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What is bound entanglement?

Distillable entanglement

A bipartite state is distillable, if
• having some finite number of copies

it is possible to create a maximally entangled state

|φd〉 =
1√
d

∑
i

|ii〉 ,

• by means of LOCC (local operations and classical communication)
• and with finite probability.

Bound entanglement

An entangled state that is not distillable is bound entangled.
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The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki et al.)

Any state with positive partial transpose (PPT) is undistillable, i.e.,

PPT ∩ entangled ⊆ bound entangled.

↪→ Two qutrits are the smallest system with bound entanglement.
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Shortcut to bound entanglement: multipartite states

A multipartite state is bound entangled, if
• it is entangled,
• but undistillable for all bipartitions.

Example: Smolin state

ρABCD = 1
4(Φ+ + Φ− + Ψ+ + Ψ−),

with Ψ− = |ψ−ψ−〉〈ψ−ψ−|, etc.
Properties:

• globally entangled
• separable with respect to all bipartitions

Feels like cheating. . .
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Experiments

Multipartite:
• Amselem & Bourennane, Nature Phys. (2009)
• Barreiro et al., Nature Phys. (2010)
• Kampermann et al., PRA (2010)
• . . .

Bipartite:
• DiGuglielmo et al., PRL (2011)
• Hiesmayr & Löffler, NJP (2013)

Rigor of results.

These experiments employ
• a limited statistical analysis, or
• symmetry assumptions.
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Certification of bound entanglement

Protocol in use.

1 Perform state tomography,
2 reconstruct state,
3 bootstrap, determine whether bound entangled,
4 report fraction of bootstrapped states with bound
entanglement.

� Sounds decent, yields utterly unreliable results.

Problems

• Theorem: There can be no unbiased state reconstruction.
[Schwemmer et al., PRL (2015)]

• Bound entangled states are high-dimensional & nonconvex set.
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Proper statistical analysis

Noncentral χ2-test

If ρ0 admits an bound entangled ball with radius r0, then we can
compute, assuming normal distributed data, an upper bound for

P[ false positives ] ≤ P[ data looks good | ‖ρ0 − ρexp‖2 ≥ r0].

This yields a p-value.

Advantages:
• easy to understand
• correct
• computationally trivial

Disadvantages:
• slightly conservative
• requires to work in “Gaussian regime”
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Task.
For a bound entangled state ρ0, find r0 such that all
states τ with ‖ρ0 − τ‖2 ≤ r0 are bound entangled.

� Infeasible problem?

(We only consider the bipartite case.)
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Simplification I

Theorem (Horodecki et al.)

ρ is undistillable if Γ(ρ) ≥ 0.

Lemma. If ‖ρ0 − τ‖2 ≤ r0 then, (d: dimension of joint system)

λmin[Γ(τ)] ≥ λmin[Γ(ρ0)]− r0
√

1− 1/d.

Proof. Let ρ0 − τ = r0X with ‖X‖2 ≤ 1. Then

λmin[Γ(τ)] ≥ λmin[Γ(ρ0)]− r0‖X‖∞.

Corollary.

All states around ρ0 are undistillable, if

λmin[Γ(ρ0)] ≥ r0
√

1− 1/d.

Conclusive verification of bipartite bound entanglement, p. 9
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Simplification II
Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let (gk)k be an orthonormal basis of the Hermitian operators and
define R(ρ)k,` = tr(ρ gk ⊗ g`). Then, a state ρ is entangled if
‖R(ρ)‖1 > 1.

Lemma. If ‖ρ0 − τ‖2 ≤ r0, then

‖R(τ)‖1 ≥ ‖R(ρ0)‖1 − r0
√
d.

Proof. Use ‖R(τ)‖ ≥ ‖R(ρ0)‖ − r0‖R(X)‖1.

Corollary.

All states around ρ0 are entangled, if

‖R(ρ0)‖1 > 1 + r0
√
d.

