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Operational ' l Resource states

limitations / operations
Compass—straightedge constructions Quadratrix
Local operations (and variants) Entanglement; quantum channels
Thermalizing channels Non-equilibrium states

Operational
tasks

Squaring circles; trisecting angles
Teleportation; superdense coding
Work extraction; refrigeration; erasure
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Recent work (2017-18):

Tan et al., Quantifying the Coherence between Coherent States. PRL 119, 190405
Theurer et al., Resource Theory of Superposition. PRL 119, 230401

Lami et al., Gaussian quantum resource theories. arXiv:1801.05450

Zhuang et al., Resource theory of non-Gaussian operations. PRA 97, 052317
Takagi and Zhuang, Convex resource theory of non-Gaussianity. PRA 97, 062337

Kwon et al., Nonclassicality of Light as a Quantifiable Resource for Quantum
Metrology. arXiv:1804.09355

Albarelli et al., Resource theory of quantum non-Gaussianity and Wigner negativity.
PRA 98, 052350 (Alessandro Ferraro’s talk at QIPA 2018)
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* Multiple modes with identical harmonic oscillator Hamiltonian
H=(a'a+1,)ho
* Coherent states: |a): « € C such that a|a) = al|a)

* Glauber-Sudarshan representation: p = [.P,(a)|a){a|d*a
Je B (@)d?a = 1, but in general P,(a) £ 0
* “Classical state”: p such that Pp(a) >0

* Nonclassical states: Sub-Poissonian photon statistics, squeezed
states, etc.

* Can be used to create entanglement with linear-optic elements
* Nonclassicality ~ Coherence w.r.t. |a) basis

e But |a) basis is non-orthogonal, overcomplete!
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Can consider different numbers of measurement rounds
For n measurement rounds, the class of operations is denoted 7,
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Phase-space contractions

How does linear optics constrain the manipulation of qguantum states?

* A first result: under P,,, coherent states are transformed as

la) - |Ma + d) plus classical mixtures
(o1, 0m) M| <1 displacement

n modes ,
contraction

* So superpositions can only shrink in phase space
- a “second law for phase-space superpositions”

° eg |a)+[-a) = [ga)+|-ga)
is possible (with any success probability) only for |g| < 1

Well-known measures of nonclassicality fail to reflect this!
[Hillery, PRA 35, 725 (1987); Lee, PRA 44, R2775 (1991)]
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« Definition for a single-mode pure state: V(|¢)) = max (Azg)? - 1/2

By uncertainty relation, V(|¢’)) >0 with equality if and only if [} is classical

Also has correct monotone behaviour:

For a P,, operation taking |¢’) = |¢m.) with probability Pm ,
Y pmV(|om)) <V([9))

Generalises to multiple modes (using covariance matrix of quadratures)
Under P; (measurement but no feed-forward):
Nonclassicality can be concentrated into fewer modes with a limited success

probability

E.g. there is a protocol for “growing” cat states: (|a) + |-a))®? » |V/2a) + |-V2)

Applying this result: success probability <

N |-

Lund et al., PRA 70, 020101 (2004)
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* Extension to mixed states: Convex roof of pure-state measure

Vi(p):= inf > puVi([tn)).
{Pps|vu)} 7
Has desired properties:
» Cannot increase under free operations: monotone
» |Is zero only for classical states: faithful
But not clear how to calculate (even numerically) or to measure!

* Quantum Fisher Information
> QFI F'(p,xg) measures sensitivity of state p to displacements orthogonal to xg
» Central quantity in parameter estimation—sets limit on achievable precision
» We define the quantity

F(p) = max F(p,9) - 1/2
» Lower-bound to the full measure ]}k(p)

» Drawback: not faithful—can fail to detect nonclassicality
» Crucially, also a monotone under P,
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Metrology and linear optics

* Monotonicity results for the QFlI measures imply the following statements:

A performance advantage in sensing quadrature displacements
cannot be gained with P, operations (either deterministically N
or on average in the case of a probabilistic process). ‘

Under P,,, the conversion of a state which is useful for multi-
parameter metrology of displacements, into one which is more
useful for estimating fewer parameters, necessarily has a
limited probability of success.

Under Py (i.e., without measurements), this concentration of
utility for parameter estimation is impossible.
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Nonclassicality of Gaussian states

A Gaussian state is nonclassical if and only if it is squeezed

Completely characterised by covariance matrix

1-mode case: is p more nonclassical than o if it is more squeezed?

/

oL
e Surprisingly, reduction in squeezing is
necessary for a P,, transformation but
not sufficient!
A second constraint is needed:
classical
There is a trade-off between removing 1
5 5 o o 0 2
noise and maintaining squeezing B onclassical
............ N 3 P Nl
0 > vl

b=
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Resource theory of thermal non-equilibrium

Gaussian thermal operations (GTO)

_______________________

Thermal bath, temperature T

* Adaptation of finite-dimensional thermal operations framework*
* Passive linear optics: built-in First Law of Thermodynamics
e Gaussian dilations, but all ancillary states thermal at T

* More restrictive than operations in nonclassicality resource theory

*Brandao et al., Resource Theory of Quantum States Out of Thermal Equilibrium.

PRL 111, 250404.
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4. More to come...



* Laws of thermodynamics on higher-order quadrature moments

Quantifying the work cost of squeezing, displacement, etc.

Gaussian thermal engines

Beyond Gaussian: more general energy-conserving interactions

e Unified understanding of CV resources
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