
New Bell inequalities for three-qubit pure states

arXiv:1611.09916

Arpan Das

IOP, Bhubaneswar

February 27, 2017



Introduction : Nonlocality and Entanglement

I Certain correlations in Quantum Mechanics are not compatible
with local-realistic theory, first shown by John Bell1; those
correlations must violate a inequality – Bell inequality.

I Gisin’s theorem2 tells us that all pure bipartite entangled
states violate the CHSH inequality3. But, the violation of Bell
inequality is only sufficient criteria for certifying entanglement
but not a necessary one even for the case of two qubit states.
Example : Werner state.

I Unlike pure bipartite case, the relationship between
entanglement and nonlocality is not simple even for pure
multipartite states. Using Hardy’s argument it was shown that
all pure entangled states violate a single Bell inequality 4.

1J. S. Bell, Physics, 1 (1964) 195
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Tripartite Entanglement and Nonlocality

I A state |ψ〉 is a pure separable or product state if it can be
written in the form |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉, a pure biseparable
state if it can be written as |ψ1〉 ⊗ |ψ23〉 or in other
permutations and is genuinely entangled if it cannot be
written in a product form.

I Idea of non-separability according to Bell locality comes from
the inability of construction of a LHV model for observed
correlations. If the joint probability can be written as,
P(a1a2a3|A1A2A3) =

∫
dλρ(λ)Pλ(a1|A1)Pλ(a2|A2)Pλ(a3|A3),

then the model is called the well known LHV model. The
intermediate case is the hybrid local-nonlocal model, first
considered by Svetlichny5. And the last situation is genuine
tripartite nonlocality, where three particles are allowed to
share arbitrary correlations.
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Multipartite Bell inequalities

I Violation of MABK inequalities6 gives sufficient criteria to
distinguish separable states from entangled ones. But it is not
a necessary condition as |ψ〉 = cosα |0...0〉+ sinα |1...1〉
would not violate MABK inequalities7 for sin 2α ≤ 1/

√
2N−1.

I A class of states (generalized GHZ states within a specified
parameter range for odd number of qubits)8 do not violate
any correlation Bell inequalities, WWŻB inequalities.9

6N. D. Mermin, Phys. Rev. Lett., 65 (1990) 1838; M. Ardehali, Phys. Rev.
A, 46 (1992) 5375; A. V. Belinskii, D. N. Klyshko, Phys. Usp., 36 (1993) 653.

7V. Scarani and N. Gisin, J. Phys. A, 34 (2001) 6043.



Multipartite Bell inequalities

I Violation of MABK inequalities6 gives sufficient criteria to
distinguish separable states from entangled ones. But it is not
a necessary condition as |ψ〉 = cosα |0...0〉+ sinα |1...1〉
would not violate MABK inequalities7 for sin 2α ≤ 1/

√
2N−1.

I A class of states (generalized GHZ states within a specified
parameter range for odd number of qubits)8 do not violate
any correlation Bell inequalities, WWŻB inequalities.9
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Distinguishing Entangled states

I In general, it is very difficult to discriminate between
biseparable and genuinely entangled states. MABK
inequalities give sufficient condition to distinguish them10.

I They can not discriminate between the correlations due to
tripartite genuine entanglement, local-nonlocal hybrid model
and genuine tripartite nonlocality11 .

I Svetlichny’s inequality12 holds for three-particle local-nonlocal
hybrid model and its violation guarantees the presence of
tripartite genuine nonlocality. But, some tripartite genuinely
entangled states do not violate Svetlichnys inequality13.

I By a strictly weaker definition of genuine tripartite
nonlocality14, it was conjectured that genuine tripartite
entanglement and genuinely tripartite nonlocality are same.

10M. Seevinck and J. Uffink, Phys. Rev. A, 65 (2002) 012107
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New inequalities : Context

I We introduce a new set of twelve Bell inequalities, such that if
one or more violations from the set is obtained for a three
qubit state then the state is entangled. Each inequalities
within the set is violated by all generalized GHZ states, though
they don’t always violate MABK or WWZB inequalities.

I Our set inequalities can always distinguish between separable,
biseparable and genuinely entangled three qubit pure states
from the pattern of their violations.

