Superposition of two single-qubit states with partial prior knowledge using NMR

Shruti Dogra Indian Institute of Technology Madras, Chennai

In collaboration with: **George Thomas and Sibasish Ghosh**Institute of Mathematical Sciences, Chennai, India
and **Dieter Suter**Technische Universität Dortmund, D-44221 Dortmund, Germany

Young Quantum - 2017

February 27 - March 01, 2017

Harish-Chandra Research Institute, Allahabad, India

Superposition of unknown quantum states

• There is a no-go theorem stating that there exists no protocol to obtain a desired superposition of two unknown pure quantum states, $|\psi_1\rangle$ and $|\psi_2\rangle$ to get¹:

$$|\Psi\rangle = a|\psi_1\rangle + b|\psi_2\rangle. \tag{1}$$

• However, with partial prior knowledge, $|\langle \chi | \psi_1 \rangle|$ and $|\langle \chi | \psi_2 \rangle|$, one can obtain superposed state of the form,

$$|\Psi'\rangle = \frac{N_{\psi}}{N} \left(a \frac{\langle \chi | \psi_2 \rangle}{|\langle \chi | \psi_2 \rangle|} |\psi_1 \rangle + b \frac{\langle \chi | \psi_1 \rangle}{|\langle \chi | \psi_1 \rangle|} |\psi_2 \rangle \right),$$

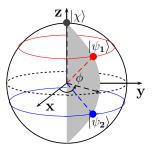
where $|\chi\rangle$ is a known referential state.

• Such a protocol is proposed recently by Oszmaniec et al (*Phys. Rev. Lett.* **116**, 110403 (2016)).

¹Phys. Rev. Lett. **116**, 110403 (2016).

The problem

• Input states: $|\psi_1\rangle$ and $|\psi_2\rangle$. Let $|\chi\rangle$ be a reference state, whose respective overlaps $\langle \chi | \psi_1 \rangle$ and $\langle \chi | \psi_2 \rangle$ are known.



- We presented an experimentally feasible protocol to superpose n pure states of a qudit and experimentally performed the superposition of two pure single-qubit states on a two-qubit NMR quantum information processor².
- Calculated success probabilities for different prior information.

(A) Encoding

 \bullet Consider a system of two coupled spins 1/2 with the Hamiltonian

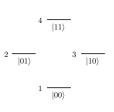
$$H = -\Omega_A A_Z - \Omega_X X_Z + J A_Z X_Z$$

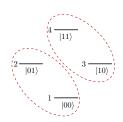
$$\begin{array}{c|c}
4 & \hline |11\rangle \\
\hline
2 & \hline |01\rangle & 3 & \hline \\
\hline
1 & \hline |00\rangle \\
\end{array}$$

(A) Encoding

• Consider a system of two coupled spins 1/2 with the Hamiltonian

$$H = -\Omega_A A_Z - \Omega_X X_Z + J A_Z X_Z$$





(A) Encoding

• Consider a system of two coupled spins 1/2 with the Hamiltonian

$$H = -\Omega_A A_Z - \Omega_X X_Z + J A_Z X_Z$$

$$4 \frac{}{|11\rangle}$$

$$2 \frac{}{|01\rangle} \qquad 3 \frac{}{|10\rangle}$$

$$1 \frac{}{|00\rangle}$$

• Input states: $\psi_1 = c_{00}|0\rangle + c_{01}|1\rangle$ and $\psi_2 = c_{10}|0\rangle + c_{11}|1\rangle$.

(A) Encoding

• Consider a system of two coupled spins 1/2 with the Hamiltonian

$$H = -\Omega_A A_Z - \Omega_X X_Z + J A_Z X_Z$$

$$4 \frac{}{|11\rangle}$$

$$2 \frac{}{|01\rangle} 3 \frac{}{|10\rangle}$$

$$1 \frac{}{|00\rangle}$$

• Input states: $\psi_1 = c_{00}|0\rangle + c_{01}|1\rangle$ and $\psi_2 = c_{10}|0\rangle + c_{11}|1\rangle$. State of two-qubit system,

$$|\eta\rangle = a|0\rangle|\psi_1\rangle + b|1\rangle|\psi_2\rangle, \qquad \sqrt{a^2 + b^2} = 1.$$

• Here first qubit is considered as ancilla, and second qubit is considered as system-qubit.

