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Why QEC?

“Noisy Intermediate-Scale Quantum (NISQ) technology will be available
in the near future. Quantum computers with 50-100 qubits may be able
to perform tasks which surpass the capabilities of today’s classical digital
computers, but noise in quantum gates will limit the size of quantum
circuits that can be executed reliably.........

Quantum Error Correction (is) our basis for thinking that quantum com-
puters are scalable to large devices solving hard problems.”

– John Preskill, Quantum Computing in the NISQ era and beyond.
(arxiv: 1801.00862)
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Quantum Error Correction (QEC)

Goals of QEC:

Modelling noise
(decoherence) in physical
systems.

Develop protocols to preserve
quantum states with high
fidelity, under reasonable
assumptions about the noise.

Example: Qubit subject to
amplitude damping noise
(spontaneous emission).
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Decoherence

Loss of coherence due to ’unwanted’ interactions with a bath/environment
⇒ Noise!

Mathematically, this gives rise to completely positive, trace-preserving
(CPTP) maps.

E(ρS) = trE [USE(ρS ⊗ ΦE)U†SE) ].
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Quantum Channel

Any physical process E on HS must be,

(i) Completely positive (CP): E(ρ) > 0 , for all ρ > 0 ∈ B(Hs);
And, (E ⊗ I) is a positive map for any possible extension HS ⊗HR .
⇔ Choi-Kraus-Sudarshan operator-sum representation:

E ∼ {Ei}Ni=1 : E(ρ) =
N∑
i=1

EiρE
†
i .

(ii) Trace non-increasing: 0 ≤ tr[E(ρ)] ≤ 1 implies
∑
iE

†
iEi ≤ IS .

Trace-Preserving (TP) map : tr[E(ρ)] = 1 ⇔
∑
iE

†
iEi = IS .
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Example: Amplitude Damping Channel

Characterizes the effects due to loss of energy from a quantum system.
Single qubit Amplitude Damping Channel: EAD = {EAD

0 , EAD
1 }

EAD
0 =

[
1 0
0
√

1− γ

]
, EAD

1 =

[
0
√
γ

0 0

]

Describes energy dissipation in a two-level system, where |0〉 is the ground
state and |1〉 is some excited state.
γ : Probability of a transition from the excited state to the ground state.

In the Pauli basis,
EAD

0 = 1
2 [(1 +

√
1− γ) I + (1−

√
1− γ) σz] , E

AD
1 =

√
γ

2 [σx + iσy]

No linear combination of EAD
0 and EAD

1 gives an operator element
proportional to I; Operator elements cannot be realized as scaled Pauli
operators.
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Quantum Error Correction

Codespace: d-dim subspace C of H⊗n, encoding a qudit.
Recovery map: R is any trace preserving CP map from H⊗n to C.

Action of a channel E is correctible on a space C if ∃ a quantum channel R
such that R ◦ E(ρ) = ρ ∀ ρ ∈ C.

Input 

space H

Noise Channel
Detecting and 

correcting errors

Decoded 

output  H

R : B (H!n) B (C )

Encoding Decoding
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Conditions for QEC

3-qubit code: |0〉L = |000〉; |1〉L = |111〉.
Corrects for single-qubit bit-flip errors.

Given a noise channel E ∼ {Ei}Ni=1, what is a good C to encode information
in?

Let P be the projector onto codespace C. A CPTP recovery map Rperf such
that Rperf ◦ E(ρ) = ρ exists iff

PE†iEjP = αijP,

for some Hermitian matrix α of complex numbers.1

I Easily verifiable, once P is given.
I Linear - any channel whose operator elements are linear combinations of
{Ei} is also correctible. For correcting single qubit errors, sufficient to
check for the “Pauli errors” !

1E.Knill and R.Laflamme, Phys.Rev. A 55, 900 (1997).
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Conditions for QEC

Error operators map the codespace to mutually orthogonal subspaces of (H)⊗n.

