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The short answer? No.



The Question

I CGLMP inequality as measure of non-locality 1

I Dimension dependent inequality for arbitrary dimensional
systems

I Exceeds Tsirelson bound 2
√

2 for Bell inequality
I Works along Werner line: maximally entangled state + noise
I Implicitly assumed by experimentalists in the field to be a

generalization of the Bell inequality for higher level systems
[eg. Lo (2016)]

I Question: are there states that are Bell-CHSH non-local but
are CGLMP local?

I Specifically constructed pure and mixed states that are
maximally Bell non-local to see how CGLMP fares

I Result: Contrary to expectations, CGLMP fails to correctly
identify a large family of maximally non-local Bell states

1Kaszlikowski et. al., Phys. Rev. Lett. 85, 4418 (2000), Collins et. al.,
Phys. Rev. Lett. 88 040404 (2002)



A quick recap: The Bell-CHSH Inequality

I Consider: M × N level system with two subsystems A(B) of
M(N) levels

I The Bell-CHSH operator: B = A1B1 − A1B2 + A2B1 + A2B2

I A1,2 and B1,2 are local observables for the two subsystems
I Conditions −1 ≤

〈
Ai

〉
≤ 1 and −1 ≤

〈
Bi

〉
≤ 1.

I Local hidden variable models constrain the Bell-CHSH
function as inequality:

∣∣〈B〉∣∣ ≤ 2
I A violation implies non-locality.
I QM as a non-local theory yields the upper bound to a value

2
√

2 [Tsirelson (1980)].
I (Bound is absolute and independent of M and N)



The CGLMP prescription

I Analog of the Bell-CHSH operator: function IN , defined for
N × N level system by

I P(Ai ,Bi ) – joint measurement probabilities for local
observables Ai ,Bi

I Measurement prescription 2 involves two local observers, Alice
and Bob

I The measurement bases for the observables Ai and Bi ; i = 1, 2
are of the form
|K 〉A,i = 1√

N

∑N−1
j=0 exp

(
i 2π
N j(K + αi )

)
|j〉A

|L〉B,i = 1√
N

∑N−1
j=0 exp

(
i 2π
N j(−L + βi )

)
|j〉B .

I All the observables have integer eigenvalues 0, 1, · · · ,N − 1.
I Tune variable phases αi , βi of the states depending on the

measurements they choose
2Durt et. al., Phys. Rev. A 64, 024101 (2001)



The CGLMP prescription (cont’d)

I Rules of classical probability =⇒ |IN | ≤ 2.
I Interpreted as a locality condition; arises in measurements

involving joint probabilities.

I For maximally entangled state, IN≥3 exceeds Tsirelson bound
I I4 max = 2.8962
I IN→∞ = 2.9696

I Interpretation: since I4 > 2
√

2 for the Bell state, it follows
that some noisy states will obey Bell-CHSH but violate
CGLMP

I Led those authors to claim that CGLMP prescription is more
general and stronger than the Bell-CHSH prescription

I True along Werner line
I Note: experiments are also performed on maximally entangled

states



Numerical Probe
I Known conditions on local observables to hit Tsirelson bound

[Braunstein (1992), Popescu (1992)]:〈
A2

1,2

〉
=

〈
B2

1,2

〉
= 1〈

{A1,A2}
〉

or
〈
{B1,B2}

〉
= 0. (1)

I Conditions jointly constitute the definition of Clifford Algebra;
the representations are essentially given by the standard Pauli
matrices or their direct sums for each pair of observables.

I =⇒ maximally non-local Bell states are either coherent, or
incoherent superpositions of Bell states in mutually orthogonal
2× 2 sectors. (Explains why there are no fully entangled Bell
states when N is odd.)