(B) Removing the impalpable global phases

• Assuming the global phases $(e^{i\gamma_1}$ and $e^{i\gamma_2})$ with states $|\psi_1\rangle$ and $|\psi_2\rangle$ respectively,

$$|\eta'\rangle = e^{i\gamma_1}a|0\rangle|\psi_1\rangle + e^{i\gamma_2}b|1\rangle|\psi_2\rangle.$$

- $e^{\iota \gamma_1} = \frac{\langle \chi | \psi_1 \rangle}{|\langle \chi | \psi_1 \rangle|}$ and $e^{\iota \gamma_2} = \frac{\langle \chi | \psi_2 \rangle}{|\langle \chi | \psi_2 \rangle|}$.
- A phase gate, $(\gamma_1 \gamma_2)_z^1$ leads to,

$$|\eta''\rangle = e^{\iota(\frac{\gamma_1 + \gamma_2)}{2}} (a|0\rangle|\psi_1\rangle + b|1\rangle|\psi_2\rangle).$$

(B) Removing the impalpable global phases

• Assuming the global phases $(e^{i\gamma_1}$ and $e^{i\gamma_2})$ with states $|\psi_1\rangle$ and $|\psi_2\rangle$ respectively,

$$|\eta'\rangle = e^{i\gamma_1}a|0\rangle|\psi_1\rangle + e^{i\gamma_2}b|1\rangle|\psi_2\rangle.$$

- $e^{i\gamma_1} = \frac{\langle \chi | \psi_1 \rangle}{|\langle \chi | \psi_1 \rangle|}$ and $e^{i\gamma_2} = \frac{\langle \chi | \psi_2 \rangle}{|\langle \chi | \psi_2 \rangle|}$.
- A phase gate, $(\gamma_1 \gamma_2)_z^1$ leads to,

$$|\eta''\rangle = e^{\iota(\frac{\gamma_1 + \gamma_2)}{2}} (a|0\rangle |\psi_1\rangle + b|1\rangle |\psi_2\rangle).$$

(C) Superposition

• A Hadamard gate on the first qubit leads to,

$$|\eta'''\rangle = |0\rangle \otimes (a|\psi_1\rangle + b|\psi_2\rangle) + |1\rangle \otimes (a|\psi_1\rangle - b|\psi_2\rangle).$$

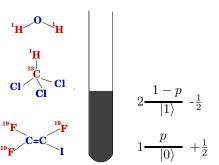
• First qubit measurement in basis $\{|0\rangle, |1\rangle\}$ gives the desired result,

$$N_{\psi}(a|\psi_1\rangle + b|\psi_2\rangle) \propto |\Psi\rangle.$$

Experimental realization

- We use a system of two nuclear spins and NMR as a tool to demonstrate the superposition of two single-qubit states.
- NMR quantum computer harnesses the intrinsic magnetic properties of the nuclear spins, manipulated by specifically tailored radio frequency pulses (quantum gates) to perform the desired computational tasks.
- The criteria for a quantum computer to work was put forward by David P. DiVincenzo in 2000. This involves: a working medium, ample coherence times, a set of implementable operations, ability to initialize the system in a desired state, and the ability to read the output.

- System
- Quantum Gates
- Initial state preparation
- Final readout



- System
- Quantum Gates
- Initial state preparation
- Final readout

• Hadamard $(\frac{\pi}{2})_y$

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

• Controlled NOT $\left(\frac{\pi}{2}\right)_x^2 \frac{1}{2J} \left(\frac{\pi}{2}\right)_{-y}^2$

$$CNOT_{12} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

- System
- Quantum Gates
- Initial state preparation
- Final readout

Eigenvalues in a two-qubit system:

$$|00\rangle$$
: $\frac{1}{2}(\omega_1 + \omega_2 + \frac{1}{2}J_{12})$

$$|01\rangle$$
: $\frac{1}{2}(\omega_1 - \omega_2 - \frac{1}{2}J_{12})$

$$|10\rangle$$
: $\frac{1}{2}(-\omega_1 + \omega_2 - \frac{1}{2}J_{12})$

$$|11\rangle$$
: $\frac{1}{2}(-\omega_1 - \omega_2 + \frac{1}{2}J_{12})$

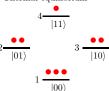
Transitions:

Qubit-1:
$$\omega_1 \pm \frac{1}{2}J_{12}$$

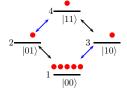
Qubit-2:
$$\omega_2 \pm \frac{1}{2} J_{12}$$

Pseudopure state $|\psi\rangle$ $\rho = \frac{1-\epsilon}{2} I_{n\times n} + \epsilon |\psi\rangle\langle\psi|$