Recovery map RPerf : {Rk = PU†k}.
Linearity of QEC condition, and, assumption of independent errors
⇒ The shortest perfect QEC code to correct arbitrary single qubit errors
requires 5 qubits (Five-qubit code2,3)

2Bennet et al., Phys.Rev.A 54 3824 (1996)
3Laflamme et al., Phys. Rev. Lett. 77, 198 (1996)
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Beyond Perfect QEC

“Approximate quantum error correction can lead to better codes”4

A 4-qubit code that corrects for single qubit amplitude damping errors:

|0〉L =
1√
2

(|0000〉+ |1111〉)

|1〉L =
1√
2

(|0011〉+ |1100〉)

Encodes 1 logical qubit in 4 physical qubits .

Kraus operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.

4D.W.Leung, M.A.Nielsen, I.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Comparing codes: Fidelity

Standard measure of closeness between two quantum states ρ, σ is the
fidelity,

F (ρ, σ) = tr
√
ρ1/2σρ1/2 .

When ρ = |ψ〉〈ψ|, F (|ψ〉, σ) =
√
〈ψ|σ|ψ〉.

Worst-case fidelity: For a codespace C, under the action of the noise channel
E and recovery R,

Fmin[C,R ◦ E ] = min
|ψ〉 ∈C

F [|ψ〉,R ◦ E(|ψ〉〈ψ|)].

Suffices to minimize over pure states, since F is jointly concave in its
arguments.

For amplitude damping noise,

[4, 1] code achieves: F 2
min = 1− 2.75γ2 +O(γ3).

Compare with the ’perfect’ [5, 1] code: F 2
min = 1− 2.5γ2 +O(γ3).

⇒ The [4,1] code is a shorter code of comparable fidelity!
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Compare with the ’perfect’ [5, 1] code: F 2
min = 1− 2.5γ2 +O(γ3).

⇒ The [4,1] code is a shorter code of comparable fidelity!
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Approximate Quantum Error Correction

Channel E is approximately correctible on codespace C if ∃ a TPCP map R
such that F 2

min[C,R ◦ E ] ≈ 1

Actually, a triple optimization problem:

max
C

max
R

min
|ψ〉∈C

F [|ψ〉, (R ◦ E) (|ψ〉〈ψ|)] .

Finding the optimal recovery map:

Given a codespace C and a noise channel E , the optimal recovery map (Rop)
is defined as the recovery that gives the maximum worst-case fidelity -

Rop(C, E) = max
R

min
|ψ〉

F 2[|ψ〉,R ◦ E(|ψ〉)]
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Finding the optimal recovery map

Finding the optimal recovery with worst case fidelity is computationally hard
– Optimization is twofold, F is not linear in its arguments.

Can be recast as a Semi-definite program(SDP) by relaxing one of the
constraints, but the solution is typically suboptimal5.

Optimizing for an average measure of fidelity is tractable via SDP6.

Analytically: channel-adapted recovery maps?

Pretty-good recovery map: first proposed for an average measure of fidelity7.

5N.Yamamoto, S.Hara and K.Tsumura, Phys.Rev.A, 71, 022322 (2005)
6A.S.Fletcher, P.W.Shor, and M.Z.Win, Phys. Rev. A, 75, 021338 (2007)
7H. Barnum and E. Knill, JMP, 43, 2097 (2002)
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Analytical solution for AQEC 8

For any noise channel E ∼ {Ei}Ni=1, and codespace C, we define a
channel-adapted recovery map – RP (Petz map) :

RP ∼ {Ri}Ni=1 , Ri ≡ PE
†
i E(P )−1/2

We show:

(1) If E is perfectly correctible on C, then, RP = RPerf .

(2) For any pair (E , C), RP achieves a worst-case fidelity close to that of the
optimal recovery channel.

