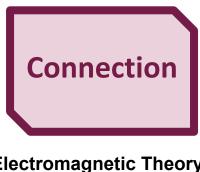
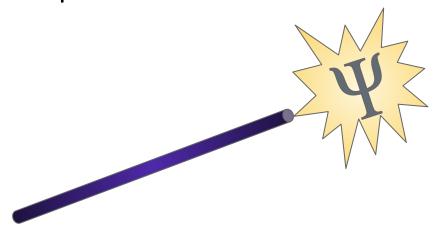
Magic in quantum systems



Chiranjib Mukhopadhyay

Dancing frog See things in the dark

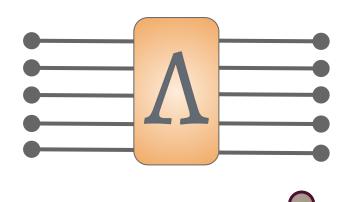

Electromagnetic Theory

- ➤ What is magic ?
- Link with other resources

- How to create magic ?
- Conclusions

Magic (n.)

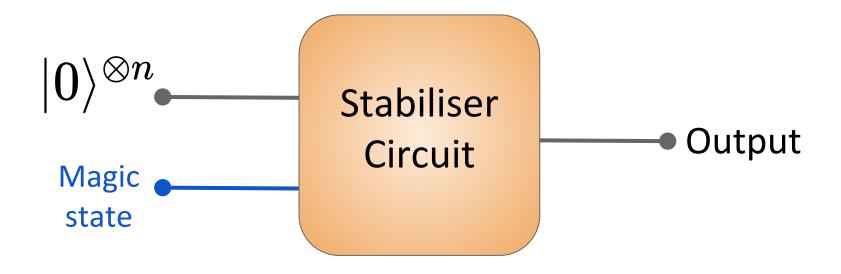
An extraordinary power or influence seemingly from a supernatural source.



What is 'quantum' about quantum computers?

What kind of circuits can you efficiently simulate on a classical computer?

What is 'quantum' about quantum computers?


Entanglement does not imply quantum computation

Gottesman Knill (1998)

Circuits solely consisting of normalizers to the (generalized) Pauli group are classically simulable.

- CNOT
- Hadamard
- Phase gate

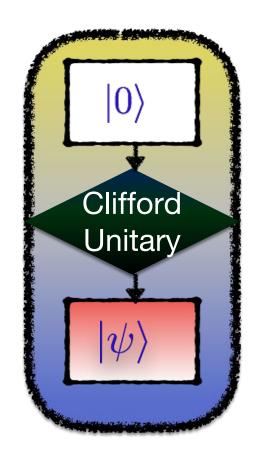
Quantum computing by state injection

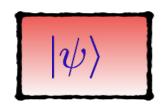
Magic states are the resource for quantum computing

Resource Theory

Resource

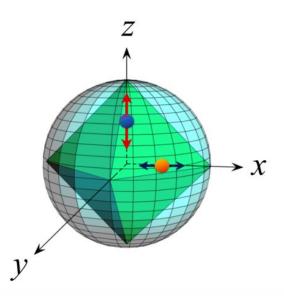
Resource Theory


Free State


Resource Theory

Free operations

What kind of PURE ancilla states are **NOT** helpful?


This family is useless

Pure Stabiliser states

Free states: convex Polytope with d(d+1) vertices in prime power dimensions.

Resource theory of magic states

Free states

Free operations

- ★ Clifford unitaries
- ★ Measurement in computational basis
- ★ Composition with free ancilla
- ★ Partial Trace
- ★ Classical randomness

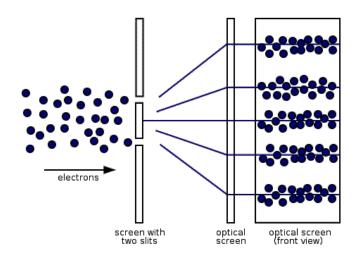
Monotones

$$M(\rho) = \min_{\sigma \in S} S(\rho||\sigma)$$

Relative Entropy of Magic

$$M(\rho) = \min_{\sigma \in S} \left[\xi : \frac{\rho + \xi \sigma}{1 + \xi} \in S \right]$$

