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The steering scheme

The concept of quantum steering was introduced by Schrödinger in
1935 as a generalization of EPR paradox.

Alice and Bob have locally access to subsystems of a bipartite
system described by a quantum state ρ. Alice chooses one of her
settings x ∈ {1, . . . ,N}, measures a nondegenerate observable Ax

with eigenvectors {ϕa
x} and receives a result a ∈ {1, . . . , d} with

probability p(a|x) = Tr{(|ϕa
x〉 〈ϕa

x | ⊗ I )ρ}. Only after Alice has
collected the result a, the following conditional state

σa
x = TrA{(|ϕa

x〉 〈ϕa
x | ⊗ I )ρ} (1)

was “created at a distance” at Bob’s location.
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Why is it important?

Violation of steering inequalities has been confirmed in numerous
experimental demonstrations involving a single photon, a two-photon
singlet or a Werner state
Since quantum steering can be formulated as a quantum-information
task where the classical measurements simulate an untrusted device,
it has been extended to a multipartite scenario useful for
semi-device-independent entanglement certification in quantum
networks
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Comparison of LHS and LHV models

∃ρspl 9 Steering (i.e. admits LHS model)

∃ρspl → Steering (i.e. does not admit LHS model)
9 Bell nonlocality ( admits LHV model)

LHS → LHV
LHV 9 LHS

∃ρspl → Steerable from A → B
B 9 A
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Mathematical setup

We consider the following steering scenario (Pussey 2013)
Suppose there are two observers: Alice and Bob.
Alice can choose among n different measurement settings labeled by
x = 1, . . . , n. Each of them can result in one of m outcomes, labeled
by a = 1, . . . ,m.
HB is the local Hilbert space for Bob, dimHB = d .
The available data are the steered states:

σa
x ∈ B(HB), x = 1, . . . , n, a = 1, . . . ,m

Positivity: σa
x ≥ 0

Non-signaling: Tr
(

m∑
a=1

σa
x

)
= 1 for any x

The set σ = {σa
x : x = 1, . . . , n, a = 1, . . . ,m} is called an

assemblage. The set of all assemblages is denoted by Q.
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Mathematical setup

Schrödinger 1936; Hughston, Jozsa, Wootters 1993:
Any assemblage σ has a quantum realization, i.e. it can be
generated remotely, by performing measurements on a subsystem of
bipartite quantum states.
More precisely: for any σ there are

a Hilbert space HA,
a density matrix ρ ∈ B(HA ⊗HB)
a POVM measurements {E a

x : a = 1, . . . ,m} on HA for x = 1, . . . , n

such that
σa
x = TrA ((E a

x ⊗ 1l)ρ)
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Mathematical setup

The assemblage has a local hidden state (LHS) model, if there are:
a finite set of indices Λ,
nonnegative coefficients qλ such that

∑
λ qλ = 1,

density matrices σλ in B(HB) for λ ∈ Λ,
probability distributions {pλ(a|x)}a for every x and λ

such that
σa
x =

∑
λ∈Λ

qλpλ(a|x)σλ,

for every x , a. We denote the set of LHS assemblages by L.

Suppose we make a choice of measurement x to perform on Alice
system (A), and obtain an outcome a. Denote the steered state for
Bob system (B) by σa

x . Then if the measurement on A simply
reveals information about parameter λ that determines which state
σλ applies to B, then we have:

σa
x =

∑
λ∈Λ

qλpλ(a|x)σλ, (2)

where pλ(a|x) is the probability of obtaining the outcome a from
measurement x when the parameter is λ.



The concept of quantum steering Mathematical formulation of quantum steering problem How to solve the problem Conclusions

Mathematical setup

We can use steering inequalities to study the difference between
the two sets L and Q. (Cavalcanti at al. 2009)
Let F : Q 7→ R be a function.

SLHS(F ) = sup{F (σ) : σ ∈ L}.

Steering inequality: F ≤ SLHS.
Let

SQ(F ) = sup{F (σ) : σ ∈ Q}

If SQ(F ) > SLHS(F ) then we say that the steering inequality is
nontrivial, i.e. it can be violated by some entangled states (Pusey
2013)



The concept of quantum steering Mathematical formulation of quantum steering problem How to solve the problem Conclusions

Mathematical setup

We will consider only linear functions F . Namely, F is a steering
functional if it is of the form

F (σ) = Tr

(∑
x,a

F a
x σ

a
x

)

for some set {F a
x : x = 1, . . . , n, a = 1, . . . ,m} of real d × d real

matrices.
Quantum violation of F :

V (F ) =
SQ (F )

SLHS (F )
.