(3) The perfect QEC conditions can be rewritten in terms of RP. Perturbing
these, leads to easily verifiable conditions for approximate QEC!
Composed of three CP maps: RT = P ◦ E† ◦ N –
P is the projection onto C, and N is the normalization map
N (·) = E(P )−1/2(·)E(P )−1/2

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010).
Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 15 / 29



Analytical solution for AQEC 8

For any noise channel E ∼ {Ei}Ni=1, and codespace C, we define a
channel-adapted recovery map – RP (Petz map) :

RP ∼ {Ri}Ni=1 , Ri ≡ PE
†
i E(P )−1/2

We show:

(1) If E is perfectly correctible on C, then, RP = RPerf .

(2) For any pair (E , C), RP achieves a worst-case fidelity close to that of the
optimal recovery channel.

(3) The perfect QEC conditions can be rewritten in terms of RP. Perturbing
these, leads to easily verifiable conditions for approximate QEC!
Composed of three CP maps: RT = P ◦ E† ◦ N –
P is the projection onto C, and N is the normalization map
N (·) = E(P )−1/2(·)E(P )−1/2

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010).
Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 15 / 29



Analytical solution for AQEC 8

For any noise channel E ∼ {Ei}Ni=1, and codespace C, we define a
channel-adapted recovery map – RP (Petz map) :

RP ∼ {Ri}Ni=1 , Ri ≡ PE
†
i E(P )−1/2

We show:

(1) If E is perfectly correctible on C, then, RP = RPerf .

(2) For any pair (E , C), RP achieves a worst-case fidelity close to that of the
optimal recovery channel.

(3) The perfect QEC conditions can be rewritten in terms of RP. Perturbing
these, leads to easily verifiable conditions for approximate QEC!

Composed of three CP maps: RT = P ◦ E† ◦ N –
P is the projection onto C, and N is the normalization map
N (·) = E(P )−1/2(·)E(P )−1/2

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010).
Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 15 / 29



Analytical solution for AQEC 8

For any noise channel E ∼ {Ei}Ni=1, and codespace C, we define a
channel-adapted recovery map – RP (Petz map) :

RP ∼ {Ri}Ni=1 , Ri ≡ PE
†
i E(P )−1/2

We show:

(1) If E is perfectly correctible on C, then, RP = RPerf .

(2) For any pair (E , C), RP achieves a worst-case fidelity close to that of the
optimal recovery channel.

(3) The perfect QEC conditions can be rewritten in terms of RP. Perturbing
these, leads to easily verifiable conditions for approximate QEC!
Composed of three CP maps: RT = P ◦ E† ◦ N –
P is the projection onto C, and N is the normalization map
N (·) = E(P )−1/2(·)E(P )−1/2

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010).
Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 15 / 29



RP achieves close-to-optimal fidelity

Fidelity-loss : ηR = 1−min|ψ〉∈C F
2[|ψ〉, (R ◦ E)(|ψ〉〈ψ|)].

Near-optimality of Petz map :-
Given a codespace C of dimension d and optimal fidelity loss ηop,

F 2[|ψ〉, (Rop ◦ E)(|ψ〉〈ψ|)]

≤
√

1 + (d− 1)ηop F [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)]

for any |ψ〉 ∈ C.

Corollary: ηop ≤ ηP ≤ ηop[(d+ 1) +O(ηop)].

For any noise-channel E , RP does not perform much worse than Rop - at
most adds a factor of (d+ 1) to the fidelity-loss.

When ηop = 0, ηP = ηop implying that RP is indeed the optimal recovery
map for perfect QEC!
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Extensions of the AQEC formalism

Approximate subsystem codes
(P. MAndayam and H.K.Ng, Phys Rev A 86(1), 012335 (2012).)

Continuous-variable extensions of the pretty-good recovery map
(L Lami, S. Das and M. Wilde, J Phys A 51 (12) , 125301 (2018). )

Connections to ETH and translational-invariant manybody systems
(F. BRandao, E. Crosson et al. arxiv quant-ph: 1710.04631)
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Applications
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Quantum state transfer over 1-d spin chain

Transfer of information from one spin-site ’s’ (“sender”) to another spin site
’r’ (“receiver”), via the natural, Hamiltonian dynamics of the chain.
Example: state transfer via a 1-d Heisenberg chain9.