Conclusive verification of bipartite bound entanglement, p. 10
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Conditions

• C1: λmin[Γ(ρ0)] ≥ r0
√

1− 1/d. (⇒ PPT)
• C2: ‖R(ρ0)‖1 > 1 + r0

√
d. (⇒ CCNR entangled)

Conclusive verification of bipartite bound entanglement, p. 11



Optimal states

• Given ρ0, we can compute a bound on the best r0.
• Why not search a state ρ0 with overall best r0?

Optimization problem.

Find ρ0 and r0 subject to

maximize: r0

such that: λmin[Γ(ρ0)] ≥ r0
√

1− 1/d, and

‖R(ρ0)‖1 > 1 + r0
√
d.

• In principle, yields optimal state for given dimension.
• In practice, need to choose family of states with few parameters.

Conclusive verification of bipartite bound entanglement, p. 12
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Example: Qutrits
Family of states: (contains Horodecki states)

ρ = a|φ3〉〈φ3|+ b

2∑
k=0

|k, k ⊕ 1〉〈k, k ⊕ 1|+ c

2∑
k=0

|k, k ⊕ 2〉〈k, k ⊕ 2|,

[Baumgartner et al., PRA (2006)]with |φ3〉 =
∑

i |ii〉 /
√

3.

� Can be solved analytically.

Optimal parameters

a ≈ 0.21289, b ≈ 0.04834, and c ≈ 0.21403.

↪→ r0 ≈ 0.02345
• rank(ρ) = 7.
• Value of r0 is (basically) tight w.r.t. CCNR and PPT.

Conclusive verification of bipartite bound entanglement, p. 13
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Example: Qutrits

r0 ≈ 0.02345, rank 7

Conclusive verification of bipartite bound entanglement, p. 14



Example: Ququarts
Family of Bloch-diagonal states: (contains Smolin state)

ρ =
∑
k

xkgk ⊗ gk,

where gk = (σµ ⊗ σν)/2.

� Optimization problem reduces to 32 768 linear programs.
↪→ Feasibility polytope can be determined, has 254 556 vertices.

Optimal states

• rank(ρ) < 9 yields r0 = 0.
• rank(ρ) = 9 yields r0 ≈ 0.0161.
• rank(ρ) ≥ 10 yields r0 ≈ 0.0214.

Conclusive verification of bipartite bound entanglement, p. 15
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Example: Ququarts

r0 ≈ 0.0161, rank 10
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How large is 0.02?. . . some words about statistics

Protocol

1 Characterize tomography measurements with high precision.
2 Decide critical statistical parameters.
3 Perform state tomography.
4 Evaluate χ2-test.
5 Publish or perish.

Statistical parameters:
• distribution of raw data (Poissonian, multinomial, . . . )
• preprocessing method (raw data) 7→ x.
• (Covariance matrix Σ of x.)
• Quadratic test function t̂ : x 7→ t.
• Threshold significance, yielding critical value t∗.
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Evaluation of the data

Choice of test function
A good choice of the test function is

t̂(x) = ‖Σ−1/2[x0 − x]‖2,

with x0 the expected value of x for ρ0.

↪→ Computable threshold value t∗, so that

P[ false positives ] ≤ P[ t̂(x) ≤ t∗ | ‖ρ0 − ρexp‖2 > r0]

≤ qm(t∗2, r21)
!
≤ threshold significance

Certification of bound entanglement if t̂(x) ≤ t∗.

Even with ‖ρ0 − ρexp‖2 ≤ r0, there is a chance that t̂(x) > t∗.
These unlucky cases become less likely with more samples.
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Precision requirements
qutrit ququart

Probability pfail to obtain data
• that does not confirm bound entanglement
• at a level of significance of kσ standard deviations
• assuming 5% (2.5%) white noise for qutrit (ququart) case.
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Summary

• For suitably parametrized states, it is possible to find ρ0 and r0,
such that

‖ρ0 − τ‖2 ≤ r0 =⇒ τ is bound entangled.

• For qutrits and qubits, r0 ≈ 0.02.
• With tomographic data, we obtain a p-value for the null
hypothesis “the state is not bound entangled.”

• In realistic scenarios, ∼ 105 samples per setting are required to
certify bound entanglement with 3σ significance.

Sentís, Greiner, Shang, Siewert, K, arXiv:1804.07562
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