
IBM quantum experience: 
Experimental implementations, scope, and limitations
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Quantum information processors

Initialization
|𝜓〉 =  a|0〉 + b|1〉

Quantum Gates
|𝜓’〉 = UkUK-1…U1|𝜓〉

Measurement
⟨A〉 = ⟨𝜓’|A|𝜓’〉

Quantum information processor (QIP)

Superposition: Makes quantum processors

more capable

than classical computers in certain tasks

DiVincenzo’s criteria

 Nuclear spins: NMR
 Josephson qubits: SQUID (IBM quantum 
computer)
 Photons: Linear optics
 Ion trap
 NV and P vacancy systems: Solid state spins etc.
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Introduction: User platform for IBM  quantum computer

Retrieved from http://www.research.ibm.com/quantum/

http://www.research.ibm.com/quantum/


Schematic diagram of architecture

Retrieved from 
http://www.research.ibm.com/quantum/

http://www.research.ibm.com/quantum/
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Initialization

Entangled state

|𝜓〉= α |0〉+ β |1〉

|𝜓〉= α (|00〉+|11〉)+β (|00〉+|11〉)

|00000〉

0.860

|00001〉

0.140

0.379         0.126              0.118           0.376

|00000〉  |00001〉           |00010〉      |00011〉

α = 0.923, β= 0.383

α = 0.612, β= 0.354

Single qubit state



Quantum Gates

Clifford Gate library

C-NOT

Phase Gate (π/8)

X Y Zid

U1

U2

U3

T T†

Some more physical Gates

|0〉+|1〉/ √2   ----> (|0〉 + ei𝜙|1〉)/ √2 

Pauli GatesHadamard Phase gate (π/2)

(|0〉+|1〉 )/√2  ----> α|0〉+βe(i𝜙)|1〉

here α = cos(𝜆/2)e(i 𝜆/2) , β = sin(𝜆/2)e(-i 𝜆/2) 

Universal 
Gate
library

(Helps in preparation of complex states)

H S S†



Measurement in IBM quantum computer 

Measurement in Z basis 

Measurement in X basis 

Measurement in Y basis 

=

H=

|0〉+|1〉/√2

|0〉

Mz

|1〉

 =     [ 1 + (⟨x〉x + ⟨Y〉y + ⟨Z〉z) ]1
2 

X

H= S†
Y

|0〉-|1〉/√2

|0〉+i|1〉/√2 |0〉-i|1〉/√2

Mz

Mx Mx

My

My

⟨Pi〉 = M1E1+ M2E2

Density matrix 
tomography               
(single qubit)

Z



Some useful control operations

Reverse C-NOT     

Control-P     

=

Control-H     

P

=
P- Pauli Operator
C- Clifford Gate

C† C

=
H



Some more Gates

=

=

Swap Gates 

Toffoli
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Quantum teleportation

Teleporting a m-unknown N qubit state of type                         by using  optimal channel 
size

Measurement by
Alice on her qubits 

|𝜓〉

Single qubit state teleportation

Multi-qubit state teleportation 

Classical 
communication

Application of unitaries
by Bob on his qubit 

|𝜓〉

Reconstructed single qubit state

|𝜓〉 =  ∑iαi|xi〉 where |xi〉 is a basis element of N-qubit basis 

|𝜓〉 =  ∑iαi|xi〉

{Xi}.

|𝜓〉

Arbitrary N qubit state : N pair of Bell state are required

Possibility of optimizing channel size: Size depends on Number of unknowns

Quantum channel |φ+〉

111100011000   Choudhury et al., IJTP (2016): 1-7; 4-qubit cluster state; 

Li et. al, IJTP 55 (2016): 1820-1823 ; Four qubit cluster state;)10101101(01110000(  



Quantum teleportation

Step1:

Example:  Teleporting  an N qubit state with two unknowns.

Step3:

U†
N qubit state with two unknowns!!

Step2:

Standard method for teleporting

a single qubit arbitrary state 

Two Bell states111100011000  

)10101101(01110000(   One Bell states



Quantum teleportation

Circuit for Implementation of protocol on IBM quantum computer
α = 0.612, β= 0.354

|00000〉  |00001〉      |00010〉      |00011〉     

0.386   0.196      0.125        0.293

|00000〉  |00010〉      |00100〉      |00110〉     

0.401       0.156       0.254         0.150

Initial state

|𝜓〉= 0.621(|00〉+0.541|11〉)+0.443 (|01〉-0.354|10〉)

|𝜓〉= 0.633(|00〉+0.387|11〉)+0.395 (|01〉-0.540|10〉)

Reconstructed state



Implementation of reversible circuit on IBM quantum computer

In: 111  0/p: 110

(2) Half adder

(2)

Retrived from: reversible logic benchmark pagehttp://webhome.cs.uvic.ca/dmaslov/

(1) Arithmetic 4:1 reversible multiplexer



Retrived from: Reversible logic benchmark page, http://webhome.cs.uvic.ca/dmaslov/

(1) Hamming optimal coding function

(2) To find primes upto 3 binary digits

Implementation of reversible circuit on IBM quantum computer

(1) (2)



A simple code for detecting bit-flip error

Error correction

α|000〉+ β|111〉 |0〉a1|0〉a2

α|100〉+ β |011〉 |0〉a1|0〉a2

α|100〉+ β|011〉 |1〉a1|0〉a2

α|100〉+ β|011〉) |10〉a

α|0〉+ β|1〉 |00〉 |0〉a1|0〉a2

1

3

4

2

|𝜓〉= α |0〉+ β |1〉

|0〉

|0〉

|0〉

|0〉

Correction

Measure

2

1

3

Elements of quantum information and quantum communication, 
Anirban Pathak, Taylor & Francis (2013).

S qubit 1 S qubit 2 S qubit 3 A1 A2

F N N F N

N F N F F

N N F N F

X



|𝜓〉= α |0〉+ β |1〉

|0〉

|0〉

|0〉

|0〉

C
o

rrectio
n

Measure

3

1

4

A simple code for detecting phase-flip error

Error correction

H

H

H

H

H

H

2

3 4

α|+ + +〉 + β |- - -〉 |0〉a1|0〉a2

2

α|000〉 + β|111〉

H
123

α |- + +〉 + β |+ - -〉 |0〉a1|0〉a2

α |100〉 + β |011〉 |0〉a1|0〉a2

α |100〉 + β |011〉 |10〉a

H
123

Elements of quantum information and quantum communication, 
Anirban Pathak, Taylor & Francis (2013)

X

Phase flip error can be encoded in
diagonal basis as bit flip error.



IBM experiment for detecting bit-flip error

|10000〉

0.505

|10001〉

0.495

Bit flip detected 
and corrected!!

Error correction
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Example: Fredkin gate

Limitations and scope

 Decoherence and Gate errors: T1, T2 relaxation times are very short compare to already
reported qubit systems in same architecture. A brief detail is following. 

Low fidelity of gates:  0.965 for C-NOT

 Unavailability of all coupled qubits: Restricts direct application of C-NOT gate between
arbitrary qubits.  

 Swap operations: This limitation can be handled up to an extent
only if circuit to be implemented has less complexity. Otherwise 
results in a drastic loss of fidelity.



Results

 Restricted number of gates: Currently we can not apply more than forty gates in each line.
 Dead end after measurement: Limits feed back applications.
 Unavailability of shaped pulses. 

 It provides a decent platform for application of various QIP tasks on small scale registers and 
hence provides a chance to test theoretical models.

 Its open access to the young minds will speed-up evolution of quantum technologies.   

Limitations and scope



Entanglement assisted metrology

Detecting state of single spin with the help of an ensemble of spins.

X

|00000〉 

|11001〉 

P. Cappellaro et al., PRL, 2005



To all of you for your attention and time.

Group members and project collaborators

Principal investigator