We say that it is unbounded if the ratio V between the quantum
and classical value of the steering functional is an increasing function
of some experimental parameters, for example of the amount of
entanglement in ρ or of a number and characteristics of the
measured observables.
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Mathematical setup

A steering functional with large violation, will tell us the sets L and
Q are prominently different.
For given Bell or steering functional, it is difficult to calculate its
violation.
Operator space approach (MHY 2015r):
For n = m = d consider

F a
x =

1
d

d∑
k=1

εkx,a |1 〉〈 k | , x , a = 1, · · · , d ,

where εkx,a, x , a, k = 1, · · · , d are independent Bernoulli random
variables. Then

V (F ) = O

(√
d

log d

)
with high probability.
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Mathematical setup

Algebraic approach (RHMY 2015)
Let us study a steering functional constructed by means of mutually
unbiased bases (MUBs). Let M1 = {|φa1〉 : a = 1, . . . , d} and M2
= {|φa2〉 : a = 1, . . . , d} be orthonormal bases in the d−dimensional
Hilbert space. Then they are said to be mutually unbiased if∣∣〈φa1|φb2〉∣∣ = 1√

d
for all a, b = 1, . . . , d . A set

M = {Mx : x = 1, . . . , n} of orthonormal bases of Cd is said to be a
set of mutually unbiased bases (MUBs), if Mx and My are mutually
unbiased for every x 6= y .

V (F ) ≥ n
√
d

n + 1 +
√
d
. (3)

If the dimension d is an integer power of a prime number, then we
can always find d + 1 MUBs. In this case n = d + 1; hence, we can
find a steering functional F , with violation Ω(

√
d).
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Mathematical setup

Clifford observables Ax (RHMY 2015)

F 1
x =

1
2
Ax , F 2

x = −1
2
Ax , x = 1, · · · , n. (4)

it has been shown

V (F ) ≥
√

n

2
. (5)

SDP (SK 2016) They have shown, that the problem of calculate of
steering inequality can be express as an instance of a semidefinite
program, and using the duality theory they found upper bound of
SSLH :

α = max
x,x′>a,a′

√
tr(Πa|xΠa′|x′ = cos(θ)

i.e the maximal inner product between any two measurement.

SSLH ≤ 1 + (n − 1) cos(θ)

Thus, any assemblage which obtains a value greater that this value
demonstrates steering.
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Theorem

Theorem. Given a quantum steering scenario involving x ∈ {1, . . . ,N} settings,
a ∈ {1, . . . , d} outcomes, and a set of N orthonormal eingenbases {φax} defining the
receiver’s (Bob’s) measurements, the LHS steering functional is bounded from above

SLHS ≤ 1 +

N−1∑
i=1

Ci , (6)

where Ci = maxx Cx N+x−i and Cxy = maxa,b | 〈φax |φby 〉 | for x , y ∈ 1, . . . ,N is defined
as in the Maassen–Uffink uncertainty relations. This implies:

VQ ≥
N

1 +
∑N−1

i=1 Ci

. (7)

In particular, a weaker bound can be derived:

VQ ≥
N

1 + (N − 1)C
(8)

with C = maxi Ci = maxx 6=y Cxy .
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Theorem

First, we will compute the quantum value SQ(F ) for the steering
functional F defined as a set
F = {|φax 〉〈φax | : a = 1, . . . , d , x = 1, . . . ,N}. In our case it is enough to
show that SQ

(
F
)
≤ N, where N is the number of bases

S(F ) = Tr

{
N∑

x=1

d∑
a=1

|φax〉 〈φax |σa
x

}
≤ Tr

{
N∑

x=1

d∑
a=1

|φax〉 〈φax |
∑
a′

σa′

x

}

= Tr

{
N∑

x=1

d∑
a=1

|φax〉 〈φax | ρx

}
(9)

=
N∑

x=1

d∑
a=1

px(a|x)︸ ︷︷ ︸
=1

= N

⇓
SQ ≤ N. (10)
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Theorem

On the other hand, let us choose the assemblage of the form
σa
x = 1

d |φ
a
x〉〈φax |. By direct calculations one can obtain S(F ) = n, what

means that
SQ (F ) ≥ n. (11)

Comparing these results we get

SQ (F ) = n. (12)
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Theorem

Second, we will describe a general method of computation of the classical
bound SLHS