Consider a general spin-preserving Hamiltonian on a 1-d spin chain:

H = −
∑
k

Jk
(
σkxσ

k+1
x + σkyσ

k+1
y

)
−
∑
k

J̃kσ
k
zσ

k+1
z

+
∑
k

Bkσ
z
k,

where, {Jk} > 0 and {J̃k} > 0.

9Sougato Bose, Phys. Rev. Lett. 91, 207901 (2003).
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State transfer protocol as a quantum channel

Spin chain is initialised to the ground state |00 . . . 0〉. Sender encodes |ψin〉=
a|0〉+ b|1〉 at the sth site.

|Ψ(0)〉 = a|0̃〉+ b|̃s〉

The state of the spin chain after time t is,

|Ψ(t)〉 = e−iHt|Ψ(0)〉

Reduced state of the rth spin at the receiver’s site is thus obtained as

ρout = tr1,2,...,r−1,r+1,...,N (ρ(t)) = E(ρin) =
∑
k=0,1

EkρinE
†
k,

E0 =

(
1 0
0 fNr,s(t)

)
, E1 =

(
0
√

1− |fNr,s(t)|2

0 0

)
.

fNr,s(t)= 〈r|e−iHt|s〉 is the transition amplitude between the rth site and the

sth site.

Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 20 / 29



State transfer protocol as a quantum channel

Spin chain is initialised to the ground state |00 . . . 0〉. Sender encodes |ψin〉=
a|0〉+ b|1〉 at the sth site.

|Ψ(0)〉 = a|0̃〉+ b|̃s〉

The state of the spin chain after time t is,

|Ψ(t)〉 = e−iHt|Ψ(0)〉

Reduced state of the rth spin at the receiver’s site is thus obtained as

ρout = tr1,2,...,r−1,r+1,...,N (ρ(t)) = E(ρin) =
∑
k=0,1

EkρinE
†
k,

E0 =

(
1 0
0 fNr,s(t)

)
, E1 =

(
0
√

1− |fNr,s(t)|2

0 0

)
.

fNr,s(t)= 〈r|e−iHt|s〉 is the transition amplitude between the rth site and the

sth site.

Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 20 / 29



Pretty-good state transfer via adaptive QEC

We propose a QEC protocol based on10

The approximate 4-qubit code

|0L〉 =
1√
2

( |0000〉+ |1111〉 ) ,

|1L〉 =
1√
2

( |1100〉+ |0011〉 ) .

Adaptive recovery: R(.) =
∑
i PE

†
i E(P )−1/2(.)E(P )−1/2EiP , where

P = |0L〉〈0L|+ |1L〉〈1L| is the projection on the code space C.

10¡1¿A.Jayashankar and P.Mandayam, Physical Review A 98,052309 (2018).
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Pretty good state transfer via adaptive QEC11

Single qubit (no QEC)

4-qubit (after QEC)
5-qubit (after QEC)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Spin chain length 'N'

F

The fidelity of s to site r state transfer with adaptive QEC, under a
spin-conserving Hamiltonian, after time t:

F 2
min ≈ 1− 7p2

4
+O(p3), (p = 1− |fNr,s(t)|2).

Without QEC: F 2
min = 1− p.

Can be extended to disordered 1-d spin-chains (Akshaya’s poster!).

11A.Jayashankar and P.Mandayam, Physical Review A 98,052309 (2018).
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Finding good AQEC codes

Pick a d-dimensional subspace C ⊆ (H)⊗n.
Given a noise threshold ε, knowing C and E , we can compute ηP.

If ηP ≤ ε, C is a good code. If ηP ≥ (d+ 1)ε, C is not a good code.
If (d+ 1)ε ≤ ηP ≤ ε, our conditions do not tell us whether C is ε-correctible
or not.

Computing ηP is hard in general - requires a maximization over all states in
the codespace.

A simple solution for qubit codes: RP ◦ E is a qubit map.

Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 23 / 29



Finding good AQEC codes

Pick a d-dimensional subspace C ⊆ (H)⊗n.
Given a noise threshold ε, knowing C and E , we can compute ηP.

