Non-separable States of Light: Classical and Quantum

R.P. Singh Physical Research Laboratory, Ahmedabad

- ➤ Introduction: Optical Vortices Orbital Angular Momentum (OAM) states of light
- > Non-separable states of light
- > Confirmation of vorticity
- > Transfer of classical non-separability to quantum domain

Optical Vortex beams

- ➤ Helical wave fronts, dark core at the center due to the azimuthal phase.
- ➤ They carry an orbital angular momentum which is proportional to its order, defined as the number of helical paths completed in one wave length.

Spin Angular Momentum

Poynting showed classically for a beam of circularly polarized light

$$\frac{J_z}{W} = \frac{\text{Angular Momentum}}{\text{Energy}} = \pm \frac{1}{\omega}$$

Angular momentum

 $\sigma^+, \ \sigma^-$ Polarized: $\pm \hbar$ per photon

Beth Phys. Rev. 50, 115, 1936

Orbital Angular Momentum

For a field amplitude distribution where

$$u(r,z) = u_0(r,z) \exp(-il\phi)$$

$$\frac{J_z}{W} = \frac{\text{Angular Momentum}}{\text{Energy}} = \pm \frac{l + \sigma_z}{\omega}$$

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman Phys. Rev. 45, 8185, 1992

Difference in SAM and OAM

Optical Vortex beams – generation

Astigmatic mode-converter

Computer Generated Holography

Spiral Phase plate

Using an ordinary tilted lens one can easily determine the order of an optical vortex

Terabit-Scale OAM Mode Division Multiplexing in Fibers

Terabit free-space data transmission employing OAM multiplexing

NATURE PHOTONICS Vol. 6, 488-496 (2012)

Simultaneous entanglement swapping of multiple orbital angular momentum states of light, **Zhang** et al, **Nature Communications** 8, Article number: 632(2017)

Generation of non-separable state and scattering

 A non-separable state of polarization and OAM for a light beam can be written as

$$E(x, y) = \widehat{e_x} LG_0^m(x, y) + \widehat{e_y} LG_0^{-m}(x, y)$$
$$|\Psi\rangle = |H\rangle |m\rangle + |V\rangle |-m\rangle$$

Optics Communications, 355 (2015) 301–305

Applied Physics Letters, 107, 021104 (2015)

Experimental setup for the generation and scattering of non-separable state of polarization and OAM. HWP – half wave plate, QWP – quarter wave plate, P – polarizer, L – lens with focal length 15 cm, CCD – charge coupled device (camera), PM – power meter, PBS – polarizing beam splitter

Non-separable states of light

 Projection of this non-separable state of light beam to an arbitrary polarization

$$|\Psi\rangle_{P} = \cos(\theta)|H\rangle + \sin(\theta)e^{i\phi}|V\rangle$$
gives
$$|\Psi\rangle_{OAM} = \cos(\theta)|m\rangle + \sin(\theta)e^{i\phi}|-m\rangle$$

$$m=2$$

$$m=3$$

$$H$$

$$V$$

$$D$$

$$A$$

This system can successfully simulate most features of entanglement, but fails to simulate quantum nonlocality

Experimental results

Linear entropy and degree of polarization (DOP)

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} \bigg(|H\rangle| + |l\rangle + |V\rangle| - |l\rangle \bigg) \\ \rho_{ns} &= |\psi\rangle \langle \psi| \\ \rho_{p} &= \mathrm{Tr}_{l} \{\rho_{ns}\} = \sum_{i=l,-l} \langle i|\psi\rangle \langle \psi|i\rangle = \frac{l_{p}}{2} \\ S_{L} &= \frac{d}{d-1} (1 - \mathrm{Tr}(\rho^{2})) \\ S_{L} &= 2(1 - \mathrm{Tr}(\rho_{p}^{2})) = 1 \rightarrow S_{L} = 1 - DOP^{2} \\ \rho_{p} &= \frac{1}{2} \sum_{i=0}^{3} \sigma_{i}. \ s_{i} \\ \mathrm{Tr} \{\rho_{p}^{2}\} &= \frac{1}{2} \Big(1 + s_{1}^{2} + s_{2}^{2} + s_{3}^{2} \Big) = \frac{1}{2} (1 + DOP^{2}) \\ s_{L} &= l_{L} - l_{L} \\ s_{L} &= l_{L} - l_{L} \\ \end{array}$$

 $s_3 = \frac{I_R - I_L}{I}$

In experiment we produce:

$$|\psi\rangle = \frac{1}{\sqrt{I_1 + I_2}} \left(\sqrt{I_1} |H\rangle | + 2\rangle + \sqrt{I_2} |V\rangle | - 2\rangle \right)$$

$$S_L = \frac{4I_1I_2}{(I_1 + I_2)^2}$$

State		Before scattering			After scattering		
	Stokes vectors		DOP	Stoke's vectors		DOP	
Separable state (without SPP)	S ₁ S ₂ S ₃	0.044 0.956 -0.02	0.957	S ₁ S ₂ S ₃	0.056 0.922 -0.026	0.924	
Non-separable state (with SPP)	S ₁ S ₂ S ₃	-0.03 -0.01 0.02	0.001	s ₁ s ₂ s ₃	0.01 -0.02 -0.02	0.001	

Hybrid entangled photon source

Scientific Reports, 7, 7331 (2017)

Verifying polarization entanglement when SPP is not present

Acknowledgements

All the members of the group: Past and present

