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Otto cycle

Nikolaus Otto was the first person to build a working model of
four-stroke engine in 1861.

Four-stroke gasoline engines used nowadays are generally called Otto
engines.
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Classical Otto cycle
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Work and Efficiency

Q1 = Cv (T1 − T ′2), Q2 = Cv (T2 − T ′1)

W = Q1 + Q2

η =
W

Q1
= 1− T ′1

T1
= 1−

(
V1

V2

)(γ−1)

.
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MASER as a heat engine
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Figure : Three level MASER as a heat engine 1

ηM = 1− ν2

ν1
≤ 1− T2

T1

1
H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959).
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Mean energy

U = Tr(Hρ),

where H is the Hamiltonian and ρ is the density matrix.

First law of thermodynamics

dU = Tr(H dρ) + Tr(ρ dH)

dQ = Tr(H dρ)

dW = Tr(ρ dH)
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Adiabatic process

Adiabatic process in thermodynamics

No heat is exchanged between the system and its surroundings, dQ = 0.

Quantum adiabatic process

Suppose the system is initially in the nth eigenstate of the initial
Hamiltonian (Hini), then the Hamiltonian is changed gradually from Hini

to Hfin. According to Quantum adiabatic theorem, the system will
remain in the nth eigenstate of the instantaneous Hamiltonian.
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A model of quantum heat engine
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Figure : Two level system as
heat engine.

Heat, work and efficiency

Qh = a1
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> 0

Qc = a2
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− tanh
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])
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W = Qh + Qc > 0 η = W /Qh

Condition for engine

β2a2 ≥ β1a1 and a1 > a2

η = 1− a2

a1
≤ 1− T2

T1

T. D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
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Model of quantum heat engine
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Figure : Harmonic oscillator as
a model of heat engine.

Work and efficiency
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W = Q1 + Q2 > 0

Condition for engine

βcω
′ ≥ βhω and ω > ω′

η = 1− ω′

ω ≤ 1− Tc
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Comparison

Oscillator model

W os =
(ω − ω′)
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Spin model
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Coupled systems as thermodynamic machines2

2
G. Thomas, M. Banik, and S. Ghosh, arXiv:1607.00994 [quant-ph] (2016).
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Coupled systems
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Heisenberg XY model
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Co-ordinate Transformation

xA =
x1 + x2√

2
, xB =
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2

;
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Heat, work and efficiency
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Heat, work and efficiency
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Bounds of the efficiency

min{ηA, ηB} ≤ η ≤ max{ηA, ηB}

When the Hamiltonian of the coupled system (at all stages of the cycle)
can be decoupled (as two independent modes) in some suitably chosen
co-ordinate system, then the efficiency of the coupled system is bounded
(both from above and below) by the efficiencies of the independent
modes, provided both the modes work as engines.

George Thomas Coupled systems as quantum thermodynamic machines



XX-model

Now we consider the following case λx = λp = λJ and Jx = Jy = λJ .

Hos = (Ω + λJ)(c†AcA +
1

2
) + (Ω− λJ)(c†BcB +

1

2
)

Hsp = (Ω + λJ)(S+
A S−A +

1

2
) + (Ω− λJ)(S+

B S−B +
1

2
)

Consider the cycle Ω : ω → ω′ → ω

ηA =
(ω − ω′)
(ω + λJ)

and ηB =
(ω − ω′)
(ω − λJ)
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Efficiency
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Figure : The two dotted curves show the upper bound (ηB ) and lower bound (ηA) . The continuous curve represents the
efficiency of the coupled oscillator. Efficiency of the coupled spin system is denoted by the dashed curve. When the upper bound reaches
Carnot value, ηB = 1 − Tc/Th for λJ = λc (represented by vertical dashed-dotted line), then we get ηos = ηsp = ηA . Here we

take Th = 2, Tc = 1, ω = 4 and ω′ = 3.
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Maximum work

W = WA + WB =
(ωA − ω′A)
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where ωA = ωA(ω, λx , λp), ωB = ωB(ω, λx , λp), ω′A = ω′A(ω′, λx , λp), and
ω′B = ω′B(ω′, λx , λp)

Suppose WA is maximum, when ωA = ωA∗ and ω′A = ω′A∗. If the
subsystem A provides subsystem work, then the work obtained from the
subsystem B may not be optimal. Therefore we have

Wmax
λ6=0 ≤Wmax

λ=0
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Refrigerator model
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Figure : Harmonic oscillator as
a model of refrigerator.

Work and COP
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Condition for refrigerator
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Coupled system as refrigerator

min{ζA, ζB} ≤ ζ ≤ max{ζA, ζB}

The global coefficient of performance (COP) is bounded (both from
above and below) by the COPs of the independent modes.
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Coupled system as refrigerator
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Figure : The upper bound (ζA) and the lower bound (ζB ) are shown with the dotted curves. The continuous curve represents the
COP of the coupled oscillator and COP of the coupled spin system is denoted by the dashed curve. The horizontal line represents the
Carnot value for the refrigerator. When the independent subsystems work in refrigerator mode, the global COP of the coupled system is
bounded by ζA and ζB . The plot also shows that the global COP of the coupled spins is higher than that of the coupled oscillators for

small values of λJ . When the upper bound achieves Carnot value, ζA = Tc/(Th − Tc ) for λJ = λ′c (vertical dashed-dotted line),

then we get ζos = ζsp = ζB . Inset shows the enlarged region near λJ = λ′c . Here we take Th = 2, Tc = 1, ω = 5 and ω′ = 2.
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XY model

Now we consider the following case λx = −λp = λJ and Jx = −Jy = λJ .
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Figure : (a) The continuous and the dashed curves represent the efficiencies of coupled oscillators and coupled spins respectively.
The efficiency of the uncoupled oscillator (or spin) is shown by the horizontal dotted line. The parameter values are Th = 2, Tc = 1,

ω = 4 and ω′ = 3. (b) The COPs of coupled oscillators and spins are shown by continuous and dashed curves respectively. Horizontal

dotted line represents COP of uncoupled oscillator (or spin). Here we used Th = 2, Tc = 1, ω = 5 and ω′ = 2.
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Thank you all !!
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