I Numerically we have got evidence that any three qubit pure
state will violate atleast one Bell inequality from the set. This
may extend the Gisin’s theorem without invoking Hardy’s
argument.
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List of Bell inequalities

A2B1(C1 + C2) + B2(C1 − C2) ≤ 2, (1)

B1(C1 + C2) + A1B2(C1 − C2) ≤ 2, (2)

A2B1(C1 + C2) + A1(C1 − C2) ≤ 2, (3)

A2(C1 + C2) + A1B2(C1 − C2) ≤ 2, (4)

(B1 + B2)C2 + A2(B1 − B2)C1 ≤ 2, (5)

A1(B1 + B2)C2 + (B1 − B2)C1 ≤ 2, (6)

A1(B1 + B2) + A2(B1 − B2)C1 ≤ 2, (7)

A1(B1 + B2)C2 + A2(B1 − B2) ≤ 2, (8)

(A1 + A2)B2 + (A1 − A2)B1C2 ≤ 2, (9)

(A1 + A2)B2C1 + (A1 − A2)B1 ≤ 2, (10)

(A1 + A2)C1 + (A1 − A2)B1C2 ≤ 2, (11)

(A1 + A2)B2C1 + (A1 − A2)C2 ≤ 2. (12)



Motivation behind the inequalities

I To motivate these inequalities, our starting point is CHSH
inequality: A1B1 + A1B2 + A2B1 − A2B2 ≤ 2. From
Tsirelson’s bound 15, maximum value this operator can
achieve for quantum states is 2

√
2. This value is achieved for

the maximally entangled states - Bell states.

I For a suitable measurements choice : A1 = σx , A2 = σz ,
B1 = 1/

√
2(σx + σz) and B2 = 1/

√
2(σx − σz), the CHSH

operator takes the form
√

2(σx ⊗ σx + σz ⊗ σz), with |φ+〉 as
its eigenstate with eigenvalue 2

√
216.

I Now, we want to construct an operator for three-qubit pure
states such that, the GHZ state of three qubits will be the
eigenstate of this operator with highest eigenvalue.

I The GHZ state, 1√
2

(|000〉+ |111〉), is the eigenstate of the

operator
√

2(σx ⊗σx ⊗σx +σz ⊗σz ⊗ I ) with eigenvalue 2
√

2.

15B. S. Tsirelson, Lett. Math. Phys., 4 (1980) 93.
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Motivation behind the inequalities (contd.)

I Above form of the operator suggests that we need to make
only one measurement on one of the qubits. From this
operator, we can construct a simple Bell inequality.

I Also from previous discussion, it is clear that to obtain
violations for all pure entangled states, correlation Bell
inequalities are not enough. So, it seems that non-correlation
Bell inequalities may work.

I A general state need not have any symmetry. So, we have to
consider a set of Bell inequalities instead of one, such that one
measurement is done on either Alice or Bob or Charlie. The
one measurement by one of the parties is necessary.



Motivation behind the inequalities (contd.)

I Above form of the operator suggests that we need to make
only one measurement on one of the qubits. From this
operator, we can construct a simple Bell inequality.

I Also from previous discussion, it is clear that to obtain
violations for all pure entangled states, correlation Bell
inequalities are not enough. So, it seems that non-correlation
Bell inequalities may work.

I A general state need not have any symmetry. So, we have to
consider a set of Bell inequalities instead of one, such that one
measurement is done on either Alice or Bob or Charlie. The
one measurement by one of the parties is necessary.



Motivation behind the inequalities (contd.)

I Above form of the operator suggests that we need to make
only one measurement on one of the qubits. From this
operator, we can construct a simple Bell inequality.

I Also from previous discussion, it is clear that to obtain
violations for all pure entangled states, correlation Bell
inequalities are not enough. So, it seems that non-correlation
Bell inequalities may work.

I A general state need not have any symmetry. So, we have to
consider a set of Bell inequalities instead of one, such that one
measurement is done on either Alice or Bob or Charlie. The
one measurement by one of the parties is necessary.



Violation by generalized GHZ states

We will now show that for states in generalized GHZ class we can
always obtain violations of these inequalities. Let’s consider,

|GGHZ 〉 = α |000〉+ β |111〉 (13)

Then we choose the inequality to be,

A1(B1 + B2) + A2(B1 − B2)C1 ≤ 2 (14)

Now, we choose the operators such that,

A1 = σz , A2 = σx (15)

B1 = cos θσx + sin θσz , B2 = − cos θσx + sin θσz (16)

C1 = σx (17)



Violation by generalized GHZ states (contd.)