Robustness of Magic


Difficult to calculate

Other Quantum Resource Theories and Magic

- What is magic ?
- > Link with other resources

- How to create magic ?
- Conclusions

"Only mystery in quantum mechanics" superposition a.k.a. coherence

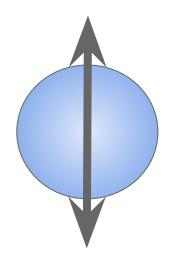
Resource theory of magic states: links with other resources

 Pure Gaussian state if and only if Wigner function is a genuine probability distribution.

Resource theory of magic states: links with other resources

 Pure Gaussian state if and only if Wigner function is a genuine probability distribution.

non-Gaussianity is a resource.


Resource theory of magic states: links with other resources

- Pure odd-dimensional stabilizer state if and only if discrete Wigner function is a genuine probability distribution.
- Keyword : odd dimensions.
- Set of Gaussian states isn't convex.

Entanglement distillation possible using stabilizer codes.

Resource theory of coherence

Resource Theory of Coherence

- \diamond Diagonal states Δ
- Incoherent Operations

$$\Lambda = \{ K_i \} : K_i \Delta K_i^{\dagger} \subseteq \Delta \forall i$$

Question: Is there any link with the resource theory of magic?

Coherence makes quantum systems magical

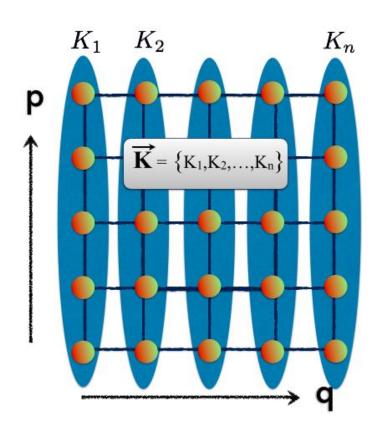
(Contractive) distance

$$R_d(
ho) = \min_{\sigma \in Q} D[
ho, \sigma]$$
Resource

Result - I

$$M_d\left[\Lambda_{IC}(\rho)\right] \le C_d[\rho]$$

Result - II

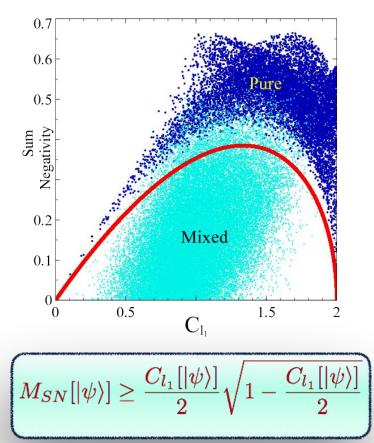

$$\sup_{\Lambda_{IC}} M_d \left[\Lambda_{IC}(
ho) \right]$$
 Coherence monotone

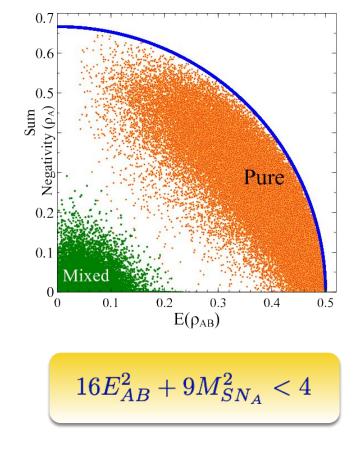
Coherence in a system is equal to the maximal amount of magic you can generate using incoherent operations.

