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Operational 
tasks

Compass–straightedge constructions
Local operations (and variants)

Thermalizing channels

Quadratrix
Entanglement; quantum channels

Non-equilibrium states

Squaring circles; trisecting angles
Teleportation; superdense coding

Work extraction; refrigeration; erasure
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➢ Difficult to understand entanglement beyond Gaussian states

➢ Energy eigenstates (Fock states) are not “easy to prepare”

Recent work (2017–18):

• Tan et al., Quantifying the Coherence between Coherent States. PRL 119, 190405

• Theurer et al., Resource Theory of Superposition. PRL 119, 230401

• Lami et al., Gaussian quantum resource theories. arXiv:1801.05450

• Zhuang et al., Resource theory of non-Gaussian operations. PRA 97, 052317

• Takagi and Zhuang, Convex resource theory of non-Gaussianity. PRA 97, 062337

• Kwon et al., Nonclassicality of Light as a Quantifiable Resource for Quantum
Metrology. arXiv:1804.09355

• Albarelli et al., Resource theory of quantum non-Gaussianity and Wigner negativity.
PRA 98, 052350 (Alessandro Ferraro’s talk at QIPA 2018)
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• Nonclassicality ~ Coherence w.r.t. 𝛼 basis

• But 𝛼 basis is non-orthogonal, overcomplete!
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• What is “easy” in optics?
(Passive) linear elements: beam splitters and phase shifters
– these also preserve classicality!

Most general kind of free process:
Linear-optic networks, classical ancillas, destructive measurements (and feed-forward)

Can consider different numbers of measurement rounds
For 𝑛 measurement rounds, the class of operations is denoted 

L.O.

measurement

input resource 
state 𝜌

linear optics

classical ancilla

output state 𝜎
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How does linear optics constrain the manipulation of quantum states?

• A first result: under       , coherent states are transformed as

contraction
𝑛 modes

plus classical mixtures

displacement

• So superpositions can only shrink in phase space
- a “second law for phase-space superpositions”

• e.g. 
is possible (with any success probability) only for 𝑔 ≤ 1

• Well-known measures of nonclassicality fail to reflect this!
[Hillery, PRA 35, 725 (1987); Lee, PRA 44, R2775 (1991)]
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Also has correct monotone behaviour:

For a        operation taking with probability        ,

• Generalises to multiple modes (using covariance matrix of quadratures)

Under        (measurement but no feed-forward):
Nonclassicality can be concentrated into fewer modes with a limited success 
probability

E.g. there is a protocol for “growing” cat states:

Applying this result: success probability ≤
1

2

Phase-space variance as a measure of nonclassicality

Lund et al., PRA 70, 020101 (2004)

• Definition for a single-mode pure state:

By uncertainty relation, with equality if and only if         is classical
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• Extension to mixed states: Convex roof of pure-state measure

Has desired properties:

➢ Cannot increase under free operations: monotone

➢ Is zero only for classical states: faithful

But not clear how to calculate (even numerically) or to measure!

• Quantum Fisher Information

➢ QFI                  measures sensitivity of state 𝜌 to displacements orthogonal to 𝑥𝜃
➢ Central quantity in parameter estimation—sets limit on achievable precision

➢We define the quantity

➢ Lower-bound to the full measure

➢ Drawback: not faithful—can fail to detect nonclassicality

➢ Crucially, also a monotone under
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• Monotonicity results for the QFI measures imply the following statements:

A performance advantage in sensing quadrature displacements
cannot be gained with operations (either deterministically
or on average in the case of a probabilistic process).

Under , the conversion of a state which is useful for multi-
parameter metrology of displacements, into one which is more
useful for estimating fewer parameters, necessarily has a
limited probability of success.

Under (i.e., without measurements), this concentration of
utility for parameter estimation is impossible.
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• A Gaussian state is nonclassical if and only if it is squeezed

• Completely characterised by covariance matrix

• 1-mode case: is 𝜌 more nonclassical than 𝜎 if it is more squeezed?

• Surprisingly, reduction in squeezing is
necessary for a        transformation but
not sufficient!

A second constraint is needed:

There is a trade-off between removing
noise and maintaining squeezing
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Gaussian thermal operations (GTO)

P. L.O.
input resource 

state 𝜌

Passive linear optics

thermal ancilla

output state 𝜎

Thermal bath, temperature 𝑇

• Adaptation of finite-dimensional thermal operations framework*

• Passive linear optics: built-in First Law of Thermodynamics

• Gaussian dilations, but all ancillary states thermal at 𝑇

• More restrictive than operations in nonclassicality resource theory

*Brandão et al., Resource Theory of Quantum States Out of Thermal Equilibrium. 

PRL 111, 250404.
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1. Contraction of phase-space displacement: Signal loss
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Laws of Gaussian thermodynamics

3. Deterioration in the displacement signal-to-noise ratio

Quadrature variances can be reduced by Law 2, but loss in signal (Law 1) will 
overpower this

4. More to come…

⟨𝑥⟩

⟨𝑝⟩



Outlook

• Laws of thermodynamics on higher-order quadrature moments

• Quantifying the work cost of squeezing, displacement, etc.

• Gaussian thermal engines

• Beyond Gaussian: more general energy-conserving interactions

• Unified understanding of CV resources



Thanks
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