(
|φax〉 〈φax |

)
. Let σa

x =
∑
λ qλ pλ(x |a)σλ. Then, the following

inequality holds

Tr

{
N∑

x=1

d∑
a=1

|φax〉 〈φax |σa
x

}
=

N∑
x=1

d∑
a=1

Tr

{
|φax〉 〈φax |

∑
λ

qλ pλ(a|x)σλ

}

=
∑
λ

qλ

N∑
x=1

d∑
a=1

Tr
{
|φax〉 〈φax | pλ(a|x)σλ

}
≤ sup

λ

∥∥∥∥∥
N∑

x=1

d∑
a=1

|ψa
x,λ〉 〈ψa

x,λ|

∥∥∥∥∥ , (13)

where |ψa
x,λ〉 =

√
pλ(a|x) |φax〉. For any λ, let

Gλ =
∑N

x,y=1
∑d

a,b=1 〈ψa
x,λ|ψb

y ,λ〉 |x〉 〈y | ⊗ |a〉 〈b|. Using the purification
of
∑N

x=1
∑d

a=1 |ψa
x,λ〉 〈ψa

x,λ| and its Schmidt decomposition, we can show
that ∥∥∥∥∥

N∑
x=1

d∑
a=1

|ψa
x,λ〉 〈ψa

x,λ|

∥∥∥∥∥ = ‖Gλ‖ . (14)
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Theorem

In further considerations we will omit the index λ. Let us define the shift
operator S : CN → CN acts on the bases vectors in the following way:

S |k〉 = |k + 1〉 modN, (15)

and observe that
∑N

i=1 S
i = I – every element of I is equal to 1. We

decompose G in the following way

G =
N∑

x,y=1

|x〉 〈y | ⊗ Gxy =
N∑
i=1

Ai , (16)

where
Ai =

∑
(x,y)∈Si

|x〉 〈y | ⊗ Gxy , (17)

and the set Si =
{

(x , y) : S i
xy = 1

}
. Next, we use the following fact

‖G‖ ≤
N∑
i=1

‖Ai‖ . (18)

Hence, in order to estimate the norm of G we have to estimate the norm
of Ai . This is just the maximal singular value of Ai or, equivalently, the
maximal eigenvalue of AiA

†
i , squared.
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Theorem

Since this operator is block diagonal (S i are permutation operators), we
have to calculate the maximal singular value of Gxy , taking into account
the proper index of i . To this end, let us estimate this singular value of
Gxy , which possess the following general form

Gxy =
d∑

a,b=1

αab
xye

iψab
xy

√
p(a|x) p(b|y) |a〉 〈b| , (19)

where αab
xye

iψab
xy =

〈
φax |φby

〉
and αab

xy =
∣∣〈φax |φby〉∣∣ while ψab

xy are phases for
given indices a, b, x and y . This results in

GxyG
†
xy =

d∑
a,b,a′,b′=1

αab
xyα

a′b′
xy e i

(
ψab
xy−ψ

a′b′
xy

)√
p(a|x) p(b|y) p(a′|x) p(b′|y) |a〉 〈b| |b′〉 〈a′|

=
d∑

a,b,a′=1

αab
xyα

a′b
xy e i

(
ψab
xy−ψ

a′b
xy

)
p(b|y)

√
p(a|x) p(a′|x) |a〉 〈a′| . (20)



The concept of quantum steering Mathematical formulation of quantum steering problem How to solve the problem Conclusions

Theorem

Here we use the fact that GxyG
†
xy ≥ 0. This means that

Tr
{
GxyG

†
xy

}
=
∑d

j=1 λ
j
xy , where λjxy are eigenvalues of GxyG

†
xy . Let us

denote the maximal eigenvalue as λmax
xy = maxj

{
λjxy
}
. From (20) we

obtain the maximal singular value of Gxy , σmax
xy

(
σmax
xy

)2
= λmax

xy ≤
d∑

i=1

λixy = Tr
{
GxyG

†
xy

}

= Tr


d∑

a,b,a′=1

αab
xyα

a′b
xy e i

(
ψab

xy−ψ
a′b
xy

)
pby

√
paxp

a′
x |a〉 〈a′|


=

d∑
a,b=1

(
αab
xy

)2
pbyp

a
x ≤

d∑
a,b=1

(
αmax
xy

)2
pbyp

a
x =

(
αmax
xy

)2
.