Similar result w/ Entanglement

Streltsov, Singh, Dhar, Bera, Adesso PRL 115 020403 (2015)

Monotones using discrete Wigner function

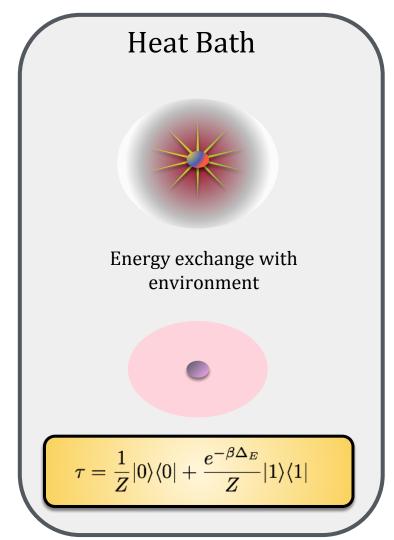



Magic monotone

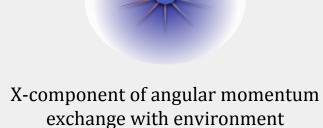
Sum of negative components of (discrete) Wigner

Coherence monotone

$$C_w[
ho] = \min_{\sigma \in \mathcal{I}, \lambda \geq 0} || ec{K}_
ho - \lambda ec{K}_\sigma ||$$


- What is magic ?
- Link with other resources


- How to create magic ?
- Conclusions


Go to Hogwarts!!!

CM - Phys Rev A 98 012102 (2018).

$$au = rac{1}{Z} |+
angle \langle +| + rac{e^{-eta \Delta_L}}{Z} |-
angle \langle -|$$

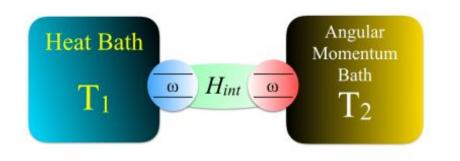
Landauer erasure with no energy cost

Barnett Vaccaro Entropy (2013)

Otto cycle engines and Carnot efficiency

Wright *et al* Phys Rev A (2018)

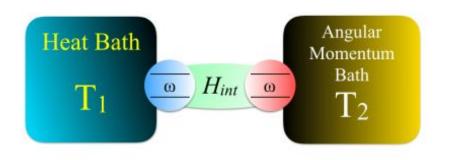
Angular Momentum Bath



X-component of angular momentum exchange with environment

$$\tau = \frac{1}{Z}|+\rangle\langle +| + \frac{e^{-\beta\Delta_L}}{Z}|-\rangle\langle -|$$

Design of the autonomous machine


Generate magic in the blue qubit

$$H = H_1 + H_2 + H_{int}$$

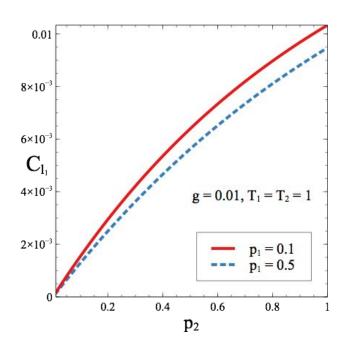
$$\frac{1}{2}\omega_1\sigma_z$$
 $\frac{1}{2}\omega_2\sigma_z$ $g(|01\rangle\langle 10| + h.c.)$

$$g(|01\rangle\langle 10| + h.c.)$$

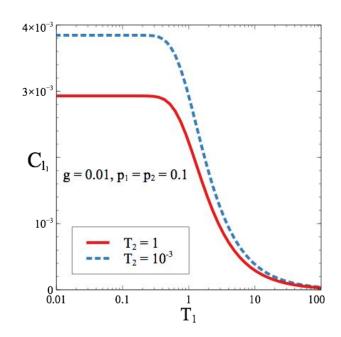
Design of the autonomous machine

Goal

Generate magic in the blue qubit

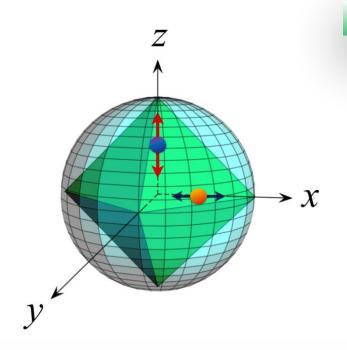

$$\frac{d\rho_{12}(t)}{dt} = -i[H, \rho_{12}] + \sum_{i} p_i \left[\tau_i \otimes Tr_i \rho_{12}(t) - \rho_{12}(t)\right]$$