Thermal equilibrium



Pseudo-pure state



Tomography

$$\rho = \left(\begin{array}{ccccc} a_{11} & a_{12} + \iota b_{12} & a_{13} + \iota b_{13} & a_{14} + \iota b_{14} \\ a_{12} - \iota b_{12} & a_{22} & a_{23} + \iota b_{23} & a_{24} + \iota b_{24} \\ a_{13} - \iota b_{13} & a_{23} - \iota b_{23} & a_{33} & a_{34} + \iota b_{34} \\ a_{14} - \iota b_{13} & a_{24} - \iota b_{24} & a_{34} - \iota b_{34} & a_{44} \end{array} \right)$$

Fidelity:

- System
- Quantum Gates
- Initial state preparation
- Final readout

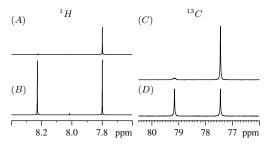
$$F = \frac{Tr(\rho_{\rm theory}^\dagger \rho_{\rm expt})}{\sqrt{(Tr(\rho_{\rm theory}^\dagger \rho_{\rm theory}))\sqrt{(Tr(\rho_{\rm expt}^\dagger \rho_{\rm expt}))}}}$$

where ρ_{theory} and ρ_{expt} denote the theoretical and experimental density matrices respectively.

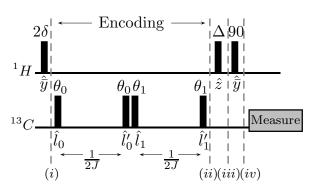
Experimental system

• A two-qubit system:

- (A), (C): Pseudopure state NMR spectra with a small detection angle
 - (B), (D): Thermal equilibrium NMR spectra



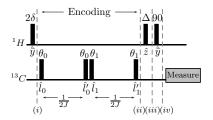
NMR pulse sequence



$$\begin{split} \hat{l}_0 &= \cos(\frac{3\pi}{2} + \phi_0)\hat{x} + \sin(\frac{3\pi}{2} + \phi_0)\hat{y}, \\ \hat{l}'_0 &= \cos(\phi_0)\hat{x} + \sin(\phi_0)\hat{y}, \\ \hat{l}_1 &= \cos(\pi + \phi_1)\hat{x} + \sin(\pi + \phi_1)\hat{y}, \text{ and } \\ \hat{l}'_1 &= \cos(\frac{\pi}{2} + \phi_1)\hat{x} + \sin(\frac{\pi}{2} + \phi_1)\hat{y}. \end{split}$$

Experimental design

- Various different pairs of states are encoded.
- A two-qubit tomography at the end of step (iii).
- A two-qubit tomography at the end of step (iv).
- A single-qubit partial quantum state tomography mimicing the single-qubit measurement.
- Single-qubit measurement: subspace spanned by $|00\rangle$, $|01\rangle$.
- Normalization: $G_z(\frac{\pi}{2})_y^1$



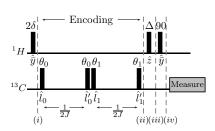
Measurement

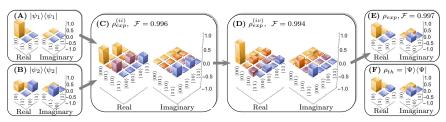
$$\rho = \begin{pmatrix} a_{11} & a_{12} + \iota b_{12} & a_{13} + \iota b_{13} & a_{14} + \iota b_{14} \\ a_{12} - \iota b_{12} & a_{22} & a_{23} + \iota b_{23} & a_{24} + \iota b_{24} \\ a_{13} - \iota b_{13} & a_{23} - \iota b_{23} & a_{33} & a_{34} + \iota b_{34} \\ a_{14} - \iota b_{13} & a_{24} - \iota b_{24} & a_{34} - \iota b_{34} & a_{44} \end{pmatrix}$$

(i) Direct readout, and (ii) $G_z(\frac{\pi}{2})_y^2$

Example

- $|\psi_1\rangle = |0\rangle$
- $\bullet \ \frac{1}{\sqrt{2}}(|0\rangle + e^{\frac{\iota\pi}{2}}|1\rangle)$
- \bullet a=b



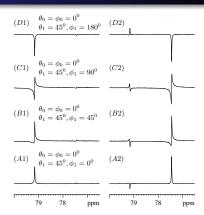


Experimental outcomes

• Input states:

$$\begin{aligned} |\psi_1\rangle &= |0\rangle \\ |\psi_2\rangle &= \frac{1}{\sqrt{2}}(|0\rangle + e^{\iota\phi_2}|1\rangle) \end{aligned}$$