(21)
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Theorem

Therefore, in order to estimate the norm of G we must calculate the
maximal absolute value of the overlap between vectors αmax

xy of the basis
given by the number x , y . Then, the norm

‖G‖ ≤
N∑
i=1

Ci , (22)

where Ci = αmax
i = maxx,y

{
αmax
xy : (x , y) ∈ Si

}
(Ci is just Mussen-Uffink

value for each i ). Let us observe that for x = y it is just identity
transformation between these two bases (it corresponds to the case
i = N) hence αmax

N = 1 and

SLHS ≤ ‖G‖ ≤
N∑
i=1

Ci ≤ 1 +
N−1∑
i=1

Ci . (23)

Finally, the violation of the steering inequality

VQ ≥
N

1 +
∑N−1

i=1 Ci

, (24)
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Compare with knowing results

Random functional
MUB’s
Clifford observables
The case of Cavalcanti and Skrzypczyk (SDP 2016)
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Application

We now would like to turn our abstract mathematical result into a
form which could be tested in a laboratory. Let us consider the
source of independent pairs of photons entangled in their
polarizations i.e. many copies of singlet states: |Ψ〉 = |ψ−〉⊗k . We
assume a single pair fidelity F < 1 and let us take into account the
efficiency of detectors η at Alice side, and let us assume the relaxed
MUB condition C ≤

√
dε−1. In this case the local dimension of the

Hilbert space is d = 2k and we take the number of setting growing
slower that dimension, N = d1−σ , 0 ≤ σ < 1. This leads to the

ratio V η
Q =

(21−σηF)k

1+(2k−1−1)2
ε−1
2 k

which leads to an unbounded violation if

only ε+ 2σ < 1 + 2 log2(ηF ) . It is remarkable that for any fidelity
and efficiency satisfying ηF > 1√

2
exist ε such that the unbounded in

fact exponential in the number k of the entangled pairs, violation is
possible.
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Application

Figure: Here we illustrate the dependence of the the parameter VQ illustrating
violation of the steering inequality on the number k of the qubit pairs involved
and the relaxed MUB parameter ε. The fidelity has been choosen F = 0.98 and
the detector efficiency η = 0.95
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Application

Figure: Quantum violation V η
Q of steering inequality computed for relaxed MUB

with ε = 0.2, F = 0.98 and different values of efficiency η.
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Application

Now we will employ a quantum-optical scheme based on a
parametric-down-conversion source, generating polarization
entangled squeezed vacuum states. Their quantum correlations
posses the same rotational invariance as a usual two-photon
polarization singlet and can be seen as two copies of approximate
original EPR correlations. Using the same key feature and
implementing the relaxed MUBs by simple polarization rotations, we
will show that entangled squeezed vacuum states lead to unbounded
violation of our steering inequality.
Entangled squeezed vacuum is a superposition of 2d-photon
polarization Bell-singlet states |ψd〉 = 1√

d+1
(a†Hb

†
V − a†V b

†
H)d |0〉 with

a probability amplitude λd , |Ψ〉 =
∑∞

d=0 λd |ψd〉, where a† (b†) is
creation operator for a spatial mode a (b) and H (V ) denotes
horizontal (vertical) polarization. Perfect correlations present in each
multi-particle polarization singlet are manifested by equal photon
numbers in orthogonal polarizations in the spatial modes:

|ψd〉 =
1√

d + 1

d∑
m=0

(−1)m |mH , (d −m)V 〉a |(d −m)H ,mV 〉b .

(25)
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Application

Proposition. Given a set of N Bob’s measurement bases
{|φmx 〉} := {|φm(θx)〉} with m = 0, . . . , d and x = 1, . . . ,N, defined by
some set of angles 0 ≤ θx < π

2 , the maximal overlap
C = maxx,y ,a,b |〈φax |φby 〉| equals the maximal overlap between {|φm(0)〉}
and {|φm(θ)〉} with θ = minx,y

∣∣θx − θy ∣∣:
C (θ, d) = max

m,n

∣∣〈φn(0)|φm(θ)〉
∣∣ =

=

√(
d

qθ,d

)
(cos θ)d(tan θ)qθ,d (26)

where qθ,d := bd sin2 θ − cos2 θc+ 1 and b. . . c denotes the floor
function. C (θ, d) goes to zero as fast as 1/ 4

√
d .
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Application

Including experimental imperfections in their simplest form, we assume equal
efficiency η for all the detectors (two at Bob’s and two at Alice’s). For the
multi-particle Bell-singlet states (25) this modifies the quantum value of the

steering functional to ηdSQ and condition (8) to V ηQ ≥
ηdN(d)

1 + (N(d)− 1)C(θ, d)
.

Figure: Quantum violation V ηQ of steering inequality computed for relaxed MUB with
ε = 0.2, F = 0.98 and different values of efficiency η.
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We have provided the sufficient condition for unbounded violation of
steering inequalities
This is the first quantum steering inequality which is formulated in
an error-tolerant way
Violation of this inequality with multi-particle quantum correlations
seems feasible:
applied to multiple copies of a singlet state may enable violation of
order of O(

√
d).

multi-particle bipartite steering based on polarization entangled
squeezed vacuum allows violation of order of O( 4

√
d)

what is necessary condition?
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Thanks for Your attention
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