Simplified Master Equation


Warm up

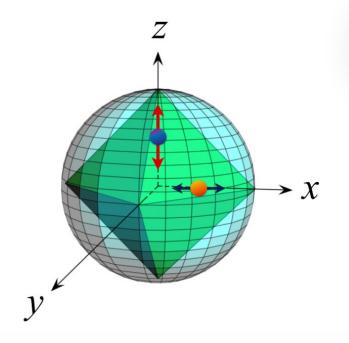
$$C_{l_1} = rac{4gp_2}{\sqrt{(1+4p_1^2)(1+4p_2^2)}} \left| anh \left(rac{1}{2T_1}
ight) anh \left(rac{1}{2T_2}
ight)
ight| + \mathcal{O}(g^2)$$

$$C_{l_1} = rac{4gp_2}{\sqrt{(1+4p_1^2)(1+4p_2^2)}} \left| anh\left(rac{1}{2T_1}
ight) anh\left(rac{1}{2T_2}
ight)
ight| + \mathcal{O}(g^2)$$



$$C_{l_1} = rac{4gp_2}{\sqrt{(1+4p_1^2)(1+4p_2^2)}} \left| anh\left(rac{1}{2T_1}
ight) anh\left(rac{1}{2T_2}
ight)
ight| + \mathcal{O}(g^2)$$

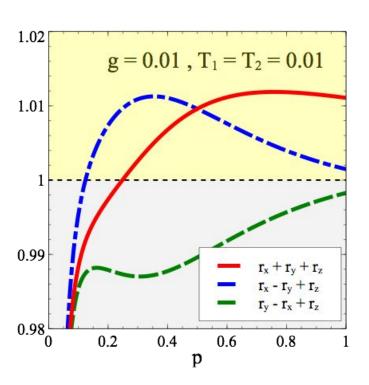
Magic creation in the thermal qubit


Magic creation in the thermal qubit

Stabilizer polytope

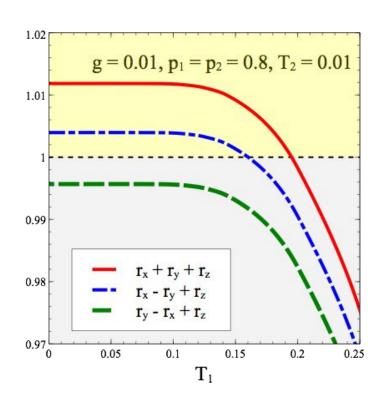
$$-1 \le x \pm y \pm z \le 1$$

Magic creation in the thermal qubit

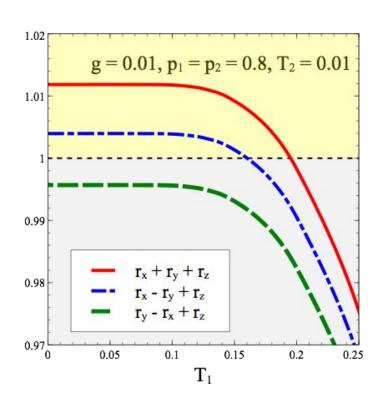


Stabilizer polytope

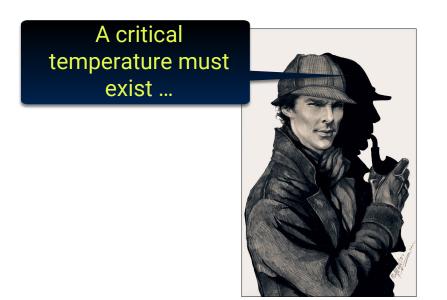
$$-1 \le x \pm y \pm z \le 1$$


Simply dipping in spin-bath won't help

Exact solution for steady state of thermal qubit


Magic Created!

Exact solution for steady state of thermal qubit



But only if the heat bath is **Cold** enough....

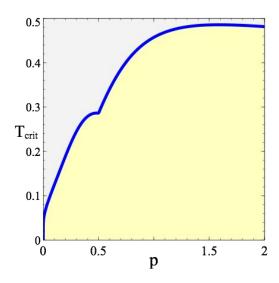
Exact solution for steady state of thermal qubit

But only if the heat bath is **Cold** enough....