We will now calculate the expectation value of the mentioned Bell
operator for the state for these measurement settings, i.e

〈GGHZ |A1(B1 + B2) + A2(B1 − B2)C1 |GGHZ 〉 (18)

Which comes out to be,

2[2αβ cos θ + (α2 + β2) sin θ] = 2[2αβ cos θ + sin θ] (19)

Now,
a sinφ+ b cosφ ≤

√
a2 + b2 (20)

Hence, we get,

〈GGHZ |A1(B1 + B2) + A2(B1 − B2)C1 |GGHZ 〉 ≤ 2
√

1 + 4α2β2

(21)
Which is always greater than 2 for nonzero α, β and gives
maximum value 2

√
2 for the conventional GHZ state.



Quantifying Entanglement?

I Quantification of entanglement in multipartite scenario is a
messy business. Unlike pure bipartite system, there is no
unique measure of entanglement for multipartite states.17 18

We will use the average of Von Neumann entropy over each
bipartition as a suitable measure of multipartite entanglement.

I Average of Von Neumann entropy for generalized GHZ state
over three bipartitions is −α2 log2 α

2 − β2 log2 β
2. This is also

the entropy for each bipartition for these states as the states
are symmetric.

I From the plot it will be clear that this entanglement measure
and the maximum amount of Bell violation for generalized
GHZ states are monotonically related to each other. We can
say that the more is the entanglement of a state the more
nonlocal it is.

17M. B. Plenio and S. Virmani, Quantum Inf. Comput., 7 (2007) 1
18M. Enŕıquez, I. Wintrowicz and K. Życzkowski, Phys.: Conf. Ser., 698

(2016) 012003
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Plots

Figure: Average Von Neumann entropy over three bipartitions vs α2 plot.

Figure: Maximum expectation value of the Bell operator for a generalized
GHZ state vs α2 plot.



Any separable state obeys all the inequalities

All separable pure three-qubit states can be written, after applying
some convenient local unitary transformation as as |0〉 |0〉 |0〉. We
use one of the operators, say A1B2(C1 + C2) + B1(C1 − C2). Now,

A1 = sin θ1 cosφ1σx + sin θ1 sinφ1σy + cos θ1σz (22)

and similarly for other observables A2, B1, B2, C1, C2, for which
the parameters are θ2, φ2; θ3, φ3; θ4, φ4; θ5, φ5; θ6, φ6
respectively. Putting these measurement settings, we get the
expectation value to be,

cos θ2(cos θ5 − cos θ6) + cos θ1 cos θ3(cos θ5 + cos θ6). (23)

We can write this as : X1(Y1 + Y2) + X2(Y1 − Y2), where
X1 = cos θ1 cos θ3, X2 = cos θ2, Y1 = cos θ5, Y2 = cos θ6, and
X1,X2,Y1,Y2 ≤ 1. So, clearly the maximum possible value of this
operator is 2.



Discriminating different types of entanglement

We can rewrite any biseparable state by local unitary
transformations equivalent form of |0〉 (α |0〉 |0〉+ β |1〉 |1〉).
Inequalities, which can explore the entanglement between the
second and the third qubit will be violated. For example,
A1B2(C1 + C2) + B1(C1 − C2) ≤ 2 will be violated, as CHSH type
operator for second and third qubits is embedded in this operator.
So, the amount of violation will be exactly same as in the case of
two-qubit entangled state and the CHSH operator. There are other
three inequalities within this set, which will also be violated.

B1(C1 + C2) + A1B2(C1 − C2) ≤ 2, (24)

A1(B1 + B2)C2 + (B1 − B2)C1 ≤ 2, (25)

(B1 + B2)C2 + A2(B1 − B2)C1 ≤ 2. (26)

No other states (except biseparable pure states) will have same
kind of violations, i.e exactly four violations with the same maximal
amount.



Proposition for genuine three qubit entangled pure states

I Any genuinely entangled three-qubit pure state can be written
in a canonical form19 with six parameters,

|ψ〉 = λ0 |0〉 |0〉 |0〉+ λ1e
iφ |1〉 |0〉 |0〉+ λ2 |1〉 |0〉 |1〉

+ λ3 |1〉 |1〉 |0〉+ λ4 |1〉 |1〉 |1〉 , (27)

where λi ≥ 0,
∑

i λi
2 = 1, λ0 6= 0, λ2 + λ4 6= 0, λ3 + λ4 6= 0

and φ ∈ [0, π].