- $\bullet |\Psi\rangle = a|\psi_1\rangle + b|\psi_2\rangle$
- \bullet a=b



	ϕ_2	\mathcal{F}_c	$ \rho_{th} = \Psi\rangle\langle\Psi $	$\rho_{exp} + \frac{1}{4}\mathbb{I}_{2 \times 2}$	\mathcal{F}_{final}
1	0	0.993	$ \left(\begin{array}{ccc} 0.73 & 0.3 \\ 0.3 & 0.12 \end{array}\right) $	$\left(\begin{array}{cc} 0.77 & 0.28 \\ 0.28 & 0.10 \end{array} \right)$	0.996
2	$\frac{\pi}{4}$	0.990	$ \begin{pmatrix} 0.73 & 0.21 - 0.21i \\ 0.21 + 0.21i & 0.12 \end{pmatrix} $	$ \begin{pmatrix} 0.76 & 0.19 - 0.23i \\ 0.19 + 0.23i & 0.08 \end{pmatrix} $	0.995
3	$\frac{\pi}{2}$	0.996	$ \begin{pmatrix} 0.73 & 00.3i \\ 0. +0.3i & 0.12 \end{pmatrix} $	$ \left(\begin{array}{ccc} 0.76 & 0. & -0.3i \\ 0. & +0.3i & 0.07 \end{array}\right) $	0.997
4	π	0.994	$ \begin{pmatrix} 0.73 & -0.3 \\ -0.3 & 0.12 \end{pmatrix} $	$\begin{pmatrix} 0.76 & -0.29 \\ -0.29 & 0.08 \end{pmatrix}$	0.997

Experimental outcomes....different weights

$$|\psi_1\rangle = \frac{1}{2}(|0\rangle + \sqrt{3}|1\rangle)$$

$$|\psi_2\rangle = \frac{1}{2}(\sqrt{3}|0\rangle + |1\rangle)$$

Table: Here are the various experimental outcomes. $|\Psi\rangle=a|\psi_1\rangle+b|\psi_2\rangle$. As per column 4, values of $2\delta=90^0$, 53.13^0 , and 36.87^0 correspond to the weights a=b, a=2b and a=3b respectively. \mathcal{F}_c is the fidelity with which input states are encoded and and \mathcal{F}_{final} is the fidelity of final superposed state.

a:b	2δ	\mathcal{F}_c	$ \rho_{th} = \Psi\rangle\langle\Psi $	$\rho_{exp} + \frac{1}{4} \mathbb{I}_{2 \times 2}$	\mathcal{F}_{final}
1:1	900	0.993	$\left(\begin{array}{cc} 0.47 & 0.47 \\ 0.47 & 0.47 \end{array}\right)$	$\left(\begin{array}{cc} 0.47 & 0.46 \\ 0.46 & 0.51 \end{array}\right)$	0.998
2:1	53.130	0.988	$\left(\begin{array}{cc} 0.35 & 0.42 \\ 0.42 & 0.5 \end{array}\right)$	$\left(\begin{array}{cc} 0.37 & 0.42 \\ 0.42 & 0.52 \end{array}\right)$	0.999
3:1	36.87^{0}	0.984	$\left(\begin{array}{cc} 0.28 & 0.37 \\ 0.37 & 0.48 \end{array}\right)$	$\left(\begin{array}{cc} 0.31 & 0.37 \\ 0.37 & 0.5 \end{array}\right)$	0.999

Experimental outcomes...with assumed global phases

•
$$|\psi_1\rangle = e^{\iota\gamma_1}(\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle)$$
 and $|\psi_2\rangle = e^{\iota\gamma_2}(\frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle)$

γ_1	γ_2	\mathcal{F}_c	$\rho_{th} = \Psi\rangle\langle\Psi $	$\rho_{exp} + \frac{1}{4}\mathbb{I}_{2\times 2}$	\mathcal{F}_{final}
0	0	0.993	$\left(\begin{array}{cc} 0.47 & 0.47 \\ 0.47 & 0.47 \end{array}\right)$	$\left(\begin{array}{cc} 0.47 & 0.46 \\ 0.46 & 0.51 \end{array}\right)$	0.998
0	$\frac{2\pi}{3}$	0.991	$ \left(\begin{array}{ccc} 0.47 & 0.47 \\ 0.47 & 0.47 \end{array}\right) $	$ \left(\begin{array}{ccc} 0.46 & 0.46 \\ 0.46 & 0.46 \end{array}\right) $	0.999

•
$$|\psi_1\rangle = \frac{e^{\iota\gamma_1}}{2}(|0\rangle + e^{\frac{\iota\pi}{4}}\sqrt{3}|1\rangle), \ |\psi_2\rangle = \frac{e^{\iota\gamma_2}}{2}(\sqrt{3}|0\rangle + e^{\frac{\iota2\pi}{3}}|1\rangle)$$

$$\rho_{th} = |\Psi\rangle\langle\Psi| = \begin{pmatrix} 0.47 & 0.12 - 0.36i \\ 0.12 + 0.36i & 0.31 \end{pmatrix}$$