Low T₂ limit

$$f_1 = \frac{p(4p^2 + 4p - 1)}{(1 + 4p^2)^2}$$

$$f_2 = \frac{1 + 6p^2 + 24p^4}{p^2(1 + 4p^2)^2}$$


$$g_1 = \frac{p(1+4p-4p^2)}{(1+4p^2)^2}$$

$$h_1 = \frac{p(4p^2 - 4p - 1)}{(1 + 4p^2)^2}$$

$$T_{\text{crit}}^{1} = \frac{1}{\ln\left(1 + \frac{f_2}{2f_1^2}\right)}, T_{\text{crit}}^{2} = \frac{1}{\ln\left(1 + \frac{f_2}{2g_1^2}\right)}, T_{\text{crit}}^{3} = \frac{1}{\ln\left(1 + \frac{f_2}{2h_1^2}\right)}$$

Critical temperature is the maximum of these three

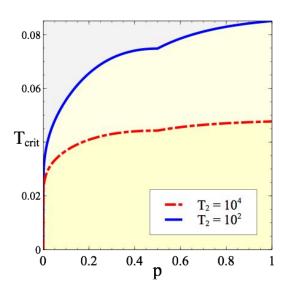
Low T₂ limit

Bath helps...

$$F_1 = \frac{p(4p^2 + 4p - 1)}{T_2(1 + 4p^2)^2}$$

$$F_2 = 1/p^2$$

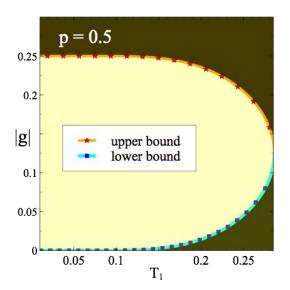
$$G_1 = \frac{p(1+4p-4p^2)}{T_2(1+4p^2)^2}$$

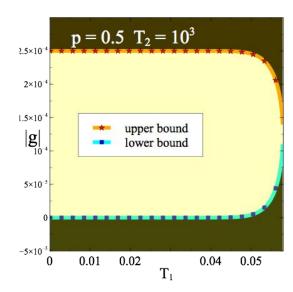

$$H_1 = \frac{p(4p^2 - 4p - 1)}{T_2(1 + 4p^2)^2}$$

High T₂ limit

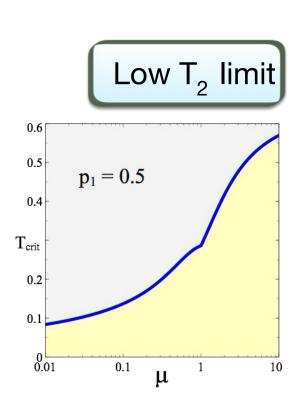
Critical temperature

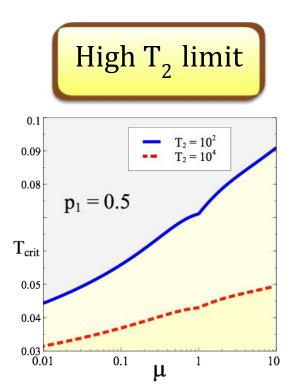
$$T_{\text{crit}} = \max \left[\frac{1}{\ln \left(1 + \frac{F_2}{F_1^2} \right)}, \frac{1}{\ln \left(1 + \frac{F_2}{G_1^2} \right)}, \frac{1}{\ln \left(1 + \frac{F_2}{H_1^2} \right)} \right]$$


High T₂ limit


Less unpolarised spin bath helps...

Even below critical temperature, g must lie in some parameter region


Low T₂ limit



High T₂ limit

Asymmetry between reset probabilities also helps

- What is magic ?
- Link with other resources

- How to create magic ?
- > Conclusions

- → Resource Theories of Stabiliser computation and Coherence are intimately connected.
 - Q: What about connections with other resource theories?
- → You can create magic in qubits using autonomous thermodynamic machines.
 - Q: Can you distill?
- → Magic as a witness of Physical changes?

Hopefully... ongoing work

Thank you