I Conveniently choose the observables [SU(4) - Sbaih (2013)]:

A1 =
2√
3
λ8 +

√
6

3
λ15; A2 = (λ4 + λ11)

B1 =
1√
2

(A1 + A2); B2 =
1√
2

(A2 − A1) (2)



Numerical Probe (cont’d)

I Bell operator eigen-resolution:

B = 2
√

2(ΠH+ − ΠH−) (3)

where dim(H±) = 4. The bases for H+ may be chosen to be

|η1〉 =
1√
2

(|11〉+ |33〉); |η2〉 =
1√
2

(|10〉+ |32〉)

|η3〉 =
1√
2

(|01〉+ |23〉); |η4〉 =
1√
2

(|00〉+ |22〉) (4)

I Note: within each sector, all states, both pure and mixed,
violate the Bell-CHSH inequality maximally.

I The Nelder-Mead optimization technique [Nelder 1965]
employed to search for max I4 per state,

I Search over 4-D parameter space spanned by phases
{α1,2, β1,2}

I Note: Same technique used in CGLMP papers; numerical
results verified



Pure States
I Pure Bell state can take form

|Ψ〉H+
=
∑
i

ci |ηi 〉 ;
∑
i

|ci |2 = 1 (5)

I 1000 pure states were sampled randomly through uniform
distributions

I Only 8.9% violated CGLMP

Figure : I4 values for 1000 randomly sampled pure states, with a
bin-width of 0.1. Red: Polynomial fit showing population decay.
Black: I4 = 2, demarcation between local and non-local states.



Mixed States
I Sample 100 random mixed states of the form:

ρH+ =
∑
i

pi |ηi 〉〈ηi |. (6)

I The CGLMP prescription fails to identify non-locality, this
time more dramatically

Figure : I4 values for 100 randomly sampled mixed states, with a bin
width 0.002.



This isn’t surprising. Let’s see why.



Significance of Bell Inequalities

I Consider complete space of behaviours system, i.e., all
possible sets of joint probabilities p={p(ab|xy)}: a, b
–outputs, x , y – inputs of the two subsystems. (Essentially
the correlation space.)

I Can be broken up into three non-mutually exclusive
categories, depending on conditions that are imposed on the
overall system: no-signalling, local, and quantum



I The locality condition constitutes a polytope in the behaviour
space, of whose vertices are local deterministic behaviours

I Hyperplanes characterising this polytope constitute a set of
inequalities: reveal the non-local nature of a system
depending on violation or satisfaction

I In the literature, this set is casually termed “the Bell
inequalities” though in actuality they are facet inequalities,
combinations of which create a Bell inequality

I One is the Bell-CHSH form and another is the CGLMP form

I In this way it is unsurprising that CGLMP is not a
generalization of Bell-CHSH, and works along the Werner line
in ways the Bell-CHSH falls short. They address different
directions in the behaviour space. [Froissard (1981), Garg and
Mermin (1984), Pitowsky (1989), Peres (1999), Werner and
Wolf (2001)]



Conclusion

I Contrary to expectations, the CGLMP prescription fails to
correctly identify a large family of maximally non-local Bell
states

I The CGLMP and Bell-CHSH inequalities are merely two
different facets of the Local polytope in the correlation space

I The family of facet inequalities (dubbed ‘Bell inequalities’ in
literature) to give complete distinction of non-locality is as yet
to be explored



Thank You



I No-signalling– Natural limitation that essentially implies: any
local marginal probability of one subsystem is not influenced
by the measurement setting of the second. Mathematically:∑

p(ab|xy) =
∑

p(ab|xy ′)∀ outputs a, b and inputs x , y , y ′.
[Tsirelson (1980), Popescu and Rohrlich (1994)]



I Quantum– Consists of behaviours governed by QM, i.e., either
1) a tensor product structure can be constructed between the
two systems’ positive operator valued measurements i.e.
p(ab|xy) = tr(ρABMa|x ⊗Mb|y ) or 2) that their local
observables as orthogonal projectors commute
[Ma|x ,Mb|y ] = 0. [Tsirelson (1993)]



I Local– Locality implies existence of a set of past factors λ
shared by the two subsystems that taken together jointly and
causally influence the outcomes of measurements performed
on each part of the system. Formally, a Local Hidden Variable
Theorem: p(ab|xy) =

∫
Λ dλq(λ)p(a|x , λ)p(b|y , λ), p(∗|∗, λ)

– the local marginal probabilities, q(λ) – probability density of
hidden variables λ in space Λ