γ_1	γ_2	\mathcal{F}_c	$ \rho_{exp} + \frac{1}{4} \mathbb{I}_{2 \times 2} $	\mathcal{F}_{final}
0	0	0.988	$\left(\begin{array}{cc} 0.44 & 0.21 - 0.33i \\ 0.21 + 0.33i & 0.35 \end{array}\right)$	0.974
0	$\frac{2\pi}{3}$	0.989	$ \begin{pmatrix} 0.46 & 0.18 - 0.29i \\ 0.18 + 0.29i & 0.29 \end{pmatrix} $	0.981

Superposition of n-qudits

- d-dimensional states: $|\Psi_1\rangle_d$, $|\Psi_2\rangle_d$, ... $|\Psi_n\rangle_d$
- $a_1, a_2, \dots a_n$ be the desired weights
- Consider d-dimensional referential state $|\chi\rangle_d$.
- Known overlaps, $|\langle \chi | \Psi_j \rangle_d|^2 = c_j$, where $j \in \{1, 2, \dots, n\}$
- We begin with the initial state,

$$\frac{1}{N}(a_1'|0\rangle_n + a_2'|1\rangle_n + \dots + a_n'|n-1\rangle_n) \otimes |\Psi_1\rangle_d \otimes \dots \otimes |\Psi_n\rangle_d$$

$$N = \sqrt{\sum_{j=1}^{n} a_j'^2}$$
 and $a_k' = \frac{a_k}{\sqrt{\prod_{(j \neq k, j=1)}^{n} c_j}}$

Superposition of n-qudits

• Controlled-swap operations³, $\mathcal{CS}_{2,3}^1$ $\mathcal{CS}_{2,4}^1 \dots \mathcal{CS}_{2,n}^1$

$$1/N \qquad (a'_1|0\rangle_n \otimes |\Psi_1\rangle_d \otimes |\Psi_2\rangle_d \otimes |\Psi_3\rangle_d \otimes \cdots \otimes |\Psi_n\rangle_d$$

$$+a'_2|1\rangle_n \otimes |\Psi_2\rangle_d \otimes |\Psi_1\rangle_d \otimes |\Psi_3\rangle_d \otimes \cdots \otimes |\Psi_n\rangle_d$$

$$+ \cdots \cdots$$

$$+a'_n|n-1\rangle_n \otimes |\Psi_n\rangle_d \otimes |\Psi_3\rangle_d \otimes \cdots \otimes |\Psi_1\rangle_d).$$

2 Projective measurements, $I_{n\times n}\otimes I_{d\times d}\otimes \bigotimes_{k=3}^n (|\chi\rangle_d\langle\chi|_d)_k$

$$\frac{1}{N} \sum_{k=1}^{n} \left(a_k \left(\prod_{(j \neq k, j=1)}^{n} \frac{\langle \chi | \Psi_j \rangle_d}{\sqrt{c_j}} \right) |k - 1\rangle_n | \Psi_k \rangle_d \right) \bigotimes_{m=1}^{n-1} |\chi\rangle_d$$

$$\frac{1}{N} (a_1 |0\rangle_n |\Psi_1\rangle_d + a_2 |1\rangle_n |\psi_2\rangle_d + \dots + a_n |n - 1\rangle_n |\psi_n\rangle_d)$$

Fourier transformation

$$\frac{1}{N\sqrt{n}}\sum_{j=0}^{n-1} \left(|j\rangle_n \otimes \sum_{k=1}^n \left(f^{j(k-1)} a_k |\Psi_k\rangle_d \right) \right)$$

Projective measurement: $|0\rangle_n\langle 0|_n\otimes \mathbb{I}_{d\times d}$

Superposition of n-qudits

Final state:
$$|\Psi\rangle = \frac{N_{\Psi}}{N\sqrt{n}} \sum_{k=1}^{n} a_k \left(\prod_{(j \neq k, j=1)}^{n} \frac{\langle \chi | \Psi_j \rangle_d}{\sqrt{c_j}} \right) |\Psi_k\rangle_d$$

Success probability⁴,

$$P = \frac{N_{\Psi}^2}{N^2 n} = \frac{\prod_{j=1}^n c_j}{\sum_{j=1}^n a_j^2 c_j} \frac{N_{\Psi}^2}{n}.$$

⁴S. Dogra, G. Thomas, S. Ghosh, and D. Suter, arXiv:1702.02418 [quant-ph] (2017). → () → ()

Thank you!

