi, B. Bellomo, F. Galve, and R. Zambrini, Phys. Rev. Lett. 107, 190501 (2011).

3) L. Zhao, X. Hu, R.-H. Yue, and H. Fan, Quantum Inf. Process 12, 2371 (2013).
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Genuine Super-bi-unsteerability

Definition: A tripartite bi-unsteerable correlation is said to be
genuinely super-bi-unsteerable iff it is super-bi-unsteerable across
all possible bipartitions (i.e., from Alice to Bob-Charlie, from Bob
to Alice-Charlie, and from Charlie to Alice-Bob).

• Genuine nonclassicality (in the form of genuine quantum discord)
of three-qubit states is necessary for implying genuine
super-bi-unsteerability of bi-unsteerable correlations (produced
from three-qubit states).
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Results: Example of genuine super-bi-unsteerability

Consider the noisy Mermin family given by

PV
MF (abc|xyz) =

1 + (−1)a⊕b⊕c⊕xy⊕yz⊕xzδx⊕y⊕1,zV

8
, (9)

where 0 < V ≤ 1.

Quantum simulation: The noisy Mermin family can be produced
when Alice, Bob and Charlie perform appropriate measurements on
the 2⊗ 2⊗ 2 noisy GHZ state:

ρ1 = V |GHZ 〉〈GHZ |+ (1− V )
I2
2
⊗ I2

2
⊗ I2

2
, (10)

where |GHZ 〉 = 1√
2

(|000〉+ |111〉); 0 < V ≤ 1
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Results: Example of genuine super-bi-unsteerability

Classical simulation: • The noisy Mermin family can be simulated
by a LHV-LHS model (bi-unsteerable from Alice to Bob-Charlie) in
one sided device independent scenario for 0 < V ≤ 1√

2
.

• The above LHV-LHS model cannot be realized with hidden
variables having dimension 3 for V > 1√

5
.

• The above LHV-LHS model cannot be realized with hidden
variables having dimension 2 or 1 for V > 0.

• Hence, the noisy Mermin family demonstrates
super-bi-unsteerablity from Alice to Bob-Charlie in one sided device
independent scenario for 0 < V ≤ 1√

2
.
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Results: Example of genuine super-bi-unsteerability

Classical simulation: • Since noisy Mermin family is invariant
under permutations of parties, the noisy Mermin family
demonstrates super-bi-unsteerablity from Bob to Alice-Charlie and
from Charlie to Alice-Bob in one sided device independent scenario
for 0 < V ≤ 1√

2
.

• Hence, the noisy Mermin family demonstrates genuine
super-bi-unsteerablity in one sided device independent scenario for
0 < V ≤ 1√

2
.
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Results: Example of genuine super-bi-unsteerability

The genuinely super-bi-unsteerable noisy Mermin family certifies
the quantumness of

i) the 2⊗ 2⊗ 2 dimensional resource reproducing it in the range
0 < V ≤ 1√

2
(e.g. the noisy GHZ state).

ii) the 3⊗ 2⊗ 2 dimensional resource reproducing it in the range
1√
5
< V ≤ 1√

2
(e.g. the state

ρ2 = V |GHZ 〉〈GHZ |+ (1− V )|2〉〈2| ⊗ I2
2 ⊗

I2
2 )
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Outlook:

Whether quantum discord (genuine quantum discord) is
sufficient for demonstrating superunsteerability (genuine
super-bi-unsteerability).

Generalizing the concept of super-bi-unsteerability in
two-sided device independent scenario.

Investigating information theoretic applications of
superunsteerability and super-bi-unsteerability.

Finding out how to quantify superunsteerability and
super-bi-unsteerability.

Finding out an experimentally testable criteria (like Bell’s
inequality) to detect superunsteerable and
super-bi-unsteerable correlations.
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Thank you.
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