If ηP ≤ ε, C is a good code. If ηP ≥ (d+ 1)ε, C is not a good code.
If (d+ 1)ε ≤ ηP ≤ ε, our conditions do not tell us whether C is ε-correctible
or not.

Computing ηP is hard in general - requires a maximization over all states in
the codespace.

A simple solution for qubit codes: RP ◦ E is a qubit map.

Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 23 / 29



Finding good AQEC codes

Pick a d-dimensional subspace C ⊆ (H)⊗n.
Given a noise threshold ε, knowing C and E , we can compute ηP.

If ηP ≤ ε, C is a good code. If ηP ≥ (d+ 1)ε, C is not a good code.
If (d+ 1)ε ≤ ηP ≤ ε, our conditions do not tell us whether C is ε-correctible
or not.

Computing ηP is hard in general - requires a maximization over all states in
the codespace.

A simple solution for qubit codes: RP ◦ E is a qubit map.

Prabha Mandayam (IIT Madras) QIPA’18 7 Dec 2018 23 / 29



Optimizing the fidelity for qubit codes

Given a pair of codewords |v1〉, |v2〉,
σ0 = |v1〉〈v1|+ |v2〉〈v2| ≡ I2
σx = |v1〉〈v2|+ |v2〉〈v1|,
σy = −i(|v1〉〈v2| − |v2〉〈v1|),
σz = |v1〉〈v1| − |v2〉〈v2|

Expressing the initial state |ψ〉〈ψ| as

ρ =
1

2
(I + s.σ) =

1

2
~s.~σ (1)

where s is a real 3-element unit vector (s1, s2, s3), ~s ≡ (1, s) and
~σ ≡ (I, σ1, σ2, σ3).
Corresponding to any quantum channel Φ, we have,

Mαβ ≡
1

2
tr {σαΦ(σβ)}

Fidelity for a state |ψ〉 ∈ C under the map Φ can be written as,

F 2(|ψ〉,Φ) =
1

2
sTMs,
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Numerical search for good codes12

For Φ = RP ◦ E which is not only trace preserving but also unital
(RP ◦ E(P ) = P ), M takes the form,

M =


1 0 . . . 0
0
: T
0


Defining Tsym ≡ 1

2 (T + T T ), fidelity becomes

F 2(|ψ〉,Φ) =
1

2
(1 + sTTsyms),

min
|ψ〉∈C

F 2(|ψ〉,Φ) =
1

2
(1 + tmin).

Fidelity loss: ηΦ = 1− FΦ = 1
2 (1− tmin), where tmin is the smallest

eigenvalue of Tsym corresponding to the map Φ.

12Anjala MB. Akshaya J, P Mandayam and H.K. Ng, in preparation.
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Nelder-Mead search

A pair of N -qubit code-words {|v1〉, |v2〉} are chosen by searching through
the parameter space of SU(2N ) using Neldear-Mead search.

E.g. Codes for amplitude damping channel.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Damping parameter
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Structured search

Example of a 3-qubit structured code via numerical gradient search:

|0L〉 =



−0.0127 + 0.0756i
−0.5870 + 0.3695i

0
0
0
0

0.0259 + 0.0516i
0.3847 + 0.6014i


, |1L〉 =



0
0

−0.1516 + 0.0564i
−0.3291− 0.1774i
0.4911 + 0.7628i
−0.0440− 0.0954i

0
0


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Summary and Outlook

Approximate/Adaptive QEC has emerged as a powerful theoretical and
numerical tool for tackling decoherence in quantum systems.

We have demonstrated applications to,

Pretty good state transfer over spin-chains
Efficient numerical search for good quantum codes for arbitrary noise models
Preserving entanglement under decoherence

Key challenge: implementing the adaptive recovery via efficient quantum
ciruits
Structured search for codes is a first step in this direction.

Open Question: Integrating AQEC with fault-tolerance : first level of
concatenation of a FT protocol?
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Thank You!
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