I We have randomly generated 35,000 states and tested our set
of Bell inequalities. The expectation value of a Bell operator
is optimized by considering all possible measurement settings
for all observables. Starting from the inequality (1) from the
set, we continued with other inequalities one after one until all
the generated states violate one inequality from the set.

19A. Aćın et al., Phys. Rev. Lett., 87 (2001) 040401



Proposition for genuine three qubit entangled pure states

I Any genuinely entangled three-qubit pure state can be written
in a canonical form19 with six parameters,

|ψ〉 = λ0 |0〉 |0〉 |0〉+ λ1e
iφ |1〉 |0〉 |0〉+ λ2 |1〉 |0〉 |1〉

+ λ3 |1〉 |1〉 |0〉+ λ4 |1〉 |1〉 |1〉 , (27)

where λi ≥ 0,
∑

i λi
2 = 1, λ0 6= 0, λ2 + λ4 6= 0, λ3 + λ4 6= 0

and φ ∈ [0, π].

I We have randomly generated 35,000 states and tested our set
of Bell inequalities. The expectation value of a Bell operator
is optimized by considering all possible measurement settings
for all observables. Starting from the inequality (1) from the
set, we continued with other inequalities one after one until all
the generated states violate one inequality from the set.
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Some plots

Figure: Optimum value of the Bell operator (1). Out of 35000 states,
2099 states do not violate this inequality. States which violate the
inequality are shown by red points and those do not are shown by blue
points.

Figure: Optimum value of the Bell operator (2). Out of 2099 states, 120
states do not violate this inequality. States which violate the inequality
are shown by red points and those do not are shown by blue points.



Multiparty generalization
I This extension for multi-qubit scenario is straight-forward.

One will have to distinguish between two cases – odd number
of qubits and even number of qubits. For even n, there will be
a set of n inequalities; while for odd n, the it is 2n(n − 1).

I When n is odd. n-qubit GHZ states is the eigenstate of√
2(σx ⊗ σx ⊗ σx ⊗ · · · ⊗ σnthx + σz ⊗ σz ⊗ · · · ⊗ σ(n−1)thz ⊗ I )

with the highest eigenvalue 2
√

2.
I The first two Bell inequalities (1) and (2) can be easily

generalized for n-qubit pure states as,

A1A2A3A4A5..(An + A′n)+

A′2A
′
3A
′
4A
′
5..(An − A′n) ≤ 2, (28)

A2A3A4A5..(An + A′n)+

A1A
′
2A
′
3A
′
4A
′
5..(An − A′n) ≤ 2. (29)
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Multiparty generalization (contd.)

I One can prove like before that any of these 2n(n − 1)
inequalities are violated maximally by all generalized GHZ
states with odd n.

I GHZ state of n qubits (n is even) is the eigenstate of√
2(σx ⊗ σx ⊗ σx ⊗ · · · ⊗ σnthx + σz ⊗ σz ⊗ · · · ⊗ σ(n−1)thz ⊗ σz)

with highest eigenvalue 2
√

2. This suggests that correlation
Bell inequalities are required in this case.

I One can generalize the first correlation Bell inequality as,

(A1 + A′1)A2A3A4A5..An+

(A1 − A′1)A′2A
′
3A
′
4A
′
5..A

′
n ≤ 2. (30)

I The fact that generalized GHZ states with even number of
qubits violate a correlation Bell inequality within the set of all
correlation Bell inequalities was known20.
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20M. Żukowski et al., Phys. Rev. Lett., 88 (2002) 210402.



Conclusions

I We have presented a new set of twelve non-correlation Bell
inequalities such that all three qubit generalized GHZ states
violate them with maximal violation 2

√
2. In our inequalities

one party makes only one measurement in place of two.

I All biseparable pure three qubit states violate exactly four
inequalities within the set with same maximal amount. As, no
other state gives this type of violation, we can clearly
distinguish between three qubit pure separable, biseparable
and genuinely entangled state.

I From numerical evidence we concluded that every three qubit
pure state would violate atleast one inequality within the set.

I Lastly, we have generalized the set of inequalities for n qubit
pure states, for both even and odd n. Non-correlation Bell
inequalities are required for odd n, whereas correlation Bell
inequalities are sufficient for even n.
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