(You Qu)- 2017

IBM quantum experience: Experimental implementations, scope, and limitations

Abhishek Shukla

Jaypee institute of information technology, Noida, India

Quantum information processors

Introduction: User platform for IBM quantum computer

Schematic diagram of architecture

Q0	Q1	Q2	Q3	Q4
<i>f</i> : 5.27 GHz	<i>f</i> : 5.21 GHz	<i>f</i> : 5.03 GHz	<i>f</i> : 5.30 GHz	<i>f</i> : 5.06 GHz
T_1 : 44.3 $\mu \mathrm{s}$	T_1 : 31.6 $\mu \mathrm{s}$	T_1 : 41.3 $\mu \mathrm{s}$	T_1 : 46.1 $\mu { m s}$	T_1 : 63.7 μ s
T_2 : 28.9 μs	T_2 : 31 μ s	T_2 : 59.8 μs	T_2 : 56.8 μs	T ₂ : 132.5 μs

Retrieved from

http://www.research.ibm.com/quantum/

Measurement in IBM quantum computer

Some useful control operations

Some more Gates

Swap Gates

=

Single qubit state teleportation

Reconstructed single qubit state

Multi-qubit state teleportation

 $|\psi\rangle = \sum_{i} \alpha_{i} |x_{i}\rangle$ where $|x_{i}\rangle$ is a basis element of N-qubit basis $\{X_{i}\}$.

Arbitrary N qubit state : N pair of Bell state are required

Possibility of optimizing channel size: Size depends on Number of unknowns

Teleporting a m-unknown N qubit state of type $|\psi\rangle = \sum_i \alpha_i |x_i\rangle$ by using optimal channel

size

 $|\psi\rangle$

 $\alpha |000\rangle + \beta |011\rangle + \gamma |100\rangle + \delta |111\rangle$ Choudhury et al., IJTP (2016): 1-7; 4-qubit cluster state;

 $\alpha(|0000\rangle + |0111\rangle + \beta(|1101\rangle + |1010\rangle)$ Li et. al, IJTP 55 (2016): 1820-1823 ; Four qubit cluster state;

Quantum teleportation

Example: Teleporting an N qubit state with two unknowns.

Step1:

$$|\psi\rangle = \alpha |x_i\rangle + \beta |x_j\rangle$$

$$U = \sum_{i=1}^{N} |y_i\rangle \langle x_j|$$

$$|\psi'\rangle = \alpha |y_i\rangle + \beta |y_j\rangle$$

$$y_i = |0\rangle^{n-1} \otimes |0\rangle$$

$$y_j = |0\rangle^{n-1} \otimes |\overline{0}\rangle$$

$$y_i = |0\rangle^{n-1} \otimes |\overline{0}\rangle$$

$$y_j = |0\rangle^{n-1} \otimes |\overline{0}\rangle$$
Step3:

$$|\psi'\rangle$$

$$U = \sum_{i=1}^{N} |y_i\rangle \langle x_i|$$

$$|\psi'\rangle$$

$$U^{\dagger}$$

$$|\psi\rangle$$
N qubit state with two unknowns!!

$$\alpha |000\rangle + \beta |011\rangle + \gamma |100\rangle + \delta |111\rangle$$
Two Bell states

$$\alpha |000\rangle + |0111\rangle + \beta (|110\rangle + |1010\rangle)$$
One Bell states

 $|\psi\rangle = 0.633(|00\rangle + 0.387|11\rangle) + 0.395(|01\rangle - 0.540|10\rangle)$

Quantum teleportation

Implementation of reversible circuit on IBM quantum computer

Retrived from: reversible logic benchmark pagehttp://webhome.cs.uvic.ca/dmaslov/

Implementation of reversible circuit on IBM quantum computer

(1) Hamming optimal coding function

Retrived from: Reversible logic benchmark page, http://webhome.cs.uvic.ca/dmaslov/

Error correction

Anirban Pathak, Taylor & Francis (2013).

Error correction

Elements of quantum information and quantum communication, Anirban Pathak, Taylor & Francis (2013)

Error correction

IBM experiment for detecting bit-flip error

Decoherence and Gate errors: T1, T2 relaxation times are very short compare to already reported qubit systems in same architecture. A brief detail is following. Low fidelity of gates: 0.965 for C-NOT

- Unavailability of all coupled qubits: Restricts direct application of C-NOT gate between arbitrary qubits.
- Swap operations: This limitation can be handled up to an extent only if circuit to be implemented has less complexity. Otherwise results in a drastic loss of fidelity.

Example: Fredkin gate

Limitations and scope

Limitations and scope

Restricted number of gates: Currently we can not apply more than forty gates in each line.

- Dead end after measurement: Limits feed back applications.
- Unavailability of shaped pulses.
- It provides a decent platform for application of various QIP tasks on small scale registers and hence provides a chance to test theoretical models.
- Its open access to the young minds will speed-up evolution of quantum technologies.

Entanglement assisted metrology

Group members and project collaborators

To all of you for your attention and time.