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• Single Photon Sources (SPS) 

• Heralded Single Photon Sources (HSPS) and Spontaneous 

Parametric Downconversion (SPDC) 

• Statistics of classical and non-classical sources of light 

- Observation of sub-Poissonian statistics in SPDC - HSPS 

‐ Study of second order correlation function 

Outline 



Single Photon Sources 

• Why Single Photon Sources? 

‐ Photon qubits : light-speed, loss-less, easy to manipulate 

‐ Quantum Cryptography protocols demand Single Photon 

Sources 

‐ generation of truly random numbers 

• Single Photon Sources 

‐ elementary excitation state of Em field, monochromatic, on-demand 

      – Quantum dots, Single atoms/ions, Color centres etc. 

‐ 100% one photon, 0% multiple photons – Experimental challenge 

‐ weak coherent pulses – but still not non-classical 

      Solution : Heralded SPS! 

 



• Interaction with Non linear media 

‐ Intense electric field causes redistribution of atoms, leaving 

them polarized 
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• Interaction with Non linear media 

‐ Two pump photons (߱) annihilate to give an output photon of  2߱ 

𝑃𝑖 = 𝜀0 (𝜒𝑖𝑗
1
𝐸𝑗 + 𝜒𝑖𝑗𝑘

2
𝐸𝑗𝐸𝑘) 

- Second Harmonic Generation 
 from ߱ to 2߱  

pump photon upconverted photons 

𝑃 = 𝜀0 (𝜒
1 𝐴 cos (߱𝑡) +

1

2
𝜒 2  𝐴2( 1 + cos 2߱𝑡 )) 

for a pump field, 𝐸 = 𝐴 cos (߱𝑡) 
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• Spontaneous Parametric Down Conversion 

‐ Pumping a crystal with χ(2) nonlinearity 

      generates a pair of signal and idler photons 

‐ destruction of one photon (2߱) into two photons (߱). 
- Down Conversion  

Heralded Single Photon Sources 



߱p , 𝘬p 

߱i , 𝘬i 

߱s , 𝘬s 

Nonlinear 
crystal 

Type-I BiO 

ħ߱𝑝 = ħ߱𝑠 + ħ߱𝑖 

 
kp = ks  + ki 

Phase Matching Condition 

• More on Spontaneous Parametric Down Conversion 

𝐻 𝑖𝑛𝑡 ~ 𝜒
2  ܽ ̂ 𝑝ܽ ̂

†
𝑠ܽ ̂
†
𝑖 + h.c. 

interaction Hamiltonian should take the form, 
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Coherent State, 
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variance 

- Poissonian 

Electromagnetic field as a quantum harmonic 
oscillator. 

ܳ ≡ 
(ܽ ̂†ܽ ̂†ܽ̂ ܽ ̂− 〈 ܽ ̂†ܽ ̂〉2)
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The Mandel Q-paramter, 

Phasor diagram 
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Sub-Poissonian statistics is a clear signature of non-classical nature of our 
source 

Type of Statistics Examples I (t) Variance and 
Mean 

Super-Poissonian Thermal, Chaotic, 
or Incoherent 

Time varying 𝜎2 > 𝜇 

Poissonian Coherent light constant 𝜎2 = 𝜇 

Sub-Poissonian Non-classical constant 𝜎2 < 𝜇 

Photon Statistics 



The pair of photons generated  in SPDC are coupled for maximum 
efficiency  in signal (s) and idler (i) and the detection output is 
recorded using an oscilloscope. 

 

• 405 nm -> two 810 nm 

• coincidence window (𝜏c =1 ns) 
and interference filters help in 
selecting out the corresponding 
pairs. 

• Lenses and Fiber Couplers are 
used to efficiently couple these 
photons to MultiMode Fibres. 

Building Number Statistics Using an Oscilloscope 



-15 -10 -5 0 5 10 15

0.00

0.25

0.50

0.75

1.00

1.25

 

 

g
(2

) 

 (ns)

   The two-fold correlation  between arms i and s, 
confirms that the twin photons are reaching the 
detectors simultaneously. 

Signal/ 
CRO Output 

Binary 
Converted Signal 

1 1 0 1 1 
Binning 

Building the statistics 

  Bin size is varied in order to accommodate 
different average number of photons per bin. 

Building Number Statistics Using an Oscilloscope 
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• The number distribution for the parametric fluorescence from an 
individual arm shows super-Poissonian statistics with 𝑄 = 0.28. 

• The heralded counts follow sub-Poissonian distribution with a 
significantly negative value for Mandel Q-parameter (𝑄 = −0.08) . 

• The number distributions follow the same statistics for different values 
of average photon numbers. 

Building Number Statistics Using an Oscilloscope 



g(2)
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D1 

D2 Counter 
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classical second order correlation function, 

for photons, 

• for coherent sources,   g(2)
(𝜏) = 1    g(2)

(0) = 1 

• for thermal sources,   g(2)
(𝜏) > 1    g(2)

(0) = 2 

• for single photon sources,   g(2)
(𝜏) < 1   g(2)

(0) = 0 
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(0) =

(ܽ ̂†ܽ̂†ܽ̂ܽ ̂
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 ݊ 2  

 

HBT and Second Order Correlation Function, g(2)
(τ) 
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• at the beamsplitter (BS), signal (s) 
photons will choose either s1 or s2 . 

• triple coincidence between the 
detection of i, s1 and s1 photons are 
recorded. 

• g(2)
(i,s1,s2) = 

𝐶
i,s1,s2

𝐶
i,s1

𝐶
i,s2

 ∗ 𝑅 

 

 

𝐶𝑖,𝑠 – coincidence counts between  i & s 

𝑅 – pair production rate 

Second Order Correlation Function, g(2)
(τ) 
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• Second order correlation function, 
g(2)

(𝜏) is determined for signal (s) 
photons conditioned by the 
detection of idler (i) photons. 

• g(2)
(𝜏) for the heralded single photon 

source shows the expected HBT dip 
at zero delay. 

• g(2)
(o) = 0.07 

 

anti-bunching has been confirmed, 
and quality of the single photon 
nature of the heralded source is 
determined. 

Second Order Correlation Function, g(2)
(τ) 
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• g(2)
(o)  improves from 0.064 to 

0.0075 by reducing the power 

Second Order Correlation Function, g(2)
(τ) 
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• as a result of reduced number of 
multiphoton